Motoman XRC Controller

ArcWorld II-600 System Manual for UP/SKX-Series Robot

Part Number 142705-1

Revised 11/1/00

June 22, 1999

MOTOMAN
805 Liberty Lane
West Carrollton, OH 45449
TEL: (937) 847-6200  FAX: (937) 847-6277
24-HOUR SERVICE HOTLINE: (937) 847-3200

The information contained within this document is the proprietary property of Motoman, Inc., and may not be copied, reproduced or transmitted to other parties without the expressed written authorization of Motoman, Inc.

©1999 by MOTOMAN
All Rights Reserved

Because we are constantly improving our products, we reserve the right to change specifications without notice. MOTOMAN is a registered trademark of YASKAWA Electric Manufacturing.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 About this Document</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 System Overview</td>
<td></td>
</tr>
<tr>
<td>1.2.1 System Layout</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.2 Major Components</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2.3 Optional Equipment</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3 Reference to Other Documentation</td>
<td>1-3</td>
</tr>
<tr>
<td>1.4 Customer Service Information</td>
<td>1-3</td>
</tr>
<tr>
<td>2 SAFETY</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Standard Conventions</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 General Safeguarding Tips</td>
<td>2-3</td>
</tr>
<tr>
<td>2.4 Mechanical Safety Devices</td>
<td>2-3</td>
</tr>
<tr>
<td>2.5 Installation Safety</td>
<td>2-4</td>
</tr>
<tr>
<td>2.6 Programming Safety</td>
<td>2-4</td>
</tr>
<tr>
<td>2.7 Operation Safety</td>
<td>2-5</td>
</tr>
<tr>
<td>2.8 Maintenance Safety</td>
<td>2-6</td>
</tr>
<tr>
<td>3 EQUIPMENT DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>3.1 UP/SKX-Series Robot Description</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 XRC Controller</td>
<td></td>
</tr>
<tr>
<td>3.2.1 Playback Panel</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2.2 Programming Pendant</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2.3 Brake Release</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3 Operator Station</td>
<td></td>
</tr>
<tr>
<td>3.3.1 Cycle Start</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.2 Emergency Stop (E-STOP)</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.3 Hold</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.4 Cycle Latched</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.5 Alarm</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.6 Positioner Auto/Manual</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.7 Master Job Start</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.8 Operator Station Enable/Disable</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.9 Reset</td>
<td>3-8</td>
</tr>
<tr>
<td>3.3.10 Rotate Counterclockwise/Clockwise</td>
<td>3-8</td>
</tr>
<tr>
<td>3.3.11 Servo On</td>
<td>3-8</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>3-8</td>
</tr>
<tr>
<td>3.4.2</td>
<td>3-8</td>
</tr>
<tr>
<td>3.4.3</td>
<td>3-9</td>
</tr>
<tr>
<td>3.4.4</td>
<td>3-9</td>
</tr>
<tr>
<td>3.5</td>
<td>3-10</td>
</tr>
<tr>
<td>3.5.1</td>
<td>3-10</td>
</tr>
<tr>
<td>3.5.2</td>
<td>3-10</td>
</tr>
<tr>
<td>3.5.3</td>
<td>3-11</td>
</tr>
<tr>
<td>3.5.4</td>
<td>3-11</td>
</tr>
<tr>
<td>3.5.5</td>
<td>3-11</td>
</tr>
<tr>
<td>3.6</td>
<td>3-11</td>
</tr>
<tr>
<td>3.6.1</td>
<td>3-11</td>
</tr>
<tr>
<td>3.6.2</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6.3</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6.4</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6.5</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6.6</td>
<td>3-12</td>
</tr>
<tr>
<td>3.6.7</td>
<td>3-13</td>
</tr>
<tr>
<td>3.6.8</td>
<td>3-13</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.1</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1.2</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>4-2</td>
</tr>
<tr>
<td>4.3</td>
<td>4-3</td>
</tr>
<tr>
<td>4.3.1</td>
<td>4-4</td>
</tr>
<tr>
<td>4.4</td>
<td>4-5</td>
</tr>
<tr>
<td>4.5</td>
<td>4-6</td>
</tr>
<tr>
<td>4.6</td>
<td>4-7</td>
</tr>
<tr>
<td>4.7</td>
<td>4-8</td>
</tr>
<tr>
<td>4.8</td>
<td>4-10</td>
</tr>
<tr>
<td>4.8.1</td>
<td>4-10</td>
</tr>
<tr>
<td>4.8.2</td>
<td>4-11</td>
</tr>
<tr>
<td>4.8.3</td>
<td>4-11</td>
</tr>
<tr>
<td>4.8.4</td>
<td>4-12</td>
</tr>
<tr>
<td>4.8.5</td>
<td>4-12</td>
</tr>
<tr>
<td>4.9</td>
<td>4-13</td>
</tr>
<tr>
<td>4.10</td>
<td>4-13</td>
</tr>
<tr>
<td>4.11</td>
<td>4-15</td>
</tr>
<tr>
<td>4.12</td>
<td>4-15</td>
</tr>
</tbody>
</table>
## Section

### OPERATION

5  Programming ................................................................................................................. 5-1
   5.1  I/O Assignment ................................................................................................. 5-1
   5.1.1 Sweeping the Positioner .................................................................................. 5-3

5  Daily Operation ............................................................................................................ 5-3
   5.2  Start-Up .............................................................................................................. 5-4
   5.2.1 Robot Safe (Cube 24) Position ........................................................................ 5-4
   5.2.2 Selecting the Master Job .................................................................................. 5-4
   5.2.3 Shutdown ......................................................................................................... 5-5

5  System Recovery .......................................................................................................... 5-5
   5.3  Alarms and Errors .............................................................................................. 5-5
   5.3.1 E-STOP Recovery ............................................................................................. 5-6
   5.3.2 Shock Sensor Recovery ..................................................................................... 5-7
   5.3.3 Using the Brake Release ................................................................................... 5-7

### MAINTENANCE

6  Periodic Maintenance ................................................................................................. 6-1
   6.1 MHS-250-PR Maintenance Procedures ............................................................... 6-2
   6.2 Hardstop/Shock Absorbers ................................................................................... 6-2
   6.3 Fuse and Circuit Breaker Protection .................................................................... 6-2
**LIST OF FIGURES**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>System Layout ................................................................. 1-2</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>XRC Controller ............................................................... 3-1</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>XRC Playback Panel ............................................................ 3-2</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Programming Pendant ............................................................ 3-3</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>RS-232C Serial Port .............................................................. 3-5</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Enable Switch ................................................................. 3-5</td>
</tr>
<tr>
<td>Figure 3-6</td>
<td>Operator Station ................................................................. 3-6</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>Kobelco UC350 Power Source ............................................... 3-10</td>
</tr>
<tr>
<td>Figure 3-8</td>
<td>MotoArc 450 Power Source .................................................. 3-10</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Area Needed for Installation ............................................. 4-2</td>
</tr>
<tr>
<td>Figure 4-2</td>
<td>Unbolting the Robot/Positioner Common Base .................. 4-3</td>
</tr>
<tr>
<td>Figure 4-3</td>
<td>Location of Shipping Brackets ............................................ 4-4</td>
</tr>
<tr>
<td>Figure 4-4</td>
<td>Unbolting Auxiliary Equipment Common (AEC) Base .......... 4-5</td>
</tr>
<tr>
<td>Figure 4-5</td>
<td>Location of Auxiliary Equipment Common (AEC) Base .......... 4-6</td>
</tr>
<tr>
<td>Figure 4-6</td>
<td>Handling a Safety Mat ........................................................ 4-7</td>
</tr>
<tr>
<td>Figure 4-7</td>
<td>Placement of the Positioner Safety Mat ............................. 4-8</td>
</tr>
<tr>
<td>Figure 4-8</td>
<td>Leveling Bolts ................................................................. 4-9</td>
</tr>
<tr>
<td>Figure 4-9</td>
<td>Auxiliary Equipment Common Base Leveling Bolts ............ 4-9</td>
</tr>
<tr>
<td>Figure 4-10</td>
<td>Connecting Robot to XRC Controller ............................... 4-11</td>
</tr>
<tr>
<td>Figure 4-11</td>
<td>Water Circulator Connections ................................................... 4-12</td>
</tr>
<tr>
<td>Figure 4-12</td>
<td>Air Service Connections ...................................................... 4-13</td>
</tr>
<tr>
<td>Figure 4-13</td>
<td>Incoming Power Connections ............................................ 4-14</td>
</tr>
</tbody>
</table>

**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>MHS-250-PR Positioner Specifications .......................... 3-9</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Incoming Power Specifications (Decal) ......................... 4-14</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>XRC User Inputs .......................................................... 5-2</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>XRC User Outputs .......................................................... 5-2</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Periodic Maintenance ...................................................... 6-1</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>MotoArc 450 CV Fuses and Circuit Breaker ..................... 6-2</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>Universal Welding Interface (UWI) Fuses ...................... 6-3</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

The ArcWorld II-600 is part of the ArcWorld family of standardized arc welding solutions. It is a fully integrated welding system, and is supported from wire to weld by Motoman, Inc.

The ArcWorld II-600 features a Motoman arc welding robot and XRC controller with menu-driven arc welding application software, complete welding package, 180 degree reciprocating positioner with pneumatic headstock, operator interface, and total safety environment.

1.1 About this Document

This manual is intended as an introduction and overview for personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman robot model. For more detailed information, refer to the manuals listed in Section 1.3. This manual contains the following sections:

SECTION 1 - INTRODUCTION
This section provides general information about the ArcWorld II-600 and its components, a list of reference documents, and customer service information.

SECTION 2 - SAFETY
This section provides information regarding the safe use and operation of the ArcWorld II-600 system.

SECTION 3 - DESCRIPTION OF EQUIPMENT
This section provides a detailed description of the major components of the ArcWorld II-600 system. This section also includes a table of component specifications.

SECTION 4 - INSTALLATION
This section provides instructions for set up and installation of the ArcWorld II-600 system.

SECTION 5 - OPERATION
This section provides instructions for basic operation of the ArcWorld II-600 system. This section provides procedures for start-up, loading, normal operation, fault recovery, and shutdown.

SECTION 6 - MAINTENANCE
This section contains a table listing periodic maintenance requirements for the components of the ArcWorld II-600 cell.
1.2 System Overview

The ArcWorld II-600 provides a complete arc welding solution in a standardized configuration. The system is designed around a Motoman arc welding robot and XRC robot controller, and includes a complete welding package. A dual-station 180 degree reciprocating positioner with pneumatic headstock allows the operator to prepare and set up parts on one side while the robot welds on the other side. The pneumatic headstock allows parts to be prepared on both sides of the fixture. The cell provides a full complement of safety features designed to protect both personnel and equipment. Figure 1-1 illustrates the system layout of the ArcWorld II-600 cell.

1.2.1 System Layout

The robot manipulator and positioner share a common base for ease of installation and to help maintain proper alignment between the two components. The XRC controller and welding power source also share a common base. Additional optional components, such as the water circulator and the Com-Arc III seam tracking unit, can also be located on this common base.

The robotic cell is fully enclosed by safety fencing and an interlocking door. Safety mats prevent the positioner from cycling while anyone is standing directly in front of the positioner. All operator controls, including those on the XRC and welding power supply, are accessible from outside of the robotic enclosure.

![Figure 1-1 System Layout](image-url)
1.2.2 Major Components

The ArcWorld II-600 includes the following major components:

- Motoman or SK16X or UP6 manipulator and XRC controller
- MHS-250-PR reciprocating positioner with pneumatic headstock.
- Master operator station
- Welding equipment, including the following:
  - MotoArc welding power source
  - Motoman torch (water-cooled or air-cooled)
  - Wire feeder
  - Torch mount
- Safety equipment, including the following:
  - Safety fencing with arc curtains
  - Interlocked safety mats
  - Interlocked cell door
  - Positioner arc screen

1.2.3 Optional Equipment

The following equipment is available for use with the ArcWorld II-600:

- Torch tender
- Wire cutter
- Com-Arc III seam tracking unit
- Water circulator

1.3 Reference to Other Documentation

For additional information refer to the following:

- Motoman UP6 Manipulator Manual (P/N 142104-1)
- Motoman SK16X Manipulator Manual (P/N 142105-1)
- Motoman Operator's Manual for Arc Welding (P/N 142098-1)
- Motoman Concurrent I/O Parameter Manual (P/N 142102-1)
- Com-Arc III Instruction Manual (P/N 132753-1)
- Vendor manuals for system components not manufactured by Motoman

1.4 Customer Service Information

If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:

- Robot Type (UP6 or SK16X)
- Application Type (welding)
- System Type (ArcWorld II-600)
- Software Version (3.74)
- Robot Serial Number (located on the back side of the robot arm)
- Robot Sales Order Number (located on back side of XRC controller)
SECTION 2
SAFETY

2.1 Introduction

It is the purchaser's responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. The robot must not be operated by personnel who have not been trained!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.

This safety section addresses the following:

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming Safety (Section 2.6)
- Operation Safety (Section 2.7)
- Maintenance Safety (Section 2.8)
2.2 Standard Conventions

This manual includes information essential to the safety of personnel and equipment. As you read through this manual, be alert to the four signal words:

- DANGER
- WARNING
- CAUTION
- NOTE

Pay particular attention to the information provided under these headings which are defined below (in descending order of severity).

![DANGER!](image)

Information appearing under the DANGER caption concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

![WARNING!](image)

Information appearing under the WARNING caption concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

![CAUTION!](image)

Information appearing under the CAUTION caption concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

NOTE: Information appearing in a NOTE caption provides additional information which is helpful in understanding the item being explained.
2.3 **General Safeguarding Tips**

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.

- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.

- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).

- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.

- In accordance with ANSI/RIA R15.06, section 6.13.4 and 6.13.5, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 **Mechanical Safety Devices**

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety measures are available:

- Safety fences and barriers
- Light curtains
- Door interlocks
- Safety mats
- Floor markings
- Warning lights

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 Programming Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Programming tips are as follows:

- Any modifications to PART 1 of the controller PLC can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!
- Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.
- Back up all programs and jobs onto a floppy disk whenever program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- The concurrent I/O (Input and Output) function allows the customer to modify the internal ladder inputs and outputs for maximum robot performance. Great care must be taken when making these modifications. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations that may damage the robot or other parts of the system.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Be sure that all safeguards are in place.
• Check the E-STOP button on the teach pendant for proper operation before programming.
• Carry the teach pendant with you when you enter the workcell.
• Be sure that only the person holding the teach pendant enters the workcell.
• Test any new or modified program at low speed for at least one full cycle.

2.7 Operation Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Operation tips are as follows:

• Be sure that only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories are permitted to operate this robot system.
• Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
• Inspect the robot and work envelope to ensure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Ensure that all safeguards are in place.
• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
• The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
• All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
2.8 Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Maintenance tips are as follows:

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
- Back up all your programs and jobs onto a floppy disk whenever program changes are made. A backup must always be made before any servicing or changes are made to options, accessories, or equipment to avoid loss of information, programs, or jobs.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Be sure all safeguards are in place.
- Use proper replacement parts.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
SECTION 3
EQUIPMENT DESCRIPTION

3.1 UP/SKX-Series Robot Description

The Motoman six-axis UP6 and SK16X robots and XRC robotic controller represent state-of-the-art technology in robotics today. The UP6 robot has a payload of 6kg (13.2 lbs). It features a 1,325mm (52.1 in.) reach and has a relative positioning accuracy of ± 0.08mm (0.004 in.). The SK16X robot has a payload of 16kg (35.2 lbs). It features a 1,555mm (61.2 in.) reach and has a relative positioning accuracy of ± 0.1 mm (0.004 in.).

Each robot can reach below its own base as well as behind itself and can be mounted on the floor, wall, or ceiling with few modifications. However, the S-axis has been restricted by hardstops for use in this system. For more information, refer to the manipulator manual that came with your system.

3.2 XRC Controller

The XRC robotic controller, shown in Figure 3-1, coordinates the operation of the ArcWorld II-600 system. It controls manipulator movement and welding power supply, processes input and output signals, and provides the signals to operate the welding system. It maintains variable data and performs numeric processing to convert to and from different coordinate systems. In addition, the controller provides the following: main logic functions, servo control, program and constant data memory, and power distribution. For more information, refer to the manipulator manual that came with your system.

![Figure 3-1 XRC Controller](image-url)
3.2.1 Playback Panel

The playback panel (see Figure 3-2) contains the primary system controls and consists of the features briefly described in the following paragraphs. For detailed information about the operation of the playback panel, refer to the manipulator manual that came with your system.

![Figure 3-2 XRC Playback Panel](image)

**Servo On Ready**
The SERVO ON READY pushbutton turns servo power ON. The switch lights when servo power is on. In TEACH mode, the SERVO ON READY pushbutton operates only when the TEACH LOCK button on the programming pendant is ON and the ENABLE switch on the programming pendant is held in.

**Mode**
The Mode push buttons (PLAY, TEACH and REMOTE) set the robot's mode of operation.

*NOTE:* Changing modes from PLAY to TEACH, during playback, will cause the program to cease execution (similar to HOLD); to resume operation, press PLAY and then START.

**Alarm/Error**
The ALARM/ERROR indicator light turns ON whenever an alarm or error condition occurs.

**Emergency Stop (E-STOP)**
The E-STOP button on the playback panel is connected in series with the system Emergency Stop circuit. Pressing E-STOP ceases all system operation.

**Start**
Pressing the START button while in PLAY mode with servo power on, causes playback execution of the current job to begin.

**Hold**
The HOLD button is a normally closed, momentarily actuated switch. Pressing HOLD halts operation of the manipulator until another Start signal is sent.
3.2.2 Programming Pendant

The programming pendant (see Figure 3-3) is the primary user interface for the system. The pendant has a 4x5-inch 12-line, 40-character LCD display and keypad. The system uses the INFORM II robot language and a menu-driven interface to simplify operator interaction with the robot. By using the pendant, the operator can teach robot motion, and perform programming, editing, maintenance, and diagnostic functions. The programming pendant consists of the items described below. For more information, refer to the manipulator manual that came with your system.

**NOTE:** The programming pendant LCD display goes dark after a few minutes of inactivity. Press any key to restore screen.

![Figure 3-3 Programming Pendant](image)

**General Purpose Display Area**
The General Purpose Display Area displays the currently selected menu choice.

**Menu Area**
The Menu Area contains menu selections for the currently selected screen.

**Emergency Stop (E-STOP)**
The E-STOP button on the programming pendant is connected in series with the system Emergency Stop circuit. Pressing the E-STOP button interrupts this circuit and stops all system operation.

**Keypad**
The user keypad on the programming pendant serves as an input device. The keys are grouped into different functional sections to simplify operator use.
**Status Area**
The Status Area shows system status via the following symbols:

- **Active Robot, External Axis, or Base Axis**
  R1, R2, R3; S1, S2, etc.; or B1, B2, etc.

- **Coordinate System**
  - Joint, World, Cylindrical, Tool, or User Frame

- **Manual Speed Setting**
  - Inching, Low, Medium, or High

- **Cycle Mode**
  - Step, 1-Cycle, or Auto

- **System Status**
  - E-Stop, Stop, Running/Start, Hold, or Alarm

- **Additional Pages** (when applicable)

**TOP MENU Key**
The TOP MENU key returns the pendant display to the initial start-up menu. The cursor key can then be used to choose from the following menu icons:

- **JOB**
  This icon accesses job selections including: Master Job, Select Job, Job Capacity, and Create New Job while in TEACH mode.

- **ARC WELDING, GENERAL, HANDLING, and SPOT WELDING**
  This icon allows you to select the applications available to the controller.

- **VARIABLE**
  This icon accesses the display and editing menu for the arithmetic variables and display of position variables.

- **IN/OUT**
  This icon accesses DETAIL and SIMPLE displays of all XRC I/O signals. In EDITING or MAINT. mode, Universal Outputs can be forced ON or OFF.

- **ROBOT**
  This icon accesses robot information including: CURR.POS, POWER ON/OFF, POS, COMMAND POS, SECOND HOME POS, OPE ORIGIN POS, and TOOL and USER COORDINATE.

- **SYSTEM INFO**
  This icon provides Version information for both hardware and software, Alarm History, and Monitoring Time.

**Area Key**
The Area key moves the cursor to the different areas of the display screen.

**Cursor Key**
The Cursor key is an 8-way, directional key that moves the up, down, left or right to highlight a desired item that can then be chosen using the SELECT key.
**SELECT Key**
The SELECT key is used to choose the item currently highlighted by the cursor.

**TEACH LOCK Key**
The TEACH LOCK key locks operation of the robot with the programming pendant. Operation is not possible from the playback panel or operator station. Servo power can not be applied in TEACH mode unless TEACH LOCK is ON.

**RS-232C Serial Port**
This 9-pin serial port is used for data communication between the XRC and a floppy disk controller (FC1 or FC2), FDE (Floppy Disk Emulator) software, or other form of communication (see Figure 3-4).

![RS-232C Serial Port](image)

**Figure 3-4   RS-232C Serial Port**

**ENABLE Switch**
The ENABLE switch (see Figure 3-5) is a three-position switch located on the left rear of the programming pendant. It is a safety feature that controls servo power while in TEACH mode. When pressed in, this switch enables servo power to be turned on. However, should the operator release the switch, or grasp it too tightly, servo power is immediately disabled, preventing further robot movement.

![Enable Switch](image)

**Figure 3-5   Enable Switch**
3.2.3   Brake Release

**WARNING!**
Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.

The Brake Release Control is a safety feature that allows you to release the automatic brakes on the robot in case of an emergency or robot failure. The Brake Release Control is mounted on the front of the XRC cabinet (see Figure 3-1).

3.3   Operator Station

The operator station (see Figure 3-6) includes a NEMA enclosure on a stand-alone pedestal. The following paragraphs describe the operator station controls.

![Figure 3-6 Operator Station](image)

3.3.1   Cycle Start

**WARNING!**
The operation of the CYCLE START palm buttons is dependent on the structure of the Master job. Altering the Master job could result in injury to personnel or damage to the equipment.

Two green palm buttons, located on the sides of the operator station, initiate a positioner sweep cycle if the robot is in the Home or Safe position (Cube 24). If both CYCLE START buttons are pressed while the robot is outside Cube 24, the CYCLE START (IN#1) command is latched into the XRC. Once the robot returns to Cube 24, the CYCLE START command is executed and the positioner sweeps. An anti-tiedown timer, set to 10 seconds, prevents the operator from holding the palm buttons down and continuously cycling the positioner. For more information on Cubic Interference Zones, refer to the robot manipulator manual.
3.3.2 Emergency Stop (E-STOP)

The operator station E-STOP, the robot E-STOP, and the sliding door interlocks are connected in series in the Emergency Stop circuit. Pressing an E-STOP button or interrupting a door interlock interrupts this circuit and stops all system operation. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped.

3.3.3 Hold

The HOLD button is a normally closed, momentarily actuated switch. Pressing the HOLD button stops the operation of the manipulator until another Start signal is sent. The indicator light stays ON only while the HOLD button is pressed. Operation resumes at the point in the program where the HOLD state was initiated. Refer to the manipulator manual for more information.

3.3.4 Cycle Latched

The CYCLE LATCHED lamp operates as an indicator light showing that the positioner CYCLE START command has been latched. It is not necessary to wait for the robots to finish welding and return to the Safe position (Cube 24) before pressing the CYCLE START palm buttons to sweep the positioner. Pressing the Cycle Start palm buttons while either robot is still in motion locks the CYCLE START command into the XRC. The CYCLE LATCHED light comes on, indicating CYCLE START latching. The positioner sweeps once the robots finish the current job and return to the Safe position (Cube 24). Stepping on the safety mats will unlatch the CYCLE START command from the XRC.

3.3.5 Alarm

The ALARM lamp is connected to the robot SERVO ON and ALARM OCCURRENCE outputs. The ALARM lamp turns on when the robot encounters an alarm condition or when servo power is cut.

3.3.6 Positioner Auto/Manual

The POSITIONER AUTO/MANUAL selector switch is used to select AUTOMATIC or MANUAL mode for the positioner. The selector switch is connected to robot Input #2. When the selector switch is in the AUTOMATIC position, the robot processes the part after the positioner sweeps. In MANUAL mode, the robot does not process the part after the positioner sweeps, but remains in the Safe position.

NOTE: This function is dependent on the structure of the Master job.

3.3.7 Master Job Start

The MASTER JOB START button is connected to the robot external start input. The robot will start the current active job when MASTER JOB START is pressed. The operator station must be enabled and servo power ON for the MASTER JOB START button to work.

3.3.8 Operator Station Enable/Disable

The OPERATOR STATION ENABLE/DISABLE selector switch transfers primary control of the ArcWorld cell from the XRC to the operator station. The REMOTE MODE button on the XRC playback panel lights when the operator station is enabled. Most prog. pendant functions are disabled while in REMOTE.
3.3.9 Reset

The RESET button is connected to the robot alarm reset input. A minor alarm or error condition is cleared when this button is pressed. In addition, the RESET button and the RIGHT CYCLE START buttons are interlocked and, when pressed simultaneously, reset the positioner when servo power is ON in Play mode. In Teach mode, the positioner is automatically reset when servo power is turned ON. The positioner only needs to be reset after initial power-up and after an emergency stop while in Play mode.

NOTE: Resetting the positioner may cause some positioner motion. You must be careful when you reset the positioner with the robot close to tooling. If an Emergency Stop occurs during programming, be sure to reset the positioner before resuming programming.

3.3.10 Rotate Counterclockwise/Clockwise

The ROTATE CCW/CW selector switch is used to sweep the pneumatic headstock while in the operator loading zone. The left CYCLE START palm button must be pressed when this switch is used. Once the top side of the fixture is loaded, press the left CYCLE START palm button and toggle the ROTATE CCW/CW selector switch to flip the headstock to the other side. The bottom side of the fixture can now be loaded.

3.3.11 Servo On

The SERVO-ON pushbutton turns servo power ON. In TEACH mode, the SERVO ON pushbutton operates only when the TEACH LOCK switch on the programming pendant is held in.

3.4 MHS-250-PR Positioner

The MHS-250-PR positioner uses an AC motor to sweep the production parts from the operator side into the robot work area. Pneumatic driven headstocks allow the operator to prepare parts on both the top and bottom of the fixture. A steel arc screen separates the operator side from the robot work area. An optional dual rack pneumatic headstock is available for fixtures requiring more torque. Hard stop/shock absorbers on both the positioner and the pneumatic headstocks ensure accurate and repeatable parts positioning. Refer to Table 3-1 for specifications.

NOTE: In high humidity areas, use surface protection to prevent corrosion of the tooling plates.

3.4.1 Welding Ground System

The welding ground system consists of spring-loaded copper brushes that contact a large ring mounted on the tailstocks on both sides of the positioner. The ground cable to the welding power source is connected to the base of the positioner tailstock.

3.4.2 Hard Stop/Shock Absorbers

The Motoman MHS-250-PR positioner is equipped with two hard stop/shock absorbers on each headstocks as well as four hardstop/shock absorbers on the main sweep assembly. The hard stop/shock absorbers are factory set for accurate and reliable placement of the parts fixture.
### 3.4.3 Pneumatic Headstocks

The pneumatic headstocks flip the fixtures, allowing the operator to load and unload parts, and the robot to weld on both sides of a fixture. The headstock can be flipped on the operator side using the ROTATE CCW/CW selector switch on the operator station. When in the robot work area, the headstock is controlled solely by the XRC controller.

### 3.4.4 Arc Shield

**WARNING!**

*Do not operate this equipment unless the arc screen is in place or eye damage can occur!*

The Motoman MHS-250-PR positioner is equipped with a sheet metal screen for arc radiation protection between the operator loading zone and the welding zone. Do not operate this equipment unless the arc shield is in place.

---

**Table 3-1 MHS-250-PR Positioner Specifications**

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Capacity</strong></td>
<td>250kg (550 lbs) combined part/fixture weight per side</td>
</tr>
<tr>
<td></td>
<td>500kg (1100 lbs) total</td>
</tr>
<tr>
<td><strong>Maximum Weight Differential per Side (Offset Load)</strong></td>
<td>90kg (176.4 lbs)</td>
</tr>
<tr>
<td><strong>Distance Between Headstock and Tailstock Face plates</strong></td>
<td>1.5m (approximately 59 in.)</td>
</tr>
<tr>
<td><strong>Swing Diameter of Each Part Fixture</strong></td>
<td>0.4m (15.75 in.) maximum radial fixture clearance (0.8m (31.5 in.) diameter on center line</td>
</tr>
<tr>
<td><strong>Sweep Diameter of Positioner</strong></td>
<td>1.63m (64.2 in.)</td>
</tr>
<tr>
<td><strong>Temperature Operating Range</strong></td>
<td>4-43˚C (40-110˚F)</td>
</tr>
<tr>
<td><strong>Shock (maximum)</strong></td>
<td>Less than 0.5 G</td>
</tr>
<tr>
<td><strong>Positioner Sweep Speed (Torque/Time)</strong></td>
<td>3-4 sec</td>
</tr>
<tr>
<td></td>
<td>680Nm/4 sec.</td>
</tr>
<tr>
<td><strong>Pneumatic Headstock Speed</strong></td>
<td>approximately 2 sec.</td>
</tr>
<tr>
<td><strong>Pneumatic Headstock Torque</strong></td>
<td>90Nm @ 5.5bar (800 lb/in @ 80 psi)</td>
</tr>
<tr>
<td></td>
<td>(180Nm for optional dual rack pneumatic headstock)</td>
</tr>
<tr>
<td><strong>Air Requirements</strong></td>
<td>586 to 689.5kPa (85 to 100 psi)</td>
</tr>
<tr>
<td><strong>Electrical Requirements</strong></td>
<td>24V DC for interface</td>
</tr>
<tr>
<td></td>
<td>208V AC, 10 amp</td>
</tr>
<tr>
<td></td>
<td>3-phase power supplied by the XRC controller</td>
</tr>
<tr>
<td><strong>Welding Current Rating</strong></td>
<td>400 amperes at 100% duty cycle</td>
</tr>
</tbody>
</table>
3.5 Welding Equipment

The ArcWorld system provides a complete complement of arc welding equipment. In its standard configuration, the ArcWorld system includes a power source, wire feeder, torch, and torch mount. Optional equipment including water circulators, Com-Arc units, and torch tenders may also be included with your system.

3.5.1 Power Sources

Motoman offers several different power sources for use with the ArcWorld II-600 system depending on your system’s application. The power source your system uses may be different. For more specific information, refer to the vendor manual that came with your system.

![Power Sources Diagram]

Figure 3-7 Available Power Sources

3.5.2 Wire Feeder

The wire feeder mounts on the robot arm. This 4-roll wire feeder provides reliable wire feeding at rates up to 750 inches per minute (IPM). An integral gas valve provides fast gas response time.
3.5.3 Universal Welding Interface (UWI)

The UWI provides microprocessor control to the wire feeder and MotoArc series power source. It scales the signals from the XRC controller to the appropriate levels required for control of the welding components. It also provides isolation of the power source analog signals.

**NOTE:** Some power sources available with the ArcWorld II-600 system do not use the UWI. For more information specific to your system, refer to the vendor manuals shipped with your system.

3.5.4 GMAW Torch

The ArcWorld system uses either an air-cooled or a water-cooled robotic/automatic GMAW torch. These are heavy-duty torches designed for quick replacement while requiring minimum robot reprogramming. The GMAW torch is installed at the end of the robot wrist. For applications that use the water-cooled torch, the ArcWorld system includes a suitable water circulator kit.

3.5.5 Motoman Torch Mount

A Motoman Torch Mount protects the robot, workpiece, fixture, and positioner. It provides multi-directional impact detection, including Z-axis collisions. Torch impact causes a system E-STOP and immediately stops all system operation. Servo power is removed from the system and brakes are applied to the robot. All positioner and door motion is also stopped.

3.6 Safety Features

The ArcWorld II-600 system incorporates a host of safety equipment. When all standard safety precautions are taken, the safety equipment helps to ensure safe operation of the robotic cell. The ANSI/RIA R15.06 Robot Safety Standard stipulates the user is responsible for safeguarding. **Users are responsible for determining whether the provided safeguards are adequate for plant conditions. Users must also ensure that safeguards are maintained in working order.**

3.6.1 Arc Screens

**WARNING!**

*Although the arc curtain blocks dangerous arc radiation, never look directly at the arc without protective eyewear!*

Two separate arc screens are used on the ArcWorld II-600 system. The first is a metal arc screen on the positioner. This screen blocks arc radiation and sparks from the welding operation. The material used to cover the safety fencing of the entire robotic cell acts as the second arc screen. This material reduces the amount of ultraviolet radiation that escapes from the robotic cell.
3.6.2 **Fencing**

The safety fencing provided with the ArcWorld II-600 system encloses the entire robotic cell. It forms a physical barrier preventing entry into the robot envelope during automatic operation.

3.6.3 **Safety Mats**

The ArcWorld II-600 safety mats help prevent serious injury to anyone entering the positioner area during the sweeping process. In PLAY mode, if the positioner is sweeping and a safety mat is activated, servo power is removed from the system and all positioner motion stops. Servo power is re-applied by pressing SERVO ON. However, the positioner will only continue its motion after it is reset using the RESET and right CYCLE START buttons on the operator station.

If the positioner is not in motion but the CYCLE START input has been latched (indicated by the STATION READY light), the CYCLE START input is unlatched and the STATION READY light turns off when the safety mat is activated. Servo power remains ON.

3.6.4 **Emergency Stops (E-STOP)**

In addition to the safety features described above, the ArcWorld II-600 has strategically placed E-STOPS. These are operator actuated devices that, when activated, immediately stop all system operation. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped. The following is a list of their locations:

- The playback panel on the controller
- The programming pendant
- The operator station

3.6.5 **ENABLE Switch**

The ENABLE switch is a safety feature which controls servo power while in TEACH mode. When pressed in, this switch allows the operator to turn servo power ON and initializes the system. However, should the operator release the switch or grasp it too tightly, servo power is immediately disabled, preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the XRC section in the manipulator manual that came with your system.

3.6.6 **Interlocked Cell Door**

A safety interlock on the cell entrance door prevents entry into the cell during PLAY mode. Opening the cell door with the robot in PLAY causes an E-STOP. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped.
3.6.7 **Interference Cubes**

Cubic interference zones prevent interference between multiple manipulators or a manipulator and peripheral devices. The XRC monitors the robot tool center point (TCP) during operation. If the TCP enters one of these software-defined interference zones, an output is turned on in the XRC. These outputs can be used to interlock activity of other manipulators or peripheral devices. These cubes are internally tied to specified outputs:

\[
R1 = SOUT \#081 - 088
\]

The ArcWorld II-600 uses interference cubes to interlock robot position with positioner motion. The robot Home or Safe position (Cube 24) is defined behind the positioner, clear of the sweep zone. Before the positioner can sweep, the robot must be in this safe position.

Setup of these cubes is done at the factory prior to shipment. However, should any cube need redefined or modified due to changes in tooling or system components, refer to Appendix A for basic interference cube setup.

3.6.8 **Brake Release**

**WARNING!**

*Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.*

The Brake Release Control is a safety feature that releases the automatic brakes on the robot in case of an emergency or robot failure. The Brake Release Control is mounted on the front of the XRC cabinet (see Figure 3-1).
SECTION 4
INSTALLATION

The ArcWorld II-600 system can be installed easily in just a short time by three workers. The more people involved (within reason), the more quickly installation can be completed. Follow established safety procedures at all times throughout the installation process. Failure to use safe work practices can result in damage to the equipment and injury to the workers.

CAUTION!
Installation of the ArcWorld II-600 System is not a task for the novice. The ArcWorld II-600 System is not fragile, but it is a highly sophisticated robotic system. Handle components with care. Rough handling can damage system electronic components.

4.1 Materials Required

All system hardware necessary for installing the ArcWorld II-600 system is included with the system. This section identifies customer-supplied items and tools required to complete installation.

4.1.1 Customer-Supplied Items

- Gas bottles for the welding torches
- Incoming power supply
- Two earth ground cables with two earth ground stakes
- Weld wire
- Incoming air supply: 0.04cm at 620.5kPa (1.5scfm at 90 psi)
- Stepladder
- Forklift and/or overhead crane

4.1.2 List of Tools

- Safety glasses
- Face shields
- Gloves
- Level
- Ratchet with 3/4-in. socket
- Adjustable wrench set
- Hammer drill with appropriate concrete bits
- Phillips and flat screwdrivers
- Hammer
- Socket set
- Forklift and/or overhead crane
- Air-impact gun with 3/4-in. socket
- Open-end wrench set
- Two socket-head (Allen)
- Wrench sets (standard and metric)
4.2 **Site Preparation**

To prepare your site, proceed as follows:

1. Clear floor space needed for unit (see Figure 4-1).

   ![Diagram of site preparation](image)

   **Figure 4-1  Area Needed for Installation**

   **NOTE:** The ArcWorld II-600 system will require a minimum area of 2.5m (8.2 ft) by 3.9m (12.9 ft); however, we recommend an additional 2.43 to 3.05m (8 to 10 ft) on all sides.

2. Gather all customer-supplied items and required tools listed in Section 4.1.
4.3 **Installing the Robot/Positioner Common Base**

The robot/positioner common base and the operator station are shipped on a wooden shipping skid. To install the robot/positioner common base, proceed as follows:

**CAUTION!**

*Handle ArcWorld II-600 components carefully to avoid damage.*

1. Unbolt robot/positioner common base from shipping skid using a 3/4 in. socket (see Figure 4-2).

![Unbolting the Robot/Positioner Common Base](image)

**WARNING!**

*The robot/positioner common base weighs 1905kg (4200 lbs). Be sure that your crane or forklift is capable of handling this much weight or damage to the equipment or injury to personnel can result.*

2. Using a forklift, remove common base from wooden shipping skid.
3. Place robot/positioner common base in position (see Figure 4-1).

**NOTE:**

*Make sure there is adequate room on all sides of the positioner for the fencing, the operator station, the safety mats, and the auxiliary equipment common base.*

4. Carefully remove protective plastic wrapping from robot and torch.
5. Inspect robot, torch, and positioner for shipping damage.

**NOTE:**

*If damage is found, notify shipper immediately.*

6. Remove operator station from skid and set it safely aside.
4.3.1 Removing the Shipping Brackets

CAUTION!
Failure to remove shipping brackets from robot before operating the ArcWorld II-600 may result in damage to the robot drive mechanisms.

Three yellow brackets (see Figure 4-3) prevent the robot from moving during shipping. Two rod brackets secure the lower arm assembly to the S-axis housing. The smaller bracket on the rear of the robot prevents the S-axis housing from pivoting. After the robot is in place, remove the shipping brackets.

Figure 4-3 Location of Shipping Brackets
4.4 **Installing the Auxiliary Equipment Common Base**

The auxiliary equipment common (AEC) base contains the XRC controller and welding power source. It may also include an optional water circulator and/or Com-Arc III unit. The AEC base is shipped on a separate wooden shipping skid. The accessories box is secured to the top of the welding power source. To install the AEC base, proceed as follows:

1. Unbolt AEC base from wooden shipping skid by removing four shipping bolts using 3/4-in. socket (see Figure 4-4).

**WARNING!**

The AEC base weighs 680kg (1500 lbs). Be sure that your crane or forklift is capable of handling this much weight or damage to the equipment or injury to personnel can result.

2. Using a forklift, lift the base and remove it from the wooden shipping skid.
3. Place AEC base approximately 0.6m (2 ft) behind ArcWorld II-600 cell (see Figure 4-5).
4. Carefully remove plastic wrapping and cardboard from AEC base.
5. Remove accessories boxes from welding power source and set safely aside.
6. Inspect AEC base for any shipping damage.

**NOTE:** If damage is found, notify shipper immediately.

![Figure 4-4 Unbolting Auxiliary Equipment Common (AEC) Base](image-url)
4.5 **Installing the Operator Station**

To install the operator station, proceed as follows:

1. Unload operator station.
2. Carefully remove protective plastic wrapping from operator station.
3. Inspect operator station for shipping damage.

**NOTE:** If damage is found, notify shipper immediately.

4. Place operator station outside ArcWorld fence to front of positioner (see Figure 4-5).
5. Insert a 1/4 in. concrete drill bit through center of lag holes in operator station and drill holes for lag bolts.
6. Vacuum concrete dust from holes.
7. Lag operator station to floor.
4.6 **Installing the Safety Mat**

Safety mats require special handling to prevent damage to the internal electrode assembly. Grasp the mat by its long edges and lift, while causing a slight bow down the length of the mat (see Figure 4-6). This prevents the mat from kinking lengthwise. Place the mat cord and junction box on top of the mat during handling to reduce tripping hazards. To install the safety mat, proceed as follows:

![Figure 4-6 Handling a Safety Mat](image)

**CAUTION!**

Mats are susceptible to edge damage and damage from bending. Be careful not to impact the edges or corners of the mats. Do not attempt to lift large mats without help.

1. Vacuum or sweep floor surfaces where mat will be mounted to ensure surface is flat, smooth, and free of debris.
2. Place safety mat in front of positioner (see Figure 4-7).

**NOTE:** For safe operation of the ArcWorld II-600 system, the safety mats should placed according to the system drawings (see Appendix bone, System Drawings).

3. Bolt safety mat junction box to front of the positioner if not already done.
4. Place perimeter trim in position.

**NOTE:** For perimeter trim, use a 1/4" drill bit.

5. Holding perimeter trim securely in place, drill 2.54cm (1 in.) deep through pre-drilled holes into floor.
6. Remove safety mat and perimeter trim.
Figure 4-7  Placement of the Positioner Safety Mat

7. Remove any debris that may lie beneath the mat.
8. Reposition safety mat and perimeter trim.
9. Insert appropriate anchors into holes for perimeter trim.
10. Insert #10 x 1-1/4" screws into perimeter trim.
11. Tighten screws until mat is held securely.

4.7 Leveling and Securing the Equipment

After everything is in position, level the equipment and secure it to the floor. The lag bolts are shipped in the accessories box. To level and secure the equipment, proceed as follows:

1. Level robot/positioner common base by adjusting leveling bolts (see Figure 4-10).
2. Insert 1/2-in. concrete drill bit through center of leveling bolts and drill holes for lag bolts.
3. Vacuum concrete dust from holes.
4. Lag robot/positioner common base to floor.
5. Level auxiliary equipment common base by adjusting leveling bolts (see Figure 4-11).
6. Insert a 1/2-inch concrete drill bit through center of leveling bolts and drill holes for lag bolts.
7. Vacuum concrete dust from holes.
8. Lag auxiliary equipment common base to floor.
Figure 4-8  Leveling Bolts

Figure 4-9  Auxiliary Equipment Common Base Leveling Bolts
4.8 Connecting the Cables

After components are level and securely in place, the cables should be unwrapped from around the equipment and laid out according to the cable diagram included in the system drawing package. Each cable connection is clearly identified for ease of installation.

⚠️ CAUTION!
Route wires and cables away from hazardous work areas to avoid wire breakage and unnecessary interruption of cell operation.

4.8.1 Connecting the Earth Ground

The robot and XRC must each be connected to an earth ground. An earth ground is a ground in which the equipment is connected to a ground stake driven into the earth. The ground stake must be driven a minimum of 2.43m (8 ft) into the earth, and the earth must be treated with chemicals in order to reduce resistance to the ground stake. Deeper ground stakes may be required depending on area soil conditions. A maximum of 100 ohms ground resistance is recommended. To ground the robot and XRC, proceed as follows:

⚠️ WARNING!
- If proper earth grounds cannot be provided, do not use the equipment! Serious injury or death can occur.
- Do not place the MIG system within 15.24m (50 ft) of other sources of noise (i.e., GTAW arc starters, plasma cutters, induction furnaces, high-power-resistance spot welders, dielectric heaters, etc.). Equipment that generates impulse or high-frequency noise can cause unexpected equipment operation and failure, which can result in serious injury or death.

NOTE: If the robot and XRC are within 4.57m (15 ft) of each other, a common earth ground may be used. Otherwise, separate earth grounds must be used.

1. Connect one end of robot earth ground cable to lug marked EARTH GROUND on bottom back of robot.
2. Connect other end of robot earth ground cable to earth ground stake.
3. Connect one end of second earth ground cable to common ground bus bar inside XRC.
4. Connect other end of second earth ground cable to earth ground stake.
4.8.2 Connecting the Robot Cables

Two cables, 1BC and 2BC, connect the robot to the XRC controller. The 1BC cable supplies power to the robot servo motors. The 2BC cable provides communication between the controller and the robot. To connect the robot cables, proceed as follows:

NOTE: The right side of the XRC is on your right as you are facing the front of it.

1. Unpack programming pendant and plug connector into receptacle on right side of XRC controller.
2. Unpack two large black manipulator cables, connected to XRC controller, and route to back of robot.
3. Carefully engaging connectors, connect two cables (labeled 1BC and 2BC) to 1BC and 2BC connections on back of robot (see Figure 4-12).

4.8.3 Connecting the System Cables

If the robot has a water-cooled torch, two cables and three hoses must be connected to various components (see Figure 4-13). If the robot has an air-cooled torch, two cables and one hose must be connected to various components. These cables and hoses are enclosed in a leather casing. To connect the robot and system cables and hoses, proceed as follows:

1. Connect wire feeder control cable on robot to the FEEDHEAD connection on the left side of the XRC, as shown in Figure 4-13.
2. Unpack safety mat cable and connect between the safety mat junction box and the interface box.
3. Unpack operator station cable and connect to interface box.
4.8.4 Connecting Com-Arc III and Torch Tender (Optional)

The Com-Arc III and wire cutter are options. Typically, the wire cutter is installed on the optional torch tender. The Com-Arc III cable is connected to the side of the XRC (see Figure 4-20). The Com-Arc III and torch tender are usually shipped with cables connected. To connect the wire cutter, proceed as follows:

1. Unwrap wire cutter cable.
2. Plug wire cutter cable into connector on wire cutter unit.
3. Connect wire cutter to an air supply set at 586 to 689.5kPa (85 to 100 psi).

For detailed installation and operation instructions for the Com-Arc III, refer to the Com-Arc III Instruction Manual (Part Number 132753-1).

4.8.5 Connecting Water Circulator (Optional)

If your system uses the water cooled welding torch, it is necessary to connect the Motoman water circulator. To connect the water circulator, proceed as follows:

1. Connect two water hoses from weld torch to connections on water circulator marked WATER-IN and WATER-OUT (see Figure 4-11).

2. Plug power cable into electrical outlet on back of power source.
4.9 Connecting Air Service

The air lines for the MHS-250-PR positioner are already connected when the unit is shipped. Air service must be completed after the cell has been secured to the floor. See Figure 4-21 for location of air connections.

![Air Service Connections](image)

Figure 4-12  Air Service Connections

4.10 Connecting Power

After all of the system components have been properly installed, connect the power to the ArcWorld II-600. To connect incoming power to the ArcWorld II-600, proceed as follows:

**DANGER!**

*Power should be connected only by a qualified electrician. Electrical and grounding connections must comply with applicable portions of the national electrical code and/or local electrical codes.*

1. Install 3-phase power wiring to the circuit breaker located inside the XRC cabinet (see Figure 4-13). Table 4-1 shows the size and type of wire needed.
2. Tighten screws to the torque indicated in Table 4-1.
3. Install an M5 lug on incoming ground wire.
4. Terminate ground wire to frame ground M5 threaded stud with M5 hardware provided.

**NOTE:** The ArcWorld II-600 is configured for three-phase 460/480V AC, unless other voltage was requested. If other voltage is required for your plant, you must make the necessary modifications to the transformer. For more information, refer to the manipulator manual that came with your system.

**Table 4-1 Incoming Power Specifications (Decal)**

<table>
<thead>
<tr>
<th>Lug Data</th>
<th>60/75˚ C wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog No.</td>
<td>TCAL14</td>
</tr>
<tr>
<td>Wire Size</td>
<td>#14-7 Copper</td>
</tr>
<tr>
<td></td>
<td>#12-8 Aluminum</td>
</tr>
<tr>
<td>Torque</td>
<td>#14-7, 4.0N•m (35 lb-in.)</td>
</tr>
</tbody>
</table>
4.11 **Conducting a Safety/Operation Check**

Before installing the tooling and fixtures for your application, take a few minutes to perform a safety/operation check. To conduct a safety/operation check, proceed as follows:

1. Check that all shipping brackets have been removed from robot (see Section 4.3.1).
2. Be sure safety mats are placed correctly.
3. Check that cell door is closed and latched.
4. Check that all cable connections are tight.
5. Check air line connections to optional torch tender and wire cutter.
6. Be sure welding power source is set correctly (see the welding power source vendor's manual).
7. Verify incoming line power matches input power specified on front of XRC. Your ArcWorld II-600 is now ready for power-up. The ArcWorld system should be operated only by personnel who have received operator training from Motoman and who are familiar with the operation of this Motoman robot model. Turn the main power ON, and continue the safety/operation check.
8. Check all system E-STOPS (pendant, operator station, breakaways, playback panel).
9. Check system Hold buttons.

4.12 **Installation of Tooling and Fixtures**

Your ArcWorld II-600 system is now ready for the installation of tooling and fixtures for your application. Installation of tooling and fixtures should be performed by personnel who are familiar with the operation of this system. Tooling and fixtures are supplied by the customer. After tooling is installed, test the positioner for proper operation:

- Positioner achieves full sweep time (4 to 5 seconds, depending on load).
The ArcWorld II-600 is a fully integrated robotic GMAW welding cell. The robot welds on one side of the positioner while the operator loads the opposite side with parts. Once the robot is finished with its process, it returns to the Home (Safe) position. The operator then enables the positioner sweep, allowing the robot to start welding on the next part. This section provides operation instructions for the ArcWorld II-600 system.

5.1 Programming

The operation of this system is programming dependent. The following operating instructions are based on one possible configuration of this system. Your system configuration and job structure may differ slightly from that presented here, however basic operation will be the same.

Any changes made to your system configuration and/or job structure will alter the operation of this cell. Motoman recommends you do not modify the original jobs and system configuration that came with your system. If modifications need to be made, they should be made to copies of these jobs and not to the originals. Modifications should only be performed by personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman system. If you have questions concerning the configuration of your system please contact the 24 hour Service Hotline, at (937) 847-3200 (see Section 1.4).

5.1.1 I/O Assignment

The ArcWorld II-600 uses the following user and dedicated inputs and outputs (see Tables 5-1 and 5-2).

<table>
<thead>
<tr>
<th>XRC Dedicated Inputs</th>
<th>XRC Dedicated Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo On</td>
<td>Servo Power ON</td>
</tr>
<tr>
<td>External Job Start</td>
<td>TEACH mode</td>
</tr>
<tr>
<td>Alarm Reset</td>
<td>Cube 1</td>
</tr>
<tr>
<td>REMOTE mode ON</td>
<td>Alarm Occurrence</td>
</tr>
<tr>
<td>Hold</td>
<td></td>
</tr>
<tr>
<td>External Emergency Stop</td>
<td></td>
</tr>
</tbody>
</table>

For more information on user and dedicated I/O, refer to the XRC Concurrent I/O Parameters Manual (P/N 142102-1).
### Table 5-1  XRC User Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN#001</td>
<td>CYCLE START</td>
</tr>
<tr>
<td>IN#002</td>
<td>AUTO/MANUAL</td>
</tr>
<tr>
<td>IN#003</td>
<td>ROTATE CW</td>
</tr>
<tr>
<td>IN#004</td>
<td>ROTATE CCW</td>
</tr>
<tr>
<td>IN#005 thru 008</td>
<td>NOT USED</td>
</tr>
<tr>
<td>IN#009</td>
<td>AT SIDE A</td>
</tr>
<tr>
<td>IN#010</td>
<td>AT SIDE B</td>
</tr>
<tr>
<td>IN#011</td>
<td>ZERO SPEED</td>
</tr>
<tr>
<td>IN#012</td>
<td>FAULT DRIVE</td>
</tr>
<tr>
<td>IN#013</td>
<td>HS A IS CW</td>
</tr>
<tr>
<td>IN#014</td>
<td>HS A IS CCW</td>
</tr>
<tr>
<td>IN#015</td>
<td>HS B IS CW</td>
</tr>
<tr>
<td>IN#016</td>
<td>HS B IS CCW</td>
</tr>
</tbody>
</table>

### Table 5-2  XRC User Outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT#001</td>
<td>CYCLE LATCHED</td>
</tr>
<tr>
<td>OUT#002 thru 003</td>
<td>NOT USED</td>
</tr>
<tr>
<td>OUT#004</td>
<td>WIRE CUTTER (Optional)</td>
</tr>
<tr>
<td>OUT#005 thru 008</td>
<td>NOT USED</td>
</tr>
<tr>
<td>OUT#009</td>
<td>FWD RUN</td>
</tr>
<tr>
<td>OUT#010</td>
<td>REV RUN</td>
</tr>
<tr>
<td>OUT#011</td>
<td>FAULT RESET</td>
</tr>
<tr>
<td>OUT#012</td>
<td>SPEED 1</td>
</tr>
<tr>
<td>OUT#013</td>
<td>ROT HS A CW</td>
</tr>
<tr>
<td>OUT#014</td>
<td>ROT HS A CCW</td>
</tr>
<tr>
<td>OUT#015</td>
<td>ROT HS B CW</td>
</tr>
<tr>
<td>OUT#016</td>
<td>ROT HS B CCW</td>
</tr>
</tbody>
</table>
5.1.2 Sweeping the Positioner

To sweep positioner side A or B into the robot work area, proceed as follows:

NOTE: In order to sweep the positioner, the robot must be in the Safe position in Cube 1.

1. Place robot in Safe position (see Section 5.2.2).

2. Set operator station POSITIONER switch to MANUAL mode and start Master Control job (see Section 5.2.3). Normally robot will not move out of Safe position when POSITIONER switch is in MANUAL. (This depends on job structure.)

NOTE: MANUAL mode allows you to sweep the positioner without activating the robot. Parts can be loaded onto the fixture to achieve the most efficient configuration and then swept into the welding zone, before teaching the robot a series of moves. Cycle Start latching is not operative in Manual mode.

3. Press CYCLE START palm buttons on operator station. XRC sweeps positioner each time CYCLE START buttons are pressed.

NOTE: The Cube function is a software feature that turns on an output when the robot tool center point is within established boundaries. If the robot moves outside of Cube 1, the output is lost and the positioner will not sweep. The cube position is factory set to be clear of the table. For more information on basic cube setup, refer to Appendix A.

5.2 Daily Operation

The following is the typical sequence of operation for the ArcWorld II-600 cell after start-up:

1. Load top of fixture with parts to be welded.

2. Press left CYCLE START palm button and simultaneously switch ROTATE CCW/CW switch on operator station. Fixture flips allowing operator to load bottom side.

3. Press both CYCLE START palm buttons on operator station. CYCLE LATCHED light comes on, positioner sweeps, and headstocks flip over, placing unwelded parts in robot work area. Robot then begins welding.

4. While robot is welding, load operator side.

5. Press both CYCLE START palm buttons on operator station. The CYCLE LATCHED light comes on. When robot is finished welding, it returns to Safe Position (Cube 1) and positioner sweeps and headstocks flip over, returning welded parts outside cell and placing newly loaded, unwelded parts in robot work area.

6. Unload welded parts from fixture.

NOTE: Before sweeping at first power up, make sure the correct job has been loaded.
5.2.1 **Start-Up**

To start up the ArcWorld cell from a Power-Off condition, proceed as follows:

1. Turn on welding power source disconnect.
2. Set MAIN POWER switch on XRC to ON.
3. Set INPUT POWER switch on welding power source to ON.
4. Open regulator valve on welding gas supply.
5. Make sure enclosure door is closed and securely latched.
6. Disable operator station.
7. Press TEACH mode button on XRC playback panel.
8. Place robot in Safe position (Cube 1).

**5.2.2 Robot Safe (Cube 24) Position**

To move the robot to the Safe position (Cube 1), proceed as follows:

1. Press TEACH mode button on XRC playback panel.
2. Press TOP MENU on programming pendant.
3. Select JOB icon using cursor keys and press SELECT.
4. Cursor to SELECT JOB and press SELECT key.
5. Using cursor keys, move cursor to Cube 1 job and press SELECT. Cube 1 job appears on display screen.
6. Turn servo power ON by pressing SERVO ON, pressing TEACH LOCK and holding in ENABLE switch.
7. Use INTERLOCK and FWD buttons on programming pendant to jog robot to Safe (Cube 1) position.

**5.2.3 Selecting the Master Job**

With the system powered up and in TEACH mode, call up the Master job, then...

1. Press TOP MENU key on programming pendant.
2. Select JOB icon using cursor keys and press SELECT.
3. Cursor to SELECT JOB and press SELECT key. Job list appears on display screen.
4. Using cursor keys, move cursor to Master job and press SELECT. Master job appears on display screen.
5. Make sure both enclosure doors are closed and securely latched.
6. Press PLAY mode button on XRC playback panel. Job playback operation is enabled.
7. Press SERVO ON button on playback panel.
8. Reset positioner by simultaneously pressing RESET and right CYCLE START buttons on operator station.
9. Place ENABLE/DISABLE switch on operator station in ENABLE position. XRC is placed in REMOTE mode and system control is transferred to operator station.

The ArcWorld II-600 cell is now ready for operation.
5.2.4 **Shutdown**

Use the following procedure to shut down the ArcWorld II-600 cell after operation is complete:

1. Make sure robot is in Safe position (Cube 1).
2. Turn off system servo power by pressing E-STOP button on operator station, programming pendant, or playback panel.
3. Press TEACH mode button on playback panel.
4. Set controller Main Power switch to OFF position.
5. Set Main Power switch on welding power source to OFF position.

The ArcWorld II-600 cell is now shut down.

5.3 **System Recovery**

Under certain conditions you will be required to clear an alarm or error. Clearing an alarm or error requires different operator actions depending on the type. The paragraphs below describe the different types of alarms and errors you may encounter and how to remedy them when you do.

5.3.1 **Alarms and Errors**

Alarms and errors will cause the program to stop. There are three levels of alarms and errors: Error Messages, Minor Alarms, and Major Alarms. For more detailed information about alarm recovery, refer to manipulator manual that came with your system.

**Error Messages**

These are simple errors such as pressing the START button when the robot is not in PLAY mode, or enabling the programming pendant without the servo power being live. Errors like these are cleared by pressing the CANCEL button on the programming pendant.

**Minor Alarms**

Minor alarms are usually programming errors. Minor alarms might occur if a circle has been programmed with fewer than three circular points, etc. These alarms are cleared by pressing the RESET (F5) soft key on the programming pendant.

**Major Alarms**

Major alarms are hardware failures. Major alarms might occur because of a servo tracking error or an abnormal speed and are usually associated with crashes. To clear these alarms, you must turn off the controller and then turn it on again.
5.3.2 E-STOP Recovery

An E-STOP can occur under any of the following conditions:

- Pressing the E-STOP button on the operator station, programming pendant, or playback panel.
- Opening sliding door on robot enclosure when robot is in PLAY mode.
- Stepping on safety mat when positioner is sweeping.
- Actuating shock sensor on torch mount.

To restart the ArcWorld II-600 cell after an E-STOP condition occurs, follow the procedure below.

1. To clear E-STOP condition, perform any of the following actions that apply:
   - Release the E-STOP button on the operator station, programming pendant, or XRC playback panel.
   - Close sliding door.
   - Step off safety mat.
   - Clear Shock Sensor condition (refer to Section 5.3.3).

CAUTION!
If an emergency stop condition occurs while the positioner is sweeping, the positioner will continue the sweep when system is reinitialized.

2. Press SERVO ON button on operator station, or playback panel.
3. Press RESET button and right CYCLE START button on operator station to initialize system.
4. Ensure operator station is enabled.
5. Press MASTER JOB START button on operator station.

The ArcWorld II-600 cell is now ready to continue operation.
5.3.3 Shock Sensor Recovery

The ArcWorld welding package includes a Motoman gun mount. This mount is designed to protect the torch from damage in case of a crash. A slight deflection of the torch activates a SHOCK SENSOR message, which triggers an E-STOP condition. To clear the E-STOP condition, you must override the shock sensor and move the robot clear of the impact. To override the shock sensor, proceed as follows:

**CAUTION!**

*It is possible to crash the robot with the Shock Sensor Override Switch left in the “Override” position. Always remember to reactivate the Shock Sensor before continuing system operation.*

1. Place SHOCK SENSOR OVERRIDE switch, located on front of feeder, into OVERRIDE position.
2. Press CANCEL on programming pendant to clear alarm.
3. Turn servo power ON by holding ENABLE switch on the programming pendant and pressing SERVO ON.

**NOTE:** TEACH LOCK must be ON to turn servo power on in TEACH mode.

4. Move manipulator clear of impact position.
5. Move Shock Sensor Override switch to SHOCK SENSOR position.

The ArcWorld II-600 cell is now ready to continue operation.

5.3.4 Using the Brake Release

The brake release control panel is located on front of the XRC. The brakes on S-, L-, and U-axes are controlled by individual axis buttons. Simultaneously pressing ENABLE button and one of these axis buttons releases the indicated axis. However, the release mechanism for the R-, B-, and T-axes is combined into a single button. Enabling this releases the brakes on the R-, B-, and T-axes simultaneously. To release the brakes, proceed as follows:

1. Press E-STOP button on programming pendant, playback panel, or operator station, to be sure servo power is OFF.
2. Provide adequate support for axis to be released. Support should withstand payload of robot and approximate weight of axis. Listed below are weights support should be able to hold:
   - UP6 21 pounds
   - SK16X 55 pounds

**WARNING!**

*Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.*

3. Release specific axis brake by pressing and holding corresponding axis button and ENABLE button at same time.

**NOTE:** You must hold both the axis and ENABLE buttons down for the axis to remain released. Releasing either button will automatically lock the brakes again.
6.1 Periodic Maintenance

Table 6-1 provides periodic maintenance items and intervals for the ArcWorld II-600 cell. Keep in mind that the maintenance intervals serve as guidelines only. You should adjust the frequency of maintenance to suit your specific work conditions. For periodic maintenance procedures and schedules for the individual components of your ArcWorld II-600, refer to the manipulator and additional manuals that came with your system.

CAUTION!

- **Use only the antifreeze provided by Motoman. Automotive antifreezes contain stop-leak additives that will clog the small torch water-cooling ports, and damage the gaskets in the water circulator pump.**
- **Excessive copper ground lubricant may damage weld ground due to electrical arcing through air pockets in grease.**

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Component</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Water circulator (For water-cooled torch application only.)</td>
<td>Check the fluid in the water circulator. Add fluid as required. Use only distilled water and approved antifreeze (Motoman P/N 131224-1).</td>
</tr>
<tr>
<td>Daily</td>
<td>MHS-250-PR Positioner Air filter/regulator for water (high-humidity environments)</td>
<td>Inspect left glass cylinder for water. If water is present, loosen the valve at the bottom of the cylinder to expel any moisture.</td>
</tr>
<tr>
<td>Weekly</td>
<td>MHS-250-PR Positioner Air filter/regulator oil level</td>
<td>Inspect right glass cylinder and transparent neck on the top of the regulator. If oil falls below half, add oil.</td>
</tr>
<tr>
<td>Monthly</td>
<td>MHS-250-PR Headstock Drive Unit</td>
<td>Check for proper oil levels and quality. Use MobilGear 630 or 629 oil as required.</td>
</tr>
<tr>
<td>Monthly</td>
<td>MHS-250-PR Weld Ground</td>
<td>Check the brushes for proper lubrication and signs of wear. Excessive heat buildup in the brushes indicates uneven wear or the lack of grease. Keep the contact area lubricated with Burundi Penetrox E conductive copper lubricant (part no. PEN-E-8).</td>
</tr>
<tr>
<td>20,000H</td>
<td>MHS-250-PR Headstock Drive</td>
<td>Change the oil in the drive unit. Use MobilGear 630 or 629 oil.</td>
</tr>
</tbody>
</table>
6.2 MHS-250-PR Maintenance Procedures

The following procedures should be performed only as needed. Read through the instructions completely before performing any maintenance procedure. Be sure that you understand the procedure, have the proper tools, and observe all applicable safety precautions.

**WARNING!**
Ensure that servo power is off before performing the following procedures. Observe standard lockout/tagout practices.

6.2.1 Hardstop/Shock Absorbers

Proper adjustment of the positioner hardstop/shock absorbers is important to achieve reliable positioning of the parts fixtures. All units are preset at the factory for maximum performance before shipping. Should a hardstop/shock absorber need replaced, care must be taken not to alter the position of the parts fixtures or performance of weld jobs will be compromised. For more information, call the Motoman Customer Service Department 24-Hour Hot Line at (937) 847-3200.

6.3 Fuse and Circuit Breaker Protection

Tables 6-2 through 6-4 give the locations of fuses and circuit breakers that are significant to the operation of the total system. In most cases, spare fuses are placed in the accessory bag with the controller.

**WARNING!**
Replace fuses with those of the same type and rating. Replacement with fuses of higher amperage rating or lower voltage will damage the robot controller and/or auxiliary equipment, necessitating costly replacement.

Abbreviations:

- CB — designates circuit breaker
- F, FU, or 101FU — designates fuse

Table 6-2 MotoArc 450 CV Fuses and Circuit Breaker

<table>
<thead>
<tr>
<th>Designator</th>
<th>Rating</th>
<th>Part #</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB1</td>
<td>10A 115V</td>
<td>203627-7</td>
<td>Upper rear panel</td>
<td>Protects 115V circuit.</td>
</tr>
<tr>
<td>CB2</td>
<td>10A 24V</td>
<td>203627-7</td>
<td>Upper rear panel</td>
<td>Protects 24V circuit.</td>
</tr>
<tr>
<td>F1</td>
<td>0.5A</td>
<td>W-11166-11</td>
<td>On contactor box</td>
<td>Protects contactor circuit.</td>
</tr>
</tbody>
</table>
### Table 6-3  Universal Welding Interface (UWI) Fuses

<table>
<thead>
<tr>
<th>Designator</th>
<th>Rating</th>
<th>Part #</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>8A 250V</td>
<td></td>
<td>On KXA motor</td>
<td>Limits damage from shorts or component breakdowns in DC power supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>speed control</td>
<td>module.</td>
</tr>
<tr>
<td>FU1</td>
<td>4A 250V</td>
<td>Wickman 19374K-4A</td>
<td>On interface</td>
<td>Protects 115V circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>board</td>
<td></td>
</tr>
<tr>
<td>FU2</td>
<td>0.25A 125V</td>
<td>Wickman 19303K-250A</td>
<td>On interface</td>
<td>Protects shock sensor circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>board</td>
<td></td>
</tr>
<tr>
<td>FU3</td>
<td>0.5A 125V</td>
<td>Wickman 19303K-500A</td>
<td>On interface</td>
<td>Protects 24V circuit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>board</td>
<td></td>
</tr>
<tr>
<td>Fuse</td>
<td>1A 250V</td>
<td>TD-1</td>
<td>Front of Com-Arc box</td>
<td>Protects 200V circuit.</td>
</tr>
</tbody>
</table>
# INDEX

**Numerics**
- 1-Cycle, Symbol, 3-4

**A**
- About this Document, 1-1
- Active Robot, Symbol, 3-4
- Alarm, 3-7
- Alarm, Symbol, 3-4
- Alarm/Error, 3-2
- Alarms and Errors, 5-5
- ANSI/RIA, 2-1
- Arc Screens, 3-11
- Arc Shield, 3-9
- ARC WELDING, GENERAL, HANDLING, and SPOT WELDING, Icon, 3-4
- Auto, Symbol, 3-4

**B**
- Base Axis, Symbol, 3-4
- Brake Release, 3-6, 3-13

**C**
- Connecting the Cables, 4-10
- Connecting the Earth Ground, 4-10
- Connecting the Power, 4-13
- Connecting the Robot and System Cables, 4-11, 4-12
- Customer Service Information, 1-3
- Customer-Supplied Items, 4-1
- Cycle Start, 3-6
- Cylindrical, Symbol, 3-4

**D**
- Daily Operation, 5-3
- Dedicated Inputs, 5-1
- Dedicated Outputs, 5-1
- Display, 3-3

**E**
- Emergency Stop (E-STOP), 3-2, 3-3, 3-7, 3-12
- ENABLE Function Key, 3-4, 3-5
- ENABLE Switch, 3-5, 3-12
- Equipment Description, 3-1
- Error Messages, 5-5
- E-STOP Recovery, 5-6
- E-Stop, Symbol, 3-4
- External Axis, Symbol, 3-4

**F**
- Fencing, 3-12
- Fuse and Circuit Breaker Protection, 6-2

**G**
- General Safeguarding Tips, 2-3
- GMAW Torch, 3-11

**H**
- Hardstop/Shock Absorbers, 6-2
- High, Symbol, 3-4
- Hold, 3-2, 3-7
- Hold, Symbol, 3-4

**I**
- I/O Assignment, 5-1
- IN/OUT, Icon, 3-4
- Inching, Symbol, 3-4
- Installation, 4-1
- Installation Safety, 2-4
- Installing the Auxiliary Equipment Common Base, 4-5
- Installing the Operator Station, 4-6
- Installing the Robot and Positioner, 4-3
- Installing the Safety Mat, 4-7
- Interference Cubes, 3-13
- Interlocked Cell Door, 3-12
- Introduction, 1-1, 2-1

**J**
- JOB, icon, 3-4
- Joint, Symbol, 3-4

**K**
- Keypad, 3-3

**L**
- Leveling and Securing the Equipment, 4-8
- List of Tools, 4-1
- Low, Symbol, 3-4
### INDEX

#### M
- Maintenance, 6-1
- Maintenance Procedures, Positioner, 6-2
- Maintenance Safety, 2-6
- Major Alarms, 5-5
- Master Job Start, 3-7
- Materials Required, 4-1
- Mechanical Safety Devices, 2-3
- Medium, Symbol, 3-4
- MHS-250-PR Positioner, 3-8
- Minor Alarms, 5-5
- Mode Select, 3-2
- MotoArc 450 CV Fuses and Circuit Breaker, 6-2

#### O
- Operation, 5-1
- Operation Safety, 2-5
- Operator Station, 3-6
  - Alarm, 3-7
  - Cycle Start, 3-6
  - Emergency Stop (E-STOP), 3-7
  - Hold, 3-7
  - Master Job Start, 3-7
  - Operator Station Enable/Disable, 3-7
  - Positioner Auto/Manual, 3-7
- Reset, 3-8
- Servo On, 3-8
- Station Ready, 3-7
- Optional Equipment, 1-3
- Order Number, Robot Sales, 1-3

#### P
- Payload, Robot, 3-1
- Periodic Maintenance, 6-1
- PLAY, Mode, 3-2
- Playback Box, 3-2
- Playback Panel
  - Alarm/Error, 3-2
  - Emergency Stop (E-STOP), 3-2
  - Hold, 3-2
  - Mode, 3-2
  - Servo On Ready, 3-2
  - Start, 3-2
- Pneumatic Headstocks, 3-9
- Positioner Auto/Manual, 3-7
- Positioner Specifications, 3-9

#### P (continued)
- Positioning Accuracy, 3-1
- Power Sources, 3-10
- Programming, 5-1
- Programming Pendant, 3-3
  - Area Key, 3-4
  - Cursor Key, 3-4
  - Display, 3-3
  - Emergency Stop (E-STOP), 3-3
  - ENABLE Switch, 3-5
  - Keypad, 3-3
  - Menu Area, 3-3
  - RS-232C Serial Port, 3-5
  - Select Key, 3-5
  - Status Area, 3-4
  - TEACH LOCK Key, 3-5
  - Top Menu Key, 3-4
- Programming Safety, 2-4
- PWF4 Wire Feeder, 3-10

#### R
- Reach, Robot, 3-1
- Reference to Other Documentation, 1-3
- Removing the Shipping Brackets, 4-4
- Reset, 3-8
- Robot Description, UP/SK-Series, 3-1
- Robot Safe (Cube 24) Position, 5-4
- ROBOT, Icon, 3-4
- Robotic Industries Association, 2-1
- Rotate Counterclockwise/Clockwise, 3-8
- Running/Start, Symbol, 3-4

#### S
- Safety, 2-1
- Safety Features, 3-11
- Safety Mats, 3-12
- Safety/Operation Check, 4-15
- Serial Number, Robot, 1-3
- Servo Power, 3-2
- Shock Sensor Recovery, 5-7
- Shutdown, Daily Operation, 5-5
- Site Preparation, 4-2
- Software Version, 1-3
- Standard Conventions, 2-2
- Starting the Master Job, 5-4
INDEX

S (continued)
Start-Up, 5-4
Station Ready, 3-7
Step, Symbol, 3-4
Stop, Symbol, 3-4
Sweeping the Positioner, 5-3
Symbols, Programming Pendant, 3-4
SYSTEM INFO, Icon, 3-4
System Layout, 1-2
System Overview, 1-2
System Recovery, 5-5

T
TEACH, Mode, 3-2
Tool, Symbol, 3-4
Tooling and Fixtures, Installation, 4-15
Torch Mount, 3-11

U
Universal Welding Interface (UWI), 3-11
Universal Welding Interface (UWI) Fuses, 6-3
User Frame, Symbol, 3-4
Using the Brake Release, 5-7

V
VARIABLE, Icon, 3-4

W
Welding Equipment, 3-10
World, Symbol, 3-4

X
XRC Controller, 3-1
XRC User Inputs, 5-2
XRC User Outputs, 5-2