Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS

MOTOMAN-□□□ INSTRUCTIONS
DX100 INSTRUCTIONS
DX100 OPERATOR’S MANUAL
DX100 MAINTENANCE MANUAL

The DX100 Operator’s manual above corresponds to specific usage.
Be sure to use the appropriate manual.

Part Number: 156445-1CD
Revision: 1
MANDATORY

- This manual explains the sensor function of the DX100 system. Read this manual carefully and be sure to understand its contents before handling the DX100.

- General items related to safety are listed in Chapter 1: Safety of the DX100 Instructions. To ensure correct and safe operation, carefully read the DX100 Instructions before reading this manual.

CAUTION

- Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

- The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

- YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications.

- If such modification is made, the manual number will also be revised.

- If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

- YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product's warranty.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the DX100.

In this manual, the Notes for Safe Operation are classified as "WARNING", "CAUTION", "MANDATORY", or "PROHIBITED".

- **WARNING**: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **CAUTION**: Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

- **MANDATORY**: Always be sure to follow explicitly the items listed under this heading.

- **PROHIBITED**: Must never be performed.

Even items described as "CAUTION" may result in a serious accident in some situations.

At any rate, be sure to follow these important items

NOTE

To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as "CAUTION" and "WARNING".
WARNING

- Before operating the manipulator, check that servo power is turned OFF pressing the emergency stop buttons on the front door of the DX100 and the programming pendant. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Fig. : Emergency Stop Button

- Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn the servo power ON.

Injury may result from unintentional or unexpected manipulator motion.

Fig. : Release of Emergency Stop

- Observe the following precautions when performing teaching operations within the P-point maximum envelope of the manipulator:
 - View the manipulator from the front whenever possible.
 - Always follow the predetermined operating procedure.
 - Keep in mind the emergency response measures against the manipulator’s unexpected motion toward you.
 - Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

- Confirm that no person is present in the P-point maximum envelope of the manipulator and that you are in a safe location before:
 - Turning ON the power for the DX100.
 - Moving the manipulator with the programming pendant.
 - Running the system in the check mode.
 - Performing automatic operations.

Injury may result if anyone enters the P-point maximum envelope of the manipulator during operation. Always press an emergency stop button immediately if there is a problem.

The emergency stop buttons are located on the right of front door of the DX100 and the programming pendant.
CAUTION

- Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 - Check for problems in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.
- Always return the programming pendant to the hook on the cabinet of the DX100 after use.

The programming pendant can be damaged if it is left in the manipulator's work area, on the floor, or near fixtures.
- Read and understand the Explanation of Warning Labels in the DX100 Instructions before operating the manipulator:

Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX100 controller</td>
<td>DX100</td>
</tr>
<tr>
<td>DX100 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>
Descriptions of the programming pendant, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td></td>
</tr>
<tr>
<td>Character Keys</td>
<td>The keys which have characters printed on them are denoted with []. ex. [ENTER]</td>
</tr>
<tr>
<td>Symbol Keys</td>
<td>The keys which have a symbol printed on them are not denoted with [] but depicted</td>
</tr>
<tr>
<td></td>
<td>with a small picture. ex. page key</td>
</tr>
<tr>
<td></td>
<td>The cursor key is an exception, and a picture is not shown.</td>
</tr>
<tr>
<td>Axis Keys</td>
<td>“Axis Keys” and “Number Keys” are generic names for the keys for axis operation</td>
</tr>
<tr>
<td>Number Keys</td>
<td>and number input.</td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a “+”</td>
</tr>
<tr>
<td></td>
<td>sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. ex. {JOB}</td>
</tr>
</tbody>
</table>

Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • • ” means that the cursor is moved to the object item and the SELECT key is pressed, or that the item is directly selected by touching the screen.
1 Sensor Function ..1-1
 1.1 Real-time Path Correction Function ...1-1
 1.2 Real-time Speed Correction Function ...1-1
 1.3 Shift Amount Creation Function ...1-1
 1.4 Search Function ..1-2
2 Wiring ...2-1
 2.1 Analog Input Signal Connection ...2-1
 2.2 Direct-in Signal Connection ...2-3
3 Real-time Path Correction Function ...3-1
 3.1 Correction Amount ...3-2
 3.2 Correction Direction ..3-3
 3.2.1 Tool Coordinate ..3-3
 3.2.2 Forward Direction ..3-4
 3.2.3 Optional Direction ..3-4
 3.3 Monitoring of Sensor Input Voltage ...3-5
 3.3.1 Sensor Monitor Condition File ..3-5
 3.3.2 Display of Sensor Monitor Condition File3-7
 3.3.3 Editing of Sensor Monitor Condition File3-7
 3.4 Instructions for the Real-time Path Correction Function3-8
 3.4.1 ACORON and SACORON Instructions ...3-8
 3.4.1.1 Registration of the ACORON Instruction3-9
 3.4.2 ACOROF and SACOROF Instructions ..3-11
 3.4.2.1 Registration of the ACOROF Instruction3-11
 3.4.3 ACORCH and SACORCH Instructions ...3-12
 3.4.3.1 Registration of the ACORCH Instruction3-13
4 Real-time Speed Correction Function ..4-1
 4.1 Override Ratio ..4-2
 4.2 Instructions for the Real-time Speed Correction Function4-3
 4.2.1 AOVRON Instruction ..4-3
 4.2.1.1 Registration of the AOVRON Instruction4-4
 4.2.2 AOVROF Instruction ...4-6
 4.2.2.1 Registration of the AOVROF Instruction4-6
5 Shift Amount Creation Function ..5-1
 5.1 Shift Amount ...5-1
1 Sensor Function

The sensor function corrects the manipulator path and speed, measures distance, and detects position using a sensor such as the distance sensor or the torque sensor.

The analog input signals from a sensor are connected to the DX100, and various controls are performed according to the input voltage. The signals from a sensor directly connect to the DX100, and therefore an external sequencer is not required. This allows easy and simple system construction, and minimizes the delay of response to the signals.

The sensor function has the following various control functions to be used depending on the application.

- Real-time path correction function
- Real-time speed correction function
- Shift amount creation function
- Search function

1.1 Real-time Path Correction Function

The real-time path correction function corrects the motion path of the manipulator according to the input signals from a sensor.

Normally, a manipulator moves along the taught path. However, when the manipulator cannot move along the taught path due to distortion or displacement of the workpiece, the sensor function detects the distortion or displacement in real-time and corrects the manipulator path accordingly to do the job.

1.2 Real-time Speed Correction Function

The real-time speed correction function corrects the motion speed of the manipulator according to the input signals from a sensor.

Normally, a manipulator moves at the set speed in a job. However, when the work time for each workpiece differs, the sensor function detects the progress of work and moves the manipulator at its optimum speed.

1.3 Shift Amount Creation Function

The shift amount creation function computes the distance to a selected workpiece according to the input signals from a displacement sensor. The measurement of more than one position enables a three-dimensional shift when using the relative job conversion function.
1.4 Search Function

The search function moves a manipulator according to the input signal from a sensor, and stops the manipulator when the input signal reaches a designated level.

The sensor monitors the manipulator operation, and stops the manipulator at the moment of completing the operation.

<Application Example>
A manipulator performs a handling operation of panels.

1. The manipulator moves to the search starting position.

2. The manipulator moves to the goal position in the search operation at low-speed. When the manipulator comes to the position to take the panel, an input signal (Direct-IN signal) from the sensor turns ON, then the manipulator stops. At this moment, the difference between the search starting position and the detected position is calculated.
According to the calculated difference, the program is modified to proceed the operation.
2 Wiring

2.1 Analog Input Signal Connection

Connect analog input signals from each sensor to the analog input terminals on the optional base board. Connect the signals from the sensors in the following manner.

1. Provide an analog input cable between the sensor and the DX100. For the connection specification, see fig. 2-1 “Analog Input Signal Connection Diagram” at page 2-2 to be described.

2. Turn OFF the main power supply by turning the DX100 to the OFF position.

3. Connect the sensor with an analog input cable to the analog input terminal: CN120 on the option base board: JANCD-YCP02.

4. Set the connected channel No. to the parameter: SxE020 to SxE027 (sensor input channel specification, see chapter 9 “Sensor Parameters (SxE)” at page 9-1).

- Analog Input Signal Specification

 Channel number : 8 channel
 Voltage range : ± 10 V

- Connector Specification for Input Cable

<table>
<thead>
<tr>
<th>Name</th>
<th>Maker</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDR connectors, solder plug connector</td>
<td>3 M</td>
<td>10150-3000PE</td>
</tr>
<tr>
<td>MDR connector, plastic solder plug junction shell, non-shielded</td>
<td>3 M</td>
<td>10350-52F0-008</td>
</tr>
</tbody>
</table>
2 Wiring

2.1 Analog Input Signal Connection

Fig. 2-1: Analog Input Signal Connection Diagram
2.2 Direct-in Signal Connection

For the search function, the direct-in signal needs to be connected between the optional base board and the terminal for transmission between the sensor section and the servo section.

When the search function is not used, this wiring is not necessary.

Wire according to the instructions described in the section "■ Direct-in (Servo) 1 to 6 of 13.2.3 Connection for Direct-in" in the DX100 INSTRUCTIONS (manual No. RE-CTO-A215).

Then, set the channel No. to which the direct-in signal and the general output signal of the YCP02 board are connected, to the parameters as follows.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SxE057</td>
<td>General output signal No. of YCP02 board for the search function.</td>
<td>2</td>
</tr>
<tr>
<td>SxE058</td>
<td>Direct-in signal No. for the search function.</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 2-2: Direct IN Signal DIN1 Connection

The part of wiring is for multi CPU unit system.
3 Real-time Path Correction Function

The real-time path correction function corrects the motion path of the manipulator according to the input signal from a sensor.

To start path correction, execute a real-time path correction start instruction (ACORON). To end it, execute a real-time path correction end instruction (ACOROF).

During path correction, the manipulator moves in the motion instructed by a move instruction with the correction amount output from the sensor section.

<Job Example>

001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 ACORON TF TCH#(3) TV=0.000
005 MOVL V=100
006 ACORCH TCH#(3) TV=1.000
007 MOVL V=100
008 ACOROF
009 MOVL V=100
010 MOVJ VJ=25.00
011 END

Changing Steps
The step is switched at the same distance as the taught travel distance.
3.1 Correction Amount

For the deviation of the analog input, the correction amount is calculated in the following formula.

i) \(V_{\text{in}} > V_{\text{thresh}} + V_{\text{offset}} + V_{\text{nosens}} \)
\[
C_{\text{out}} = R \times (V_{\text{in}} - (V_{\text{thresh}} + V_{\text{offset}} + V_{\text{nosens}}))
\]

ii) \(V_{\text{thresh}} + V_{\text{offset}} - V_{\text{nosens}} < V_{\text{in}} < V_{\text{thresh}} + V_{\text{offset}} + V_{\text{nosens}} \)
\[
C_{\text{out}} = 0
\]

iii) \(V_{\text{in}} < V_{\text{thresh}} + V_{\text{offset}} - V_{\text{nosens}} \)
\[
C_{\text{out}} = R \times (V - (V_{\text{thresh}} + V_{\text{offset}} - V_{\text{nosens}}))
\]

- \(C_{\text{out}} \): Correction amount
- \(R \): Resolution
- \(V_{\text{in}} \): Input voltage
- \(V_{\text{thresh}} \): Threshold
- \(V_{\text{offset}} \): Offset value
- \(V_{\text{nosens}} \): Dead zone
3.2 Correction Direction

The direction in which the path is to be corrected can be determined in the following three ways.

- Tool coordinate
- Forward direction
- Optional direction

The correction from the sensor is executed on the coordinates specified by ACORON and SACORON instructions (real-time path correction start instructions).

3.2.1 Tool Coordinate

The correction is performed using a tool mounted on the wrist flange of the manipulator as a reference point. Select one of the following three directions; the X-axis direction, the Y-axis direction, or the Z-axis direction.

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-axis direction</td>
<td>CH1</td>
</tr>
<tr>
<td>Y-axis direction</td>
<td>CH2</td>
</tr>
<tr>
<td>Z-axis direction</td>
<td>CH3</td>
</tr>
</tbody>
</table>
3 Real-time Path Correction Function

3.2 Correction Direction

3.2.2 Forward Direction

The correction is executed toward the forward direction of move instruction in execution.

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward direction</td>
<td>CH1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction from REFP1 to REFP2 (Direction from SREFP1 to SREFP2)</td>
<td>CH1</td>
</tr>
<tr>
<td>Direction from REFP1 to REFP3 (Direction from SREFP1 to SREFP3)</td>
<td>CH2</td>
</tr>
<tr>
<td>Direction from REFP1 TO REFP4 (Direction from SREFP1 to SREFP4)</td>
<td>CH3</td>
</tr>
</tbody>
</table>

3.2.3 Optional Direction

The motion path is corrected in the direction determined by two reference points. (Not limited to the orthogonal coordinate system.)
3.3 Monitoring of Sensor Input Voltage

To prevent the manipulator from deviating excessively from its path, the analog signals are monitored during the path correction.

When the path correction starts, the signals are monitored according to a specified sensor monitor condition file. When an error occurs, the manipulator moves according to the motion condition of the aforementioned file.

In the sensor monitor condition file, the maximum voltage value and the minimum voltage value of each channel can be set. When the input voltage of an analog signal exceeds these values, an error occurs.

3.3.1 Sensor Monitor Condition File

<table>
<thead>
<tr>
<th>COND NO. (1 to 16)</th>
<th>Displays the file number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX. VOL, MIN. VOL (-10.000 to 10.000 [V])</td>
<td>The monitor conditions of analog input signal. Set for each sensor input channel. No monitoring for the channels whose maximum and minimum voltages are set to 0.</td>
</tr>
</tbody>
</table>
MOTION COND (0 to 2)
Specifies the motion condition when an error is detected.

0: Generates an alarm to stop the manipulator.

1: Stops the path correction and moves the manipulator toward the taught steps.
 After the end of a step is detected by distance monitoring, the path correction restarts.

2: Stops the path correction, and moves the manipulator toward the taught steps keeping the amount of correction up to the previous step. When the end of the step is detected in the distance monitoring, the path correction restarts.
3.3.2 Display of Sensor Monitor Condition File
1. Select (ROBOT) under the main menu.
2. Select [SENS MON COND].

3.3.3 Editing of Sensor Monitor Condition File
1. Select an item to be changed.
2. Enter a value using the number keys.
3. Press [ENTER].
3.4 Instructions for the Real-time Path Correction Function

3.4.1 ACORON and SACORON Instructions

The ACORON and the SACORON are instructions to start the real-time path correction. Use the SACORON in a coordinated job.

<Format>

```
ACORON
  TF
  PSF
  OPF

① Correction coordinates
  Specifies the coordinate system where the path correction is performed. For details on each coordinate system, refer to chapter 3.2 “Correction Direction” at page 3-3. The following coordinate systems can be selected.
    TF : Tool frame (Tool coordinate)
    PSF: Pass frame (Forward direction)
    OPF: Optional frame (Optional direction)
```

```
② Sensor monitor condition file
  Sets a condition file when the input voltage from the sensor is monitored. When this setting is omitted, monitoring is not performed. For details on the file, refer to chapter 3.3.1 “Sensor Monitor Condition File” at page 3-5.
```

```
③ Threshold channel No.
  Specifies a sensor input channel for path correction. For details on the input channels, refer to chapter 3.2 “Correction Direction” at page 3-3.
    1 to 3: CH1 to CH3
    0 or No specification: The correction amounts of all the channels (directions) on the specified coordinate system are averaged to correct the path.
```

```
④ Threshold
  Sets a threshold for executing path correction. When this setting and the sensor input number are both omitted, the threshold is set to 0.000 [V]. When "0" is set for THRESHOLD CH, the threshold is set for all the channels.
    Unit: V
    Setting Range: -10.000 to 10.000
```
3.4.1.1 Registration of the ACORON Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 - The instruction list dialog box appears.

3. Select {SENSOR}.
 - The sensor instruction list dialog box appears.

4. Select {ACORON}.
 - An ACORON instruction appears in the input buffer line.
5. Press [SELECT].
 - The DETAIL EDIT display appears.
6. Set the conditions in the DETAIL EDIT display.
 - Set the correction conditions.
 • Editing in “CORRECT COORD”

 Move the cursor to the “CORRECT COORD”, and press [SELECT]. The following selection dialog box appears.

 ![Selection Dialog Box]

 Select a coordinate system for the correction.

 • Editing other items

 Select an item to be edited, and enter a value using the number keys.

7. Press [ENTER] two times.
3.4.2 ACOROF and SACOROF Instructions

The ACOROF and the SACOROF are instructions to end the real-time path correction. Use the SACOROF in a coordinated job.

<Format>

3.4.2.1 Registration of the ACOROF Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 – The instruction list dialog box appears.

3. Select {SENSOR}.
 – The sensor instruction list dialog box appears.

4. Select {ACOROF}.
 – An ACOROF instruction appears in the input buffer line.
5. Press [ENTER].
3.4.3 ACORCH and SACORCH Instructions

The ACORCH and the SACORCH are instructions to change the real-time path correction conditions.

<Format>

![Diagram showing ACORCH and SACORCH instructions]

1. **Sensor monitor condition file**
 Sets a condition file when the input voltage from the sensor is monitored.

2. **Threshold channel No.**
 Specifies a sensor input channel for path correction. For details on the input channels, refer to chapter 3.2 “Correction Direction” at page 3-3.
 - 1 to 3: CH1 to CH3
 - 0: The correction amounts of all the channels (directions) on the specified coordinate system are averaged to correct the path. The threshold is the same for all the channels.

3. **Threshold**
 Sets a threshold for executing path correction.
 - Unit: V
 - Setting Range: -10.000 to 10.000
3.4.3.1 Registration of the ACORCH Instruction

1. Move the cursor to the address area.

2. Press [INFORM LIST].
 - The instruction list dialog box appears.

3. Select {SENSOR}.
 - The sensor instruction list dialog box appears.

4. Select {ACORCH}.
 - An ACORCH instruction appears in the input buffer line.

5. Press [SELECT].
 - The DETAIL EDIT display appears.
3. Set the conditions in the DETAIL EDIT display.
 – Set a condition to be changed.
 • Selecting a condition to be changed
 Move the cursor to either the “THRESHOLD CH” or “THRESHOLD VOLT”. The following selection dialog box appears.

Select a condition to be changed.

• Editing other items
 Select an item to be edited, and enter a value using the number keys.

7. Press [ENTER] two times.
4 Real-time Speed Correction Function

During playback of the manipulator, the real-time speed correction function corrects the speed according to the signals from a sensor. To start speed correction, execute a real-time speed correction start instruction (AOVRON). To end it, execute a real-time speed correction end instruction (AOVROF). To execute speed correction, correct the override ratio. This function only decreases the speed for the correction.

<Job Example>

```
001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 AOVRON TCH#(1) TV=1.000
005 MOVL V=100
006 MOVL V=100
007 AOVROF
008 MOVL V=100
009 MOVJ VJ=25.00
010 END
```
4.1 Override Ratio

The override ratio is calculated as follows.

i) \(V_{in} > V_{thresh} + V_{offset} - V_{nosens} \)
 \[O_{out} = 100 \]

ii) \(V_{thresh} + V_{offset} - V_{nosens} - 100 / R < V_{in} < V_{thresh} + V_{offset} - V_{nosens} \)
 \[O_{out} = R \times (V_{in} - (V_{thresh} + V_{offset} - V_{nosens})) + 100 \]

iii) \(V_{in} < V_{thresh} + V_{offset} - V_{nosens} - 100 / R \)
 \[O_{out} = 0 \]

\(O_{out} \): Override ratio
\(R \): Resolution
\(V_{in} \): Input voltage
\(V_{thresh} \): Threshold
\(V_{offset} \): Offset value
\(V_{nosens} \): Dead zone
4.2 Instructions for the Real-time Speed Correction Function

4.2.1 AOVRON Instruction

The AOVRON is an instruction to start the real-time speed correction.

<Format>

![AOVRON instruction format diagram]

① **Threshold channel No.**
 Specifies the input channel for the sensor for speed correction.
 1 to 6: CH1 to CH6

② **Threshold**
 Sets a threshold for executing speed correction.
 Unit: V
 Setting Range: -10.000 to 10.000
4.2.1.1 Registration of the AOVRON Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 - The instruction list dialog box appears.

3. Select {SENSOR}.
 - The sensor instruction list dialog box appears.

4. Select {AOVRON}.
 - An AOVRON instruction appears in the input buffer line.
5. Press [SELECT].
 - The DETAIL EDIT display appears.
6. Set the conditions in the DETAIL EDIT display.
 - Editing other items
 Select an item to be edited, and enter a value using the number keys.

7. Press [ENTER] two times.
4.2 Real-time Speed Correction Function

4.2.2 AOVROF Instruction

The AOVROF is an instruction to end the real-time speed correction.

<Format>

```
AOVROF
```

4.2.2.1 Registration of the AOVROF Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 - The instruction list dialog box appears.
3. Select {SENSOR}.
 - The sensor instruction list dialog box appears.
4. Select {AOVROF}.
 - An AOVROF instruction appears in the input buffer line.
5. Press [ENTER].
5 Shift Amount Creation Function

The shift amount creation function detects a distance between a manipulator and a workpiece using a displacement sensor to calculate the shift amount on the base coordinate system.

(Job Example)

001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 MOVL V=100
005 GETSFT TCH#(1) TV=0.000 P000
006 SFTON P000 TF
007 MOVL V=100
008 SFTOF
009 MOVL V=100
010 MOVJ VJ=25.00
011 END

5.1 Shift Amount

Calculate the shift amount with the same formula as for the correction amount of the real-time path correction function. Refer to chapter 3.1 “Correction Amount” at page 3-2.

5.2 Coordinate System and Sensor Input Channel for Shift Amount Creation

Select a coordinate system and a sensor input channel for the shift amount creation in the same manner as for the correction amount of the real-time path correction function. Refer to chapter 3.2 “Correction Direction” at page 3-3.
5.3 GETSFT Instruction

The GETSFT is an instruction to create the shift amount.

<Format>

\[
\text{GETSFT} \begin{array}{ccc}
\text{TCH#()} & \text{TV=} & \text{P,L,P......}
\end{array}
\]

① **Threshold channel No.**
 Specifies the sensor input channel to be used for the creation of the shift amount.
 - 1 to 3: CH1 to CH3
 - 0 or No specification: The shift amounts of all the channels (directions) on the specified coordinate system are averaged to calculate a shift amount.

② **Threshold**
 Sets a threshold for executing the creation of the shift amount.
 When this setting and the threshold channel No. are both omitted, the threshold is set to 0.000 [V]. When “0” is set for the sensor input No., the threshold is set for all the channels.
 - Unit: V
 - Setting Range: -10.000 to 10.000

③ **Position variable**
 Sets a position variable to save a created shift amount.
 The coordinate for the shift amount is a base coordinate.
5.3.1 Registration of the GETSFT Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 – The instruction list dialog box appears.
3. Select {SENSOR}.
 – The sensor instruction list dialog box appears.
4. Select {GETSFT}.
 – A GETSFT instruction appears in the input buffer line.
5. Press [SELECT].
 – The DETAIL EDIT display appears.
5. Shift Amount Creation Function

5.3 GETSFT Instruction

6. Set the conditions in the DETAIL EDIT display.
 - Editing other items
 Select an item to be edited, and enter a value using the number keys.

7. Press [ENTER] two times.
6 Search Function

When the analog signal changes according to the position of manipulator, the search function monitors the analog signal while the manipulator moves in linear interpolation. When the detected value exceeds the set value, the detection result and the detected position are saved and the manipulator is stopped.

The search operation is executed with a move instruction that has a specified search operation tag (ASRCH). The following move instructions start the search operation:

- MOVL
- SMOVL

<Job Example>

```
001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 MOVL V=100
005 MOVL V=100 ASRCH SCH=(1) TV=0.000 RISE DIS=0.00
006 GETS B000 $B002
007 JUMP *NG IF B002=0
008 GETS PX000 PX002
009 CNVRT PX001 PX000 BF
010 SFTON P000 BF
011 MOVL V=100
012 SFTOF
013 END
```
6.1 Detection Results

After the search operation, the detection results are registered in the system variables.

<table>
<thead>
<tr>
<th>System Variable</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B02</td>
<td>Detection</td>
</tr>
<tr>
<td></td>
<td>0: Not detected</td>
</tr>
<tr>
<td></td>
<td>1: Detected</td>
</tr>
<tr>
<td>$PX002</td>
<td>Detected position (pulse)</td>
</tr>
<tr>
<td>$PX003</td>
<td>Detected position (base axis orthogonal value)</td>
</tr>
</tbody>
</table>

6.2 Search Operation with Multiple Channels

Normally in the search operation, one search detection channel is monitored. But, monitoring more than one channel at the same time is also possible. In this case, a detection is executed when a channel exceeds the threshold. Set the channels to be monitored in the parameter (SxE059).
6.3 ASRCH Instruction

The ASRCH is an instruction to start the search operation with a move instruction.

<Format>

![Diagram](image)

① Search detection channel No.
Specifies the sensor input channel to be monitored in the search operation.
 1 to 6: CH1 to CH6
 0: Search with multiple channels

② Threshold
Sets a threshold at detection
 Unit: V
 Setting Range: -10.000 to 10.000

③ Rising/Falling
Sets the direction in which the analog input signal passes the threshold.
 RISE: Rising detection
 (Direction that the input voltage absolute value increases)
 FALL: Falling detection
 (Direction that the input voltage absolute value decreases)

④ Time
The delay time to start checking the analog input signal
 Unit: sec
 Setting Range: 0 to 99.99

⑤ Distance
The overtravel distance from the target position in the search operation
 Unit: mm
 Setting Range: 0 to 999.99
6.3.1 Registration of the ASRCH Instruction

1. Move the cursor to the instruction area.
2. Move the cursor to a move instruction where a search instruction is to be registered.
4. Select {UNTIL}.
 - The instruction list dialog box appears.

5. Select {ASRCH}.
 - The DETAIL EDIT display appears.
6. Set the conditions in the DETAIL EDIT display.

- Editing other items

 • Editing in “RISE/FALL”

 Move the cursor to the “RISE/FALL”, and then press [SELECT]. Select either “RISE” or “FALL”.

The following dialog box appears.

- Editing other items

 Select an item to be edited, and enter a value using the number keys.

7. Press [ENTER] two times.
7 Calibration

Some sensors have a characteristic that changes the analog output according to an external factor such as temperature change. With this function, the amount that an analog signal changes is set in the offset value for compensation, so each function can be used appropriately. In each function, the effective value is the value that results when the offset value is subtracted from the analog input voltage value.

\textbf{Effective value} = \text{Analog input voltage value} - \text{Offset value}

When calibrating, set the analog input voltage value to the offset value.

\textbf{Offset value} = \text{Analog input voltage value}

Set the offset value in the following manner.

\begin{itemize}
 \item Execute a calibration instruction (SCALIB) in the job.
 \item In the sensor output status display, enter and register a value.
 \item In the sensor output status display, calibrate all channels.
\end{itemize}

7.1 SCALIB Instruction

The SCALIB is an instruction to calibrate the threshold channel.

\textbf{<Format>}

\begin{center}
\begin{tikzpicture}
 \node[draw, rounded corners] (scilib) {SCALIB};
 \node[below=of scilib] {TCH\#()};
\end{tikzpicture}
\end{center}

\textbf{1Threshold channel No.}

Specifies a sensor input channel for calibration.
1 to 6: CH1 to CH6
0 or No specification: All the connected sensor input channels
7.1.1 Registration of the SCALIB Instruction

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 - The instruction list dialog box appears.
3. Select {SENSOR}.
 - The sensor instruction list dialog box appears.
4. Select {SCALIB}.
 - A SCALIB instruction appears in the input buffer line.
5. Press [SELECT].
 - The DETAIL EDIT display appears.
6. Set the conditions in the DETAIL EDIT display.
 – Editing other items
 • Editing in THRESHOLD CH
 Select “THRESHOLD CH”, and enter a value using the number keys.

7. Press [ENTER] two times.

7.2 Entering an Offset Value

Follow the explanation in the chapter 8.2 “Editing in Sensor Output Status Display” at page 8-1.

7.3 All Channels Calibration

Follow the explanation in the chapter 8.3 “Calibration of All Sensor Input Channels” at page 8-2.
8 Sensor Output Status Display

1. **INPUT (-10.000 to 10.000 V)**
 Displays the input voltage of the sensor input channel.

2. **OFFSET (-10.000 to 10.000 V)**
 Displays the offset value of the sensor input channel.

3. **DEAD ZONE (0.000 to 10.000 V)**
 Displays the dead zone of the sensor input channel.

4. **CONNECT**
 Displays the analog input port for the sensor input channel.

8.1 Calling Sensor Output Status Display

1. Select {ROBOT} under the main menu.
2. Select {SENS OUT STATUS}.

8.2 Editing in Sensor Output Status Display

1. Select an item to be changed.
2. Enter a value using the number keys.
3. Press [ENTER].
8.3 Calibration of All Sensor Input Channels

1. Select {DATA} under the main menu.
 – The calibration menu appears.

2. Select {ALL CH CALIBRATION}.
 – All sensor input channels are calibrated, and the offset voltages for all the sensor input channels are set.
9 Sensor Parameters (SxE)

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
<th>Initial Value</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Application specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sensor input channel specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 : No specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1: AN0 5: AN4</td>
<td>CH1 0</td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td>2: AN1 6: AN5</td>
<td>CH2 0</td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td>3: AN2 7: AN6</td>
<td>CH3 0</td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td>4: AN3 8: AN7</td>
<td>CH4 0</td>
<td>0-8</td>
</tr>
<tr>
<td>24</td>
<td>CH5 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>CH6 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH1 0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH2 0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>CH3 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>CH4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>CH5 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>CH6 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Dead zone [mV]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>CH1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>CH2 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>CH3 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>CH4 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>CH5 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Function for analog input signal and real-time path correction</td>
<td>CH1 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D0: Low-pass filter</td>
<td>CH2 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1: Fuzzy control (valid only for path correction)</td>
<td>CH3 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2: Compensation control for the delay of real-time path correction</td>
<td>CH4 5</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>CH5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>CH6 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>General output signal No. of YCP02 board for the search function</td>
<td>2</td>
<td>1-4</td>
</tr>
<tr>
<td>58</td>
<td>Direct-in signal No. for the search function</td>
<td>2</td>
<td>1-5</td>
</tr>
<tr>
<td>59</td>
<td>Combination at execution of search operation by multiple sensors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D0 : CH1 D3: CH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1 : CH2 D4: CH5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2 : CH3 D5: CH6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Low-pass filter cut-off frequency [0.1 Hz]</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Contents</td>
<td>Initial Value</td>
<td>Setting Range</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>61</td>
<td>Scaling factor 1</td>
<td>20</td>
<td>1-20</td>
</tr>
<tr>
<td>62</td>
<td>Scaling factor 2</td>
<td>10</td>
<td>1-10</td>
</tr>
<tr>
<td>63</td>
<td>Scaling factor 3</td>
<td>15</td>
<td>1-15</td>
</tr>
<tr>
<td>64</td>
<td>Scaling factor 4</td>
<td>6</td>
<td>1-6</td>
</tr>
<tr>
<td>70</td>
<td>Resolution mode for "Common" or "Individual" between path correction and the other functions</td>
<td>0</td>
<td>0-1</td>
</tr>
<tr>
<td>71</td>
<td>Resolution for path control under individual resolution mode [0.01 mm/V]</td>
<td>CH1 0</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>CH2 0</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>CH3 0</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>CH4 0</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>CH5 0</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>CH6 0</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Path correction delay compensation, 1st frequency for 4 dimension delay filter</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Path correction delay compensation, 2nd frequency for 4 dimension delay filter</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Path correction delay compensation, delay compensation time [segment clock]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Path correction delay compensation, delay compensation gain [0.01 mm/V]</td>
<td>CH1 250</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>CH2 250</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>CH3 250</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>CH4 250</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>CH5 250</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>CH6 250</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Path correction delay compensation, maximum correction speed [0.1 mm/s]</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>
10 Alarm List

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003</td>
<td>ROM ERROR (YCP02)</td>
<td>Check error in ROM (memory) for sensor program</td>
<td>Replace the YCP02 board.</td>
</tr>
<tr>
<td>5010</td>
<td>ANALOG INPUT FAULT (YCP02)</td>
<td>Cannot read the analog input value on the YCP02 board correctly</td>
<td>Check the cable. Replace the YCP02 board.</td>
</tr>
<tr>
<td>5030</td>
<td>SYSTEM ERROR (SENSOR)</td>
<td>An error occurs in the sensor system of the sensor function. The decimal data indicates</td>
<td>Needs investigation. Contact your Yaskawa representative. State any</td>
</tr>
<tr>
<td></td>
<td>[Decimal Data]</td>
<td>the type of error. The decimal data indicates the channel where the input fault occurs.</td>
<td>observations, the alarm No. and data displayed.</td>
</tr>
<tr>
<td>5031</td>
<td>SENSOR PROCESS ERROR</td>
<td>An error occurs in the sensor when processing using the sensor function. The decimal</td>
<td>Needs investigation. Contact your Yaskawa representative. State any</td>
</tr>
<tr>
<td></td>
<td>[Decimal Data]</td>
<td>data indicates the type of error.</td>
<td>observations, the alarm No. and data displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: The sensor input channel specified to the instruction is invalid. Sensor input channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specification parameter is not set: SxE020 to 025.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4: Real time path correction (ACORON) is started under wrong condition. The real time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>path correction should be started after the MOVE instruction.</td>
<td></td>
</tr>
</tbody>
</table>
DX100
INSTRUCTIONS
FOR SENSOR FUNCTION

HEAD OFFICE
2-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu 806-0004 Japan
Phone +81-93-645-7745 Fax +81-93-645-7746

YASKAWA America Inc. MOTOMAN Robotics Division
805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA Nordic AB
Franska vagen 10, Box 4004, 390 04 Kalmar, Sweden
Phone +46-480-417800 Fax +46-480-417999

YASKAWA Europe GmbH Robotics Division
Kammerfeld strasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Electric Korea Co., Ltd.
7F, Doore Bldg.; 24, Yeoido-Dong Youngdungpo-ku, Seoul, KOREA
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric (Singapore) PTE Ltd.
151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6282-3003 Fax +65-6289-3003

YASKAWA Electric (Thailand) Co., Ltd.
252/246, 4th Floor. Muang Thai-Phatra Office Tower II Ratchadaphisek Road, Huaykwang Bangkok, 10320 Thailand
Phone +66-2-693-2200 Fax +66-2-693-4200

Shougang MOTOMAN Robot Co. Ltd.
No.7, Yongchang-North Road, Beijing E&T Development Area, China 100176
Phone +86-10-6788-2858 Fax +86-10-6788-2878

MOTOMAN Motherson Robotics Ltd.
Plot No.195-196, 1st Floor, Sec.4 IMT Manesar, Gurgaon 122050, Haryana
Phone +91-124-475-8500 Fax +91-124-414-8016

Specifications are subject to change without notice
for ongoing product modifications and improvements.