COMPLETE OUR ONLINE SURVEY

Motoman is committed to total customer satisfaction! Please give us your feedback on the technical manuals you received with your Motoman robotic solution.

To participate, go to the following website:

http://www.motoman.com/forms/techpubs.asp

The information contained within this document is the proprietary property of Motoman, Inc., and may not be copied, reproduced or transmitted to other parties without the expressed written authorization of Motoman, Inc.

©2007 by MOTOMAN®
All Rights Reserved

Because we are constantly improving our products, we reserve the right to change specifications without notice.

MOTOMAN® is a registered trademark of YASKAWA Electric Manufacturing.
# Chapter 1

**Introduction**  

1.1 About This Document ................................................. 1  
1.2 System Overview ...................................................... 2  
   1.2.1 System Layout .................................................. 3  
   1.2.2 Major Components .............................................. 3  
   1.2.3 Optional Equipment ............................................ 3  
1.3 Reference Documentation ............................................ 4  
1.4 Customer Support Information ...................................... 4  

# Chapter 2

**Safety**  

2.1 Introduction ......................................................... 5  
2.2 Standard Conventions ................................................ 6  
2.3 General Safeguarding Tips .......................................... 6  
2.4 Mechanical Safety Devices .......................................... 7  
2.5 Installation Safety ................................................... 7  
2.6 Programming, Operation, and Maintenance Safety ................. 8  

# Chapter 3

**Equipment Description** ............................................. 9  

3.1 Robot Description .................................................... 9  
3.2 Gripper ................................................................. 9  
3.3 NX100 Controller ...................................................... 9  
3.4 Programming Pendant ............................................... 10  
3.5 Operator Station ..................................................... 12  
   3.5.1 Cycle Start/Cycle Latched ................................... 12  
   3.5.2 Positioner Auto/Manual ....................................... 13  
   3.5.3 Emergency Stop (E-Stop) .................................... 13  
3.6 MSR-200 Positioner ................................................. 13  
3.7 Safety Features ....................................................... 14  
   3.7.1 Safety Fencing ................................................. 14  
   3.7.2 Light Curtain System ......................................... 14  
   3.7.3 Emergency Stop (E-Stop) .................................... 15  
   3.7.4 Programming Pendant ENABLE Switch ....................... 15  
   3.7.5 Emergency Braking System ................................... 15  
   3.7.6 Interlocked Work Cell Door .................................. 16
Chapter 1

Introduction

1.1 About This Document

This System Manual provides an overview of Motoman’s LoadWorld® III system for the HP-Series robot. For detailed information on any specific system component listed in this document, please refer to the documentation package that is included with your LoadWorld® III system (refer to Section 1.3).

Note: This manual documents a standard Motoman system. If your system is custom or modified, please use this manual in conjunction with the drawings, schematics, and parts listing (Bill of Material) for your specific system. The drawings, schematics, and parts listing are included in the documentation package supplied with your Motoman system.

This System Manual contains the following chapters –

CHAPTER 1 – INTRODUCTION
This chapter introduces the LoadWorld® III System Manual, provides an overview of the LoadWorld® III system, lists reference documents that are included with the documentation package, and provides Motoman Customer Support contact information.

CHAPTER 2 – SAFETY
This chapter provides general information regarding the safe installation, maintenance, and operation of the LoadWorld® III system.

CHAPTER 3 – DESCRIPTION OF EQUIPMENT
This chapter describes the major components of the LoadWorld® III system.

CHAPTER 4 – INSTALLATION
This chapter provides installation instructions for the LoadWorld® III system components.

CHAPTER 5 – OPERATION
This chapter provides an overview of the LoadWorld® III system operation — start-up, loading, normal operations, fault recovery, and system shutdown.

CHAPTER 6 – MAINTENANCE
This chapter provides a listing of preventive maintenance suggestions for certain components of the LoadWorld® III system.

APPENDIX A – ANCHORING
Appendix A gives foundation and anchoring suggestions for the LoadWorld® III system components that require anchoring.
1.2 System Overview

The LoadWorld® III system provides a complete machine tending solution using flexible, standardized, components (see Figure 1). The system is designed around a Motoman HP-Series robot, an NX100 controller, optional peripheral equipment, and up to two CNC workstations. Station 1 and Station 2 can contain any combination of the following CNC machines: Okuma, Mazak, Haas, and Daewoo. A DeviceNet I/O interface provides an simple, standardized communications link to the customer-supplied CNC workstations. This provides the LoadWorld® III with a high degree of flexibility, enabling “like” CNC workstations to be interchanged.

The LoadWorld® III system features a total safety environment that meets or exceeds the requirements of the ANSI/RIA R15.06 standard, and is designed to safeguard both personnel and equipment. Heavy-gauge wire mesh safety fencing prevents unintended entry of personnel into the work cell while it is in operation. An interlocked access door provides convenient access to the CNC workstations, while providing a safety interlock to disable all equipment should the access door be opened while the robot is active. Cells using the optional MSR-200 positioner include a safety light curtain system that provides a “sensing field” in front of the positioner to protect the operator from positioner movement. In addition, a 3-color light beacon is located on the fencing above the controller to indicate cell status.

Figure 1  Overview and Component Location – LoadWorld® III 2165 System (Shown)

Note: Your cell layout will vary from that shown based on purchased options and other process requirements. Refer to your system prints for your specific cell configuration.
1.2.1 System Layout

Major components of the LoadWorld® III system are anchored individually to the floor, as this system does not use common equipment bases. Heavy-gauge, wire mesh safety fencing is provided for installation at the customer’s location. When installed, this safety fencing completely encloses the work cell. The NX100 controller is located outside of the work cell. All system controls, including those on the programming pendant, NX100 controller, and operator station are safely accessible from outside the LoadWorld® III work cell (see Figure 1 for location of these components).

1.2.2 Major Components

The LoadWorld® III system includes the following major components:

- Motoman HP-Series manipulator
- NX100 controller
- MSR-200 positioner (optional with some robot models)
- Programming Pendant
- Operator Station (see Figure 1 for location)
- Safety equipment:
  - Heavy gauge, wire-mesh safety fencing
  - Interlocked safety light curtain system
  - Interlocked work cell entry door
- Standard Machine Interface
- BTB Gripper and Valve Module

1.2.3 Optional Equipment

The LoadWorld® III series is configured to enable the user to pick optional periphery equipment as required for their specific requirements. The following optional equipment and pre-engineered modules are available for use with the LoadWorld® III system –

- Protective Robot Jacket
- Infeed Roller Conveyor(s)
- Over/Under Accumulating Infeed Pallet Conveyor(s)
- Pallet Outfeed Conveyor(s)
- Loop Pallet Conveyor
- Upper Arm Valve Modules for Two and Three Jaw Grippers
- Dual Gripper End-Of-Arm Tools (three configurations and three sizes)
- Part Holding Stand
- Part Regrip Stand
- Part Marker Stand
- Pallet Floor Locator
- MSR-200 Positioner (optional with some robot models)

All modules are equipped with plug-and-play electrical connections for easy integration.
1.3 Reference Documentation

For additional information on individual LoadWorld® III components, refer to the following documentation that is included with your LoadWorld® III system –

- Motoman HP20 Manipulator Manual (P/N 149615-1)
- Motoman HP50 Manipulator Manual (P/N 151170-1)
- Motoman HP165 Manipulator Manual (P/N 149466-1)
- Motoman HP200 Manipulator Manual (P/N 150331-1)
- Motoman NX100 Controller Manual (P/N 149201-1)
- Motoman NX100 Maintenance Manual (P/N 150133-1)
- Motoman NX100 Operator’s Manual for Handling (P/N 149231-1)
- Motoman NX100 Concurrent I/O Parameter Manual (P/N 149230-1)
- Motoman MSR-Series Positioner Manual (P/N 152988-1)
- Motoman MH-Series Sigma III Positioner Manual (P/N 152763-1)
- Motoman INFORM User’s Manual (P/N 150078-1)
- Vendor manuals for system components not manufactured by Motoman

1.4 Customer Support Information

If you need technical assistance with your LoadWorld® III system, please contact Motoman Customer Support at the following 24-hour telephone number –

[937. 847. 3200]

Please have the following information ready before you call –

- SYSTEM — LoadWorld® III
- ROBOTS — Refer to data plate on robot base
- CONTROLLER — NX100
- POSITIONER — MSR-200
- PRIMARY APPLICATION — Handling
- SOFTWARE VERSION — Access this information on the Programming Pendant display screen by selecting MAIN MENU → SYSTEM INFO → VERSION
- ROBOT SERIAL No — Located on data plate of robot
- ROBOT SALES ORDER No — Located on data plate of NX100 controller
- WARRANTY ID CODE — Located on back of the Programming Pendant
Chapter 2

Safety

2.1 Introduction

It is the purchaser's responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06-1999.

Here is RIA contact information –

RoboticIndustriesAssociation
900VictorsWay
P.O.Box3724
AnnArbor,Michigan48106
TEL:(734)994-6088
FAX:(734)994-3338
www.roboticsonline.com

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. THE ROBOT MUST NOT BE OPERATED BY PERSONNEL WHO HAVE NOT BEEN TRAINED!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety chapter addresses the following –

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming, Operation, and Maintenance Safety (Section 2.6)

2.2 Standard Conventions

This manual includes the following alerts – in descending order of severity – that are essential to the safety of personnel and equipment. As you read this manual, pay close attention to these alerts to insure safety when installing, operating, programming, and maintaining this equipment.

**DANGER!**
Information appearing in a DANGER concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

**WARNING!**
Information appearing in a WARNING concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

**CAUTION!**
Information appearing in a CAUTION concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

*Note: Information appearing in a Note provides additional information which is helpful in understanding the item being explained.*

2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows –

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator’s manuals, the system equipment, and options and accessories should be permitted to operate this robot system.

- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
• Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
• The robot must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.
• In accordance with ANSI/RIA R15.06-1999, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user’s responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-1999 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location.

The following safety equipment is provided as standard –

• Safety fences and barriers
• Light curtains and/or safety mats
• Door interlocks
• Emergency stop palm buttons located on operator station, robot controller, and programming pendant

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.

2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows –

• Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06-1999 safety standards are permitted to install the equipment.
• Identify the work envelope of each robot with floor markings, signs, and barriers.
• Position all controllers outside the robot work envelope.
• Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
• Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
• Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.
2.6 Programming, Operation, and Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to program, operate, and maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Do not enter the robot cell while it is in automatic operation. Be sure that only the person holding the programming pendant enters the workcell.
- Check the E-Stop button on the programming pendant for proper operation before programming. The robot must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.
- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- Any modifications to PART 1, System Section, of the robot controller concurrent I/O program can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1, System Section. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!
- Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.
- The robot controller allows modifications of PART 2, User Section, of the concurrent I/O program and modifications to controller parameters for maximum robot performance. Great care must be taken when making these modifications. All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage to the robot and other parts of the system. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations.
- Check and test any new or modified program at low speed for at least one full cycle.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Use proper replacement parts.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Chapter 3

Equipment Description

3.1 Robot Description

The LoadWorld® III 1165 and 2165 use the Motoman HP-Series robot specifically designed for loading applications. For additional information on your robot model, please refer to the Manipulator Manual included with your LoadWorld® III system documentation package (refer to Section 1.3).

3.2 Gripper

The LoadWorld® III gripper assemblies provide a complete end-of-arm tooling solution. Each gripper assembly includes upper arm I/O cables, Numatic 2004/2012 series valve modules, airlines and fittings. Three different designs are available to accommodate your application requirements (refer to Appendix B, "Gripper Assemblies").

3.3 NX100 Controller

The NX100 robotic controller, shown in Figure 2, features a Windows® CE programming pendant with color touch screen, high-speed processing, built-in Ethernet, and a robust PC architecture. The NX100 easily handles multiple tasks and can control up to four robots (up to 36 axes, including robots and external axes), and I/O devices. Advanced Robot Motion (ARM) control provides high-performance path accuracy and vibration control.

The NX100 coordinates the operation of the LoadWorld® III system. It controls manipulator movement, processes input and output signals, and provides the signals to operate the CNC workstations. It maintains variable data and performs numeric processing to convert to and from different coordinate systems. In addition, the controller provides main logic functions, servo control, program and constant data memory, and power distribution. For more information, refer to the controller manual that came with your system. The NX100 controller features an embedded real-time operating system (RTOS) and is programmed with the Motoman INFORM programming language.
3.4 Programming Pendant

The Programming Pendant (see Figure 3) provides the primary means of programmer/operator interaction with the LoadWorld® III system. The pendant features the Windows® CE operating system and displays information on a 6½-inch, color LCD, touch-screen display. The pendant also incorporates a CompactFlash® card slot for program backups. The Programming Pendant provides icon-driven system programming. It also features a menu-driven interface to simplify operator interaction with the robots. Most operator controls are located on the Programming Pendant. By using the Programming Pendant, the operator can teach robot motion; perform programming, editing, maintenance, and diagnostic functions. For detailed information on the pendant programming keys, programming functions, and display functions, refer to the NX100 Operator’s Manual for Handling included with your LoadWorld® III system documentation package (refer to Section 1.3).
Figure 3 NX100 Programming Pendant

Note: The Programming Pendant LCD touch screen display features a “screen saver” that causes the screen to go dark after a few minutes of inactivity. Press any key to restore screen.

Note: Operator Station “enable” or “disable” is accomplished with the Programming Pendant MODE SELECT SWITCH. To transfer control of the LoadWorld® III system to the Operator Station, set the Programming Pendant MODE SELECT SWITCH to REMOTE.
3.5 Operator Station

The operator station (see Figure 4) is mounted on one of the safety light curtain fence panels. See Figure 1 for location of the operator station in relation to other components of the LoadWorld® III system.

![Operator Station Controls](image)

Figure 4 Operator Station Controls

3.5.1 Cycle Start/Cycle Latched

**WARNING!**
The operation of the CYCLE START button is dependent on the structure of the Master Job. Any alteration of the Master Job could result in injury to personnel or damage to equipment.

Pushing the green CYCLE START/CYCLE LATCHED push button, located on the Operator Station, initiates a positioner sweep cycle if the robot is in the Home (Safe) position. If the CYCLE START/CYCLE LATCHED push button is pressed while the robot is not in the Home (Safe) position, the CYCLE START command is “latched” into (stored in) the NX100 controller circuitry. When the robots return to the Home (Safe) position, the “latched” CYCLE START command is executed and the positioner sweeps. Circuitry in the NX100 controller prevents the positioner from continuously cycling, should the operator depress and hold the CYCLE START/CYCLE LATCHED push button.
3.5.2 Positioner Auto/Manual

The POSITIONER AUTO/MANUAL selector switch is used to select AUTO or MANUAL mode for the positioner. When the selector switch is in the AUTO position, the robot processes parts immediately after the positioner sweeps. In MANUAL mode, the positioner sweeps but the robot does not process the parts until the operator selects AUTO mode.

*Note: The POSITIONER AUTO / MANUAL command depends upon the structure of the Master Job.*

3.5.3 Emergency Stop (E-Stop)

Pressing the Operator Station E-Stop push button initiates an emergency stop (E-Stop). Refer to Section 3.7.3 for a discussion of the E-stop function, and procedures for recovering the LoadWorld® III system from the emergency stop (E-Stop) condition.

3.6 MSR-200 Positioner

The MSR-200 positioner has a load capacity of 200 kg (441 lbs) per side, a 1525 mm (60 in) standard table size, and a “side A to side B sweep time” of 3.7 seconds. Positioning accuracy for the MSR-200 is ± 0.00003 mm.

For additional positioner information (including an illustrated parts list, lifting and levelling instructions, load capabilities, and dimensions), refer to the MSR-Series Positioner Manual that is included with your LoadWorld® III system documentation (refer to Section 1.3).

*Note: The customer shall supply all tooling and fixtures for the MSR-200 positioner.*

*Note: Motoman recommends application of a corrosion/rust preventive compound to tooling and fixtures located in high-humidity environments.*

![Figure 5 MSR-200 Positioner](image-url)
3.7 Safety Features

The LoadWorld® III system features Motoman’s Total Safety Environment. The system incorporates a practical level of safeguarding to satisfy most plant conditions. If the customer complies with all standard safety precautions, the safety equipment helps to ensure safe operation of the robot work cell.

Note: LoadWorld® III safety features are independent of program logic. All safeguards are “hard wired” and provide protection that is independent of any software program. System safeguards do not depend upon a programmer correctly inputting an instruction in the operating program.

Note: LoadWorld® III system safeguards are interfaced with normally closed (NC) “fail-to-safe” switch contacts. These components will stop work cell operation if they are disconnected or damaged.

Note: Users are responsible for determining that the safeguards provided with the LoadWorld® III system are adequate for their plant conditions. Users must also ensure that all safeguards are maintained in working order.

3.7.1 Safety Fencing

The heavy-gauge steel mesh safety fencing provided with the LoadWorld® III system is designed to enclose the entire robotic work cell. After installation, it forms a physical barrier that prevents the movement of personnel or objects into the work cell during automatic operation. An interlocked sliding door is part of the safety fencing, and provides an entrance for personnel at the rear of the work cell (refer to Section 3.7.6).

3.7.2 Light Curtain System

The main function of the Light Curtain System is to protect an operator from positioner movement. The Light Curtain System consists of a SEND unit, RECEIVE unit, and associated wiring (see Figure 1). The Light Curtain System establishes an infrared light path between the SEND and RECEIVE units to define a protected zone in front of the positioner. The positioner will not initiate a sweep if an operator (or an object) is in a location that interrupts (breaks) the established light path. Interruption of the established light path during a positioner sweep immediately triggers an E-Stop condition (refer to Section 3.7.3).

For additional information on the safety light curtain system, refer to the vendor documentation that is included with your LoadWorld® III system documentation package (refer to Section 1.3).
3.7.3 **Emergency Stop (E-Stop)**

E-Stop is a primary safety feature of the LoadWorld® III system. A work cell access door interlock, a safety light curtain system, robot impact (collision) detection circuitry, and E-Stop push buttons can all trigger an E-Stop condition. An E-Stop condition immediately de-energizes the control system and activates the robot braking system (refer to Section 3.7.5). Any CNC machine in the cell will also enter an E-Stop condition. The E-Stop push buttons are used for an intentional shutdown of the LoadWorld® III system, and are installed at the following locations:

- Programming Pendant
- NX100
- Operator Station

To resume operation after an E-Stop system shutdown, the operator must clear and reset the action that caused the E-Stop condition (refer to Section 5.4.2).

3.7.4 **Programming Pendant ENABLE Switch**

The ENABLE switch is part of the Programming Pendant, and provides a safety feature that controls servo power while the system is in TEACH mode (see Figure 3 and Figure 6). When pressed in, this switch allows the operator to enable servo power. However, should the operator release the switch or grasp it too tightly, servo power is immediately disabled, thus preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the *NX100 Operator's Manual for Handling* that is included with your LoadWorld® III system documentation package (refer to Section 1.3).

![Figure 6 Programming Pendant ENABLE Switch – Location and Operation](image)

3.7.5 **Emergency Braking System**

The robot incorporates a braking system that protects personnel from injury and prevents equipment damage if servo power is disabled. Upon loss of servo power, the brake system activates to hold all robot axes in place. The brake system incorporates a feature that allows the operator to release the brake of a specific robot axis upon loss of servo power. Brake release is accomplished with the Programming Pendant (refer to Section 5.4.3).
3.7.6 Interlocked Work Cell Door

A redundant circuit safety interlock is installed on the sliding work cell access door (see Figure 1). Opening the work cell access door while the robots are in PLAY mode triggers an E-Stop condition (refer to Section 3.7.3).
Chapter 4
Installation

CAUTION!
The LOADWORLD® III system should be installed by qualified personnel who are familiar with the installation and set-up of a robotic system.

CAUTION!
Handle all system components with care. The LOADWORLD® III system is not extremely fragile, but it is a sophisticated robotic system that can be damaged by rough handling.

Note: The customer shall supply all anchoring hardware for the LoadWorld® III system. Please refer to Appendix A of this document for suggested anchoring hardware and foundation specifications.

Two to three qualified technicians can install the LoadWorld® III system in a reasonable amount of time. Always comply with established safety procedures throughout the installation process (refer to Chapter 2).

Because this system features various combinations of robots, positioners, optional equipment, and pre-engineered modules, specific installation details are beyond the scope of this manual.

During installation of your LoadWorld® III system, use this chapter of the manual in combination with the LoadWorld® III system schematics, drawings, and wiring diagrams that are included in the documentation package for your system (refer to Section 1.3).

4.1 Required Materials

All system components and most of the materials and fasteners needed for installation of the LoadWorld® III system are included with shipment from the factory. However, the customer must supply some required items and installation tools (refer to Section 4.1.1 and Section 4.1.2).
4.1.1 **Customer-Supplied Items**

- CNC Workstations
- Local electrical service
- Earth ground wires for the robot and the NX100 controller
- Earth ground rods and/or buried copper sheeting (quantity and placement depth as required to achieve specified resistance-to-ground reading of 100 ohms or less)
- Chemical (optional) to increase conductivity of soil in the vicinity of the earth ground system
- Clean, dry air supply (for blow-off station) –
  - **Flow Rate** 0.425 m³/min (15 cfm)
  - **Pressure** 620 kPa (gage) [90 psi (gage)]
- Forklift(s) and/or overhead crane
- Special anchor bolts and drill bits (refer to Appendix A for suggested anchoring hardware)

4.1.2 **Recommended List of Hand Tools and Equipment**

- Safety glasses
- Face shield
- Gloves (heavy-duty leather recommended)
- Level (short and long)
- Ratchet Handle (with 3/4-inch hex socket)
- Adjustable wrench (large and small)
- Hammer drill with appropriate concrete bits
- Phillips and flat-blade screwdrivers
- Hammer (dead-blow and steel)
- Hammer (non-marring)
- Socket set (SAE and Metric)
- Air-impact gun (with 3/4-inch hex socket)
- Open-end wrench set (SAE and Metric)
- "Allen" wrench set (SAE and metric)

4.2 **Site Preparation**

**WARNING!**

During installation planning, allow sufficient room for access to the work cell door, Operator Station, and system components that are exterior to the work cell. Failure to observe this warning could result in injury to personnel during system operation and maintenance.

To prepare your site, proceed as follows –

1. Clear floor space and overhead area needed for the LoadWorld® III system (refer to the drawings, schematics, and parts listing provided with your system). Allow an additional 1.2 - 1.5 m (4 to 5 ft) on all sides of the work cell to provide the clearance needed for installation.
2. Gather all customer-supplied items and required tools (refer to Section 4.1).
Figure 7  LoadWorld® III HP1165 – Installation Dimensions and Component Locations (Plan View)

Note: Your cell layout will vary from that shown based on purchased options and other process requirements. Refer to your system prints for your specific cell configuration.

Figure 8  LoadWorld® III HP1165 – Installation Dimensions and Component Locations (Elevation View)
Figure 9  LoadWorld® III HP2165 – Installation Dimensions and Component Locations (Plan View)

Note: Your cell layout will vary from that shown based on purchased options and other process requirements. Refer to your system prints for your specific cell configuration.

Figure 10  LoadWorld® III HP2165 – Installation Dimensions and Component Locations (Elevation View)


4.3 Removal of System Components from Shipping Skids

System components are attached to wooden shipping skids and/or wooden blocks at the factory, prior to shipment to the customer. The customer is responsible for removing the shipping skids and/or blocks and inspecting the components for shipping damage.

*Note: If you notice any equipment damage, notify your shipping contractor as soon as possible.*

1. Unbolt each component from its shipping skid or block using a ¾-inch socket (see Figure 11).
2. Use forklift(s) or overhead crane to lift each component away from its shipping skid.
3. Discard or recycle the shipping skids and other shipping materials.

![Figure 11 Removal of Typical Shipping Bolt](image)

4.4 Component Installation

To make sure the LoadWorld® III work cell is complete and to verify the correct amount of floor space for the installation, Motoman recommends that all system components be set in place prior to anchoring the components to the foundation. Refer to the system drawings supplied with your LoadWorld® III system, to correctly place system components.

4.4.1 Place System Components

Before permanently anchoring the cell components to the floor, set all pieces in place in the following order:

1. Place CNC workstations into position according to your system prints.
2. Place the MSR-200 positioner to define the front of the cell (when purchased).
3. Place the robot (with riser) in the specified location relative to the positioner.
4. Interconnect the safety fence panels and place them in position so that they enclose the work cell (see system drawings and refer to fence installation documentation that is supplied with the LoadWorld® III system).
5. Ensure that the final placement of the assembled safety fence conforms to the placement dimensions shown in system drawings.
6. Install the work cell sliding door to the safety fencing (refer to system drawings and the safety fencing documentation that is supplied with the LoadWorld® III system).

7. Remove both light curtain fence panels from their shipping position and attach each to the safety fence with the supplied hardware. The light curtains are oriented properly when the status lights are located near the base of the positioner (see Figure 8).

   Note: The light curtain components – send unit and receive unit – are each pre-attached to a safety fence panel at the factory (see Figure 8).

8. Place the NX100 controller (refer to your system drawings for the correct location).

   Note: Do not place the NX100 controller any closer than 152.4 mm (6 in) to the work cell safety fencing.

4.4.2 Level and Anchor System Components

When all LoadWorld® III system components are in correct position, proceed with the following steps in this section to level system components (if required) and anchor them to the foundation (refer to Appendix A for foundation and anchoring suggestions).

   CAUTION!
   Be absolutely certain of the correct location for each LOADWORLD® III system component before anchoring it to the foundation.

   WARNING!
   Wear protective eye wear during the anchoring process. Failure to observe this warning could result in eye injury for the installation technician.

1. If required, level system component using adjusting levelling bolts (see Figure 12).

   Note: Refer to the MSR-Series Positioner Manual for detailed levelling information for the positioner (refer to Section 1.3).

2. After positioning and levelling (if required) a system component, insert a drill bit through the center of each levelling bolt for that component and drill a hole into the foundation to accept an anchor bolt (refer to Appendix A for foundation and anchoring suggestions)

3. Use compressed air to remove all concrete dust from each drilled hole.

4. Anchor the system component to the foundation with suitable anchor bolts (refer to Appendix A for foundation and anchoring suggestions).

5. Repeat all steps in this section for each system component that requires anchoring to the foundation.
4.5 **Removal of Robot Shipping Bracket**

**CAUTION!**

Remove the shipping bracket from each robot prior to power-up or operation. Operation of a robot, without first removing the shipping bracket, can damage the robot drive components.

A bracket is installed on each robot at the factory to prevent undesired movement during shipping (see Figure 13). The bracket is painted bright yellow for easy location and identification. The bracket secures the lower arm of the robot to the S-axis housing. In addition, the bracket provides the correct attachment points for a hoisting sling, should a robot need to be lifted or moved. Upon bracket removal, be sure to keep the brackets and attaching hardware in a secure location, should they be needed in the future.

![Diagram of Typical Levelling Bolt](image)

**Figure 12** Typical Levelling Bolt

**Figure 13** Robot Shipping Bracket
4.6 Cable Connections

After the LoadWorld® III system components and peripherals are anchored in their correct locations, locate the interconnect cables for the system components and route them according to the system drawings and schematics included in the LoadWorld® III system documentation package. All cables and connectors are labelled to ensure correct connection to the mating connectors on the applicable system component.

Note: A small gap of approximately 100 mm (4 in) exists between the bottom of the work cell safety fence and the floor. This gap provides a passage for cables that link components outside the work cell with those that are inside the work cell.

4.6.1 Connection to Earth Ground

WARNING!

Do not use the LoadWorld® III system unless specified components are connected to a low-resistance earth ground. Do not connect the earth ground wire with the wires for the other high voltage equipment. The low-resistance earth ground must be a “dedicated” ground that is a direct connection between a component and the earth ground point. Operator injury or death, as well as equipment damage, can result from an inadequate or defective earth ground system.

The HP-Series robot and NX100 controller must be connected to a low-resistance earth ground. If a ground stake is used, it should be driven at least 2.43 m (8 ft) into the soil. The soil surrounding the driven ground stake should be treated with a chemical that increases the soil conductivity in the vicinity of the driven ground stake. The earth ground may require more than a single driven ground rod, depending on soil conditions. Often, multiple ground rods (bonded together) or even a bonded network of buried copper sheeting (plus conduction-enhancing chemicals) may be required, depending on local soil condition. In any event, the “low-resistance earth ground” must indicate a resistance of 100 ohms or less (when measured directly between grounded equipment and the earth ground system). Specialized electronic measuring equipment is usually required to get an accurate “resistance-to-ground” reading. Consult a specialist in this field, if required.

Note: The customer shall supply all wires associated with the earth ground. The customer is responsible for establishing the correct gauge of all wires associated with the earth ground and maintaining an adequate earth ground (measured resistance of 100 ohms or less).

Connect the robot and NX100 controller to the earth ground as follows –

1. Connect one end of an earth ground wire to the lug marked EARTH GROUND on the connector panel of robot. Connect the other end of the earth ground wire to the low-resistance earth ground. See Figure 1 for location of robot.

2. Connect one end of an earth ground wire to the COMMON GROUND BUS BAR located inside NX100 controller (see Figure 2). Connect the other end of the earth ground wire to the low-resistance earth ground.
4.6.2 Connection to Local Electrical Service

**WARNING!**
Local electrical service connection to the LoadWorld® III system must be performed by a qualified, licensed electrician. Electrical and grounding connections must comply with the National Electrical Code (NEC), as well as all local electrical codes.

*Note: The LoadWorld® III system is configured for 3-phase 460/480V AC primary power. For additional information, refer to the electrical drawings and schematics that are included with your system documentation package (refer to Section 1.3).*

After all of the system components have been properly installed and interconnected, connect local electrical service to the NX100 controller (refer to Section 4.6.2.1).

4.6.2.1 NX100 Controller

For detailed electrical service interconnect procedures for the NX100 controller assembly, refer to the [NX100 Controller Manual](#) and LoadWorld® III system drawings / schematics that are included with your system documentation package (refer to Section 1.3).

4.7 Safety / Operation Check

Before installing the tooling and fixtures for your application, take a few minutes to perform the following safety/operation check:

1. Ensure that the shipping bracket is removed from the robot (refer to Section 4.5).
2. Ensure correct alignment and operation of the safety light curtain system (refer to safety light curtain documentation that is included with the LoadWorld® III system).
3. Check the security and integrity of all cable connections.
4. Ensure that the work cell sliding access door is closed and that the door interlock is engaged.
5. Verify that local electrical service complies with the power requirements for your LoadWorld® III system.
6. Verify that local electrical service is correctly wired into the NX100 controller.

**CAUTION!**
The LoadWorld® III system is now ready for power-up. Qualified, trained personnel, who are familiar with this system, should perform the power-up sequence.

7. Rotate the POWER ON-OFF Switch on NX100 controller to ON (see Figure 2).

*Note: An electrical service disconnect box for the NX100 controller assembly shall be supplied (if desired) by the customer. It is not part of the LoadWorld® III system shipment.*
**WARNING!**
Before operating the robots, verify that each E-Stop push button disables servo power when activated (pushed in). Each E-Stop push button must immediately stop robot and positioner movement when activated (pushed in).

8. Check for correct operation of all E-Stop push buttons (refer to Section 3.7.3).

9. Check for correct operation of the system HOLD button on the Programming Pendant.

10. Check for correct action of the work cell access door safety interlock.

11. Remove power from the LoadWorld® III system after completion of the safety / operation check.

### 4.8 Installation of Tooling and Fixtures

The LoadWorld® III system is now ready for attachment of tooling fixtures to the MSR-200 positioner table. Motoman recommends that you assign this task to personnel who are familiar with LoadWorld® III system operation and set-up. After installation of tooling fixtures, test the MSR-200 positioner for correct operation.

*Note: All tooling and fixtures for the MSR-200 positioner shall be supplied by the customer.*

*Note: Motoman recommends application of a corrosion/rust preventive compound to tooling and fixtures located in a high-humidity environment.*
Chapter 5
Operation

CAUTION!
The customer is responsible for providing trained operators to run the equipment. The customer is also responsible for making sure that the equipment is operated in accordance with the ANSI/RIA R15.06-1999 Robot Safety standard, as well as any other local or state standards.

This chapter provides a brief overview of the operating procedures and precautions for your LoadWorld® III system. For more detailed operating information, refer to specific component manuals that are part of the LoadWorld® III system documentation package (refer to Section 1.3).

Note: The following description is intended as an example only. Actual cell operation may differ from that described here due to optional equipment and process programming.

The HP165 robot processes parts on one side of the MSR-200 positioner, while the operator loads the opposite side of the positioner with parts to be machined. When the machining process is complete, the robot returns the machined parts to the positioner or other outfeed equipment, and the robot returns to a Home (Safe) position. The operator can then initiate another positioner sweep cycle from the operator station. This moves the previously loaded parts into the robot work area, where the robot then moves from the Home (Safe) position to complete another machining cycle.

Note: The customer shall supply all tooling fixtures for the positioner.
5.1 Programming

The operation of the LoadWorld® III system is programming dependent. The following operating instructions are based on one possible configuration for this system. Your system configuration and job structure may differ slightly from that presented here; however, basic operation will be the same. For additional programming procedures and information, refer to the NX100 controller documentation that is included with your LoadWorld® III system documentation package (refer to Section 1.3).

Any changes made to your system configuration or job structure will alter the operation of the system. Motoman recommends that you DO NOT modify the original jobs and system configuration of your LoadWorld® III system. If you determine a need to modify the original jobs and system configuration, make any modifications to a copy of the original. Keep the original as a backup. Do not modify the original. Modifications must be performed by trained and experienced personnel who are familiar with the operation of the LoadWorld® III system. If you have questions concerning the configuration of your system, please contact Motoman 24 hour Customer Support (refer to Section 1.4).

5.2 Sweeping the Positioner

*Note: The robots must be in the Home position before you can sweep the positioner.*

Selecting MANUAL mode on the Operator Station POSITIONER AUTO/MANUAL switch allows the operator to sweep the MSR-200 positioner without activating the robot. Parts can be loaded onto the fixture to achieve the most efficient configuration and then swept into the work zone, before teaching the robot a series of moves. To sweep Side A or Side B of the positioner into the robot work zone, proceed as follows:

1. Place the robot in Home position (refer to Section 5.3.2).
2. Make sure that the operator station is enabled (Programming Pendant MODE SELECT SWITCH set to REMOTE).
3. Set the operator station POSITIONER AUTO/MANUAL switch to MANUAL and start the Master Job (refer to Section 5.3.3). Normally, the robot will not move out of Home position when the POSITIONER AUTO/MANUAL switch is set to MANUAL (this depends on job structure).

*Note: Cycle Start latching is not operative in MANUAL mode.*

4. Press the CYCLE START/CYCLE LATCH push button on operator station (the MSR-200 positioner sweeps each time the CYCLE START/cycle latch push button is pressed).
5.3 Daily Operation

The procedures below represent the typical operating sequence from power up to shutdown. Your basic operating procedures may vary depending on your situation.

- Perform start-up procedures (refer to Section 5.3.1).
- Move robot to Home position (refer to Section 5.3.2).
- Select Master Job (refer to Section 5.3.3).
- Perform operation cycle (refer to Section 5.3.4)
- Perform shutdown procedures (refer to Section 5.3.5)

5.3.1 Start-Up

To start up the LoadWorld® III work cell from a power-off condition, proceed as follows –

Note: Electrical service disconnects shall be supplied (if desired) by the customer. They are not part of the LoadWorld® III system shipment.

1. Rotate the NX100 controller POWER ON-OFF switch to ON (see Figure 2).
2. Set POWER ON for each CNC workstation to ON.
3. Make sure that the work cell access door is closed and door safety interlock engaged.
4. Make sure all E-Stop push buttons are released. E-Stop push buttons are installed at the following locations:
   - Programming Pendant
   - NX100
   - Operator Station
5. Select TEACH mode on the Programming Pendant.
6. Place robot in Home position (refer to Section 5.3.2).

5.3.2 Robot Home Position

To move the robots to the Home position:

1. Select TEACH mode on the Programming Pendant.
2. Select MAIN MENU on Programming Pendant touch screen.
4. Select SELECT JOB on Programming Pendant touch screen (a job list appears).
5. Use the navigation cursor key to move the cursor to SAFE job and press SELECT (the job appears on the display screen).
6. Turn servo power ON by pressing SERVO ON and holding in the ENABLE switch.
7. Use the FWD button on Programming Pendant to jog robot to Home position.
5.3.3 Master Job

With the system powered up and in TEACH mode, call up the Master Job –

1. Select JOB on Programming Pendant touch screen.
2. Select CTRL MASTER on Programming Pendant touch screen. Press SELECT twice to activate the Master Job.
3. Select PLAY mode on Programming Pendant and press the PLAY ENABLE button on the NX100 controller door (job playback operation is enabled). See Figure 2 for location of the PLAY ENABLE button on the controller.
4. Press SERVO ON button on the Programming Pendant.
5. Press START button on Programming Pendant (the Master Job cycles, waiting for a CYCLE START input from Operator Station).
6. Transfer control to the Operator Station by selecting REMOTE on the Programming Pendant MODE SELECT SWITCH.

The LoadWorld® III work cell is now ready for operation.

5.3.4 Operation Cycle

The following is a typical sequence of operation for the LoadWorld® III work cell after start-up:

1. Operator loads the fixture (on operator side of positioner) with parts to be machined.
2. Operator steps out of safety zone created by the safety light curtain system, and moves to the fence-mounted Operator Station.
3. Operator presses the green CYCLE START button on Operator Station. The MSR-200 positioner sweeps, placing parts into the robot work area. The robot then begin to process the parts at a CNC workstation (if the Operator Station POSITIONER AUTO/MANUAL switch is set to AUTO).
4. While the robot is processing a part, the operator loads the operator side of the positioner with the next group of parts to be machined.
5. The operator again moves to the Operator Station and presses the green CYCLE START button (CYCLE LATCHED light illuminates). When the robot is processing a part, it loads the finished part(s) onto the robot side of the positioner and returns to Home position. The positioner sweeps again to return completed parts to the operator position, while moving the next group of parts into the robot work area.
6. Operator moves back to the operator side of the positioner and unloads completed parts.
5.3.5 **Shutdown**

Use the following procedure to perform a normal shut down of the LoadWorld® III system:

1. Make sure the robot is in Home position.
2. Turn off system servo power by pressing the E-Stop button on operator station or programming pendant.
3. Select TEACH mode on the programming pendant.
4. Rotate NX100 controller POWER ON-OFF switch to OFF (see Figure 2).
5. Remove power from the CNC workstations.

The LoadWorld® III system is now shut down.

5.4 **System Recovery**

When a system error or alarm occurs, you must clear the error or alarm to return the system to normal operation. The paragraphs below describe the different types of alarms and errors you may encounter, and how to clear them.

5.4.1 **Alarms and Errors**

Alarms and errors will stop the program. There are three levels –

- Error Messages
- Minor Alarms
- Major Alarms

For more detailed information on alarm and error recovery, refer to the NX100 controller and HP-Series robot documentation that is included with your LoadWorld® III documentation package (refer to Section 1.3).

5.4.1.1 **Error Messages**

Error messages are usually the result of simple, easily-cleared operation errors. The following is one example –

- Pressing the START button when the robot is not in PLAY mode

Clear errors of this type by pressing the CANCEL button on the programming pendant.

5.4.1.2 **Minor Alarms**

Minor alarms usually involve programming errors. Clear alarms of this type by pressing the CANCEL button on the programming pendant.
5.4.1.3 Major Alarms

Clear alarms of this type by cycling the NX100 controller in accordance with the following steps:

1. Rotate the NX100 POWER ON-OFF switch to OFF (see Figure 2).
2. Allow the NX100 POWER ON-OFF switch to remain in the OFF position for approximately 10 seconds.
3. Rotate the NX100 POWER ON-OFF switch back to ON.

5.4.2 E-Stop Recovery

An E-Stop (emergency stop) condition is triggered by any of the following conditions –

- An E-Stop push button switch is activated
- The work cell access door is opened while the robot is not in TEACH mode
- The light curtain system is tripped while the positioner is sweeping
- A collision triggers a shock sensor output

If an E-Stop condition is triggered, restart the LoadWorld® III system as follows:

**CAUTION!**
If an E-Stop condition occurs while the positioner is sweeping, the positioner will complete the sweep when the LoadWorld® III system is restarted.

1. Press the SERVO ON button on the Programming Pendant.
2. Select REMOTE mode on the Programming Pendant MODE SELECT SWITCH to transfer control of the system to the Operator Station.
3. Press the green START button on the Operator Station.

The LoadWorld® III system is now ready to continue operation.
5.4.3 **Brake Release**

The robot braking system is designed to protect the robots and other system components from damage in the event of a system / robot failure or loss of drive power. If a system / robot failure or loss of drive power occurs, you must release the brakes on the affected robot in order to move it.

To release the brakes, proceed as follows:

**WARNING!**
Always support the robot axis to be released BEFORE you release it. Without adequate robot axis support, brake release could cause personal injury or machine damage.

1. On the Programming Pendant, select TEACH mode and turn servo power OFF.
2. Select ROBOT on the pendant display (touch) screen.
3. Select the BRAKE RELEASE option.
4. Use the CURSOR key to select desired robot axis for release.
5. Press and hold the pendant ENABLE switch in its middle position (see Figure 3 and Figure 6), while pressing the INTERLOCK key and the SELECT key.
6. The brake for the selected axis releases.
Chapter 6
Maintenance

Assign LoadWorld® III system maintenance to technicians who are trained in the operation and repair of a robotic system (preferably the LoadWorld® III system). Be sure to read and understand the documentation for a particular component before doing any type of maintenance on that component.

Maintenance intervals given in this chapter are recommendations, only. Adjust the frequency and level of maintenance to suit your specific equipment schedules and shop environment.

Maintenance procedures and schedules for individual components of the system are given in the component manuals supplied with the LoadWorld® system documentation package (refer to Section 1.3).

Table 1  Periodic Maintenance

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>COMPONENT</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>All safeguard items – work cell door interlock, E-Stop push buttons, safety light curtains, arc curtains, etc.</td>
<td>Check physical condition of safeguard item and ensure that the safeguard item is working correctly.</td>
</tr>
<tr>
<td>On Condition</td>
<td>LoadWorld® III work cell</td>
<td>Remove accumulated dirt, grease, and debris from inside and outside the work cell.</td>
</tr>
<tr>
<td>Every 6 Months</td>
<td>Robot Positioner</td>
<td>Check integrity and security of anchor hardware in accordance with HILTI® documentation. Check torque of hold-down nuts in accordance with HILTI® documentation (refer to Appendix A).</td>
</tr>
</tbody>
</table>
NOTES
The customer shall determine all anchoring and foundation requirements, and supply the appropriate anchoring hardware and foundation for a particular system installation. Table A.1 gives anchoring and foundation suggestions.

### Table A.1  Suggested Anchor, Floor Plate, and Foundation Specifications

<table>
<thead>
<tr>
<th>SYSTEM EQUIPMENT</th>
<th>MINIMUM HILTI® ANCHOR ROD DIA / TYPE</th>
<th>MINIMUM FLOOR PLATE</th>
<th>MINIMUM FOUNDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBOTS</td>
<td>1/2&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>380 mm (15 in) Length 380 mm (15 in) Width 19 mm (0.7 in) Thick</td>
<td>381 mm (15.0 in) Length 381 mm (15.0 in) Width 76 mm (3.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>5/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>600 mm (24 in) Length 600 mm (24 in) Width 38.1 mm (1.5 in) Thick</td>
<td>762 mm (30.0 in) Length 762 mm (30.0 in) Width 178 mm (7.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>5/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>600 mm (24 in) Length 600 mm (24 in) Width 38.1 mm (1.5 in) Thick</td>
<td>762 mm (30.0 in) Length 762 mm (30.0 in) Width 178 mm (7.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>900 mm (36 in) Length 900 mm (36 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1524 mm (60.0 in) Length 1524 mm (60.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>900 mm (36 in) Length 900 mm (36 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1524 mm (60.0 in) Length 1524 mm (60.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm (47.2 in) Length 1200 mm (47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm (72.0 in) Length 1828 mm (72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm (47.2 in) Length 1200 mm (47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm (72.0 in) Length 1828 mm (72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
</tbody>
</table>
### Table A.1  Suggested Anchor, Floor Plate, and Foundation Specifications

<table>
<thead>
<tr>
<th>SYSTEM EQUIPMENT</th>
<th>MINIMUM HILTI® ANCHOR ROD DIA / TYPE</th>
<th>MINIMUM FLOOR PLATE</th>
<th>MINIMUM FOUNDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBOTS UP200</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS HP200, ES200N, HP200T, HP200RN, ES200RN, EPL300 (Note 2)</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS UP350, UP500, SK300X</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1500 mm(59.1 in) Length 1500 mm(59.1 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS HP350, HP350-200, HP500, HP600, EPL450, EPL500 (Note 2)</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1500 mm(59.1 in) Length 1500 mm(59.1 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>POSITIONER Rotary Turntable Type</td>
<td>5/8&quot; HVA Chemical Anchor (Note 3) (Note 6)</td>
<td>Not Applicable</td>
<td>Refer to Applicable Positioner Manual</td>
</tr>
<tr>
<td>POSITIONER “Ferris wheel” type with headstock and tailstock (HS/TS)</td>
<td>7/8&quot; HVA Chemical Anchor (Note 3) (Note 6)</td>
<td>Not Applicable</td>
<td>Refer to Applicable Positioner Manual</td>
</tr>
<tr>
<td>PERIPHERAL EQUIPMENT</td>
<td>1/2&quot; Kwik Bolt II Expansion Anchor (Note 4) (Note 6)</td>
<td>Not Applicable</td>
<td>3&quot; min thickness or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>WORK CELL FENCE POSTS</td>
<td>3/8&quot; Kwik Bolt II Expansion Anchor (Note 4) (Note 6)</td>
<td>Not Applicable</td>
<td>3&quot; min thickness or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
</tbody>
</table>

**Notes**

(1) Minimum robot lagging requirements are based on Maximum Repulsion Forces and Hilti® Anchor Design Program (v3.3b).

(2) SP and EPL series robots require base plates and/or risers to be level to ± 2°. Grout if necessary.

(3) Reference source: Hilti® Product Technical Guide (section 4.2.1) for hardware specifications or equivalent.

(4) Reference source: Hilti® Product Technical Guide (section 4.3.3) for hardware specifications or equivalent.

(5) Cast-in anchors are specified in some robot manuals. The Hilti® HVA Chemical Anchors listed in this table can be substituted for the cast-in anchors.

(6) Refer to Hilti® Product Technical Guide for suggestions on the correct size and type of drill bit to use with each anchor type.

**Contact Information**

1-800-879-8000 (USA)  [http://us.hilti.com](http://us.hilti.com)
1-800-363-4458 (CAN)  [http://ca.hilti.com](http://ca.hilti.com)
Index

A
Alarms 31
Anchor Requirements 37
Anchor Requirements and Hardware 37

B
Backing-up original jobs and sys config 28
Brake Release 33

C
Cable Interconnects 24
Components 3
Customer Service 4
Customer-Supplied Items 18

D
Daily Operation 29

E
Earth Ground 24
Emergency Stops (E-STOPS) 15
ENABLE Switch, Programming Pendant 15
Equipment Description

G
General Safeguarding Tips 6

I
Installation 17
Installation and qualified personnel 17
Installation Safety 7
Installation, Tooling and Fixtures 26
Interlocked Workcell Doors 16
Introduction 1

L
Layout 3
Low-Resistance Earth Ground 24

M
Master Job 30

Mechanical Safety Devices 7
Motoman Advanced Robot Motion® (ARM) control algorithms. 9

N
NX100 Controller, description 9

O
Operation 27
Overview 2

P
Preventive Maintenance 35
Programming Pendant, NX100 10, 11
Programming the LoadWorld® III 28
Programming, Operation, and Maintenance Safety 8

R
Recommended Hand Tools and Equip. 18
Required Installation Materials 17
Robot Description 9
Robot Home Position 29
Robot Shipping Bracket, Removal 23

S
Safety 5
Safety / Operation Check 25
Safety equipment 3
Safety Features 14
Safety Fencing 14
Safety Light Curtains 14
Site Preparation 18
Standard Conventions 6
System Recovery 31
System Shutdown 31
System Start-Up 29