YRC1000micro OPTIONS
PROFINET COMMUNICATION FUNCTION INSTRUCTIONS
FOR SST-PN-2-PE MADE BY Molex, Inc.

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS

Please have the following information available when contacting Yaskawa Customer Support:
- System
- Primary Application
- Software Version *(Located on Programming Pendant by selecting:
 {Main Menu} - {System Info} - {Version})*
- Robot Serial Number *(Located on robot data plate)*
- Robot Sales Order Number *(Located on controller data plate)*

Part Number: 186580-1CD
Revision: 2
DANGER

• This manual explains the SST-PN-2-PE board (manufactured by Molex, Inc.) of the YRC1000micro system. Read this manual carefully and be sure to understand its contents before handling the YRC1000micro. Any matter not described in this manual must be regarded as “prohibited” or “improper”.

• General information related to safety are described in “Chapter 1. Safety” of the YRC1000micro INSTRUCTIONS. To ensure correct and safe operation, carefully read “Chapter 1. Safety” of the YRC1000micro INSTRUCTIONS.

CAUTION

• In some drawings in this manual, protective covers or shields are removed to show details. Make sure that all the covers or shields are installed in place before operating this product.

• YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids the product warranty.

NOTICE

• The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

• YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

• If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the YRC1000micro.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, or “NOTICE”.

- **DANGER**
 Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Safety Signs identified by the signal word DANGER should be used sparingly and only for those situations presenting the most serious hazards.

- **WARNING**
 Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury. Hazards identified by the signal word WARNING present a lesser degree of risk of injury or death than those identified by the signal word DANGER.

- **CAUTION**
 Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury. It may also be used without the safety alert symbol as an alternative to “NOTICE”.

- **NOTICE**
 NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol should not be used with this signal word. As an alternative to “NOTICE”, the word “CAUTION” without the safety alert symbol may be used to indicate a message not related to personal injury.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

- **NOTE**
 To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “WARNING” and “CAUTION”.
<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not use or keep the board in the following environmental conditions.</td>
</tr>
<tr>
<td>– Where exposed to direct sunshine</td>
</tr>
<tr>
<td>– Where vibration or impact occurs</td>
</tr>
<tr>
<td>– Where high humidity exists</td>
</tr>
<tr>
<td>– Where a strong magnetic field exists</td>
</tr>
<tr>
<td>– Where much dust exists</td>
</tr>
<tr>
<td>– Where a sudden change in the temperature occurs</td>
</tr>
<tr>
<td>– Where corrosive gases occur</td>
</tr>
<tr>
<td>– Where condensation occurs</td>
</tr>
<tr>
<td>• Improper usage of the board may damage the board.</td>
</tr>
</tbody>
</table>
• Before operating the manipulator, make sure the servo power is turned OFF by performing the following operations. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.
 – Press the emergency stop button on the programming pendant or on the external control device, etc.
 – Disconnect the safety plug of the safety fence.
 (when in the play mode or in the remote mode)
If operation of the manipulator cannot be stopped in an emergency, personal injury and/or equipment damage may result.

Fig. : Emergency Stop Button

• Before releasing the emergency stop, make sure to remove the obstacle or error caused the emergency stop, if any, and then turn the servo power ON.
Failure to observe this instruction may cause unintended movement of the manipulator, which may result in personal injury.

Fig. : Release of Emergency Stop

• Observe the following precautions when performing a teaching operation within the manipulator's operating range:
 – Be sure to perform lockout by putting a lockout device on the safety fence when going into the area enclosed by the safety fence. In addition, the operator of the teaching operation must display the sign that the operation is being performed so that no other person closes the safety fence.
 – View the manipulator from the front whenever possible.
 – Always follow the predetermined operating procedure.
 – Always keep in mind emergency response measures against the manipulator's unexpected movement toward a person.
 – Ensure a safe place to retreat in case of emergency.
Failure to observe this instruction may cause improper or unintended movement of the manipulator, which may result in personal injury.

• Confirm that no person is present in the manipulator's operating range and that the operator is in a safe location before:
 – Turning ON the YRC1000micro power
 – Moving the manipulator by using the programming pendant
 – Running the system in the check mode
 – Performing automatic operations
Personal injury may result if a person enters the manipulator's operating range during operation. Immediately press an emergency stop button whenever there is a problem. The emergency stop button is located on the right of the programming pendant.

• Read and understand the Explanation of the Warning Labels before operating the manipulator.
DANGER

- In the case of not using the programming pendant, be sure to supply the emergency stop button on the equipment. Then before operating the manipulator, check to be sure that the servo power is turned OFF by pressing the emergency stop button. Connect the external emergency stop button to the 2-12 pin and 3-13 pin of the Safety connector (Safety).
- Upon shipment of the YRC1000micro, this signal is connected by a jumper cable in the dummy connector. To use the signal, make sure to supply a new connector, and then input it.

If the signal is input with the jumper cable connected, it does not function, which may result in personal injury or equipment damage.

WARNING

- Do not touch the inside of the controller cabinet for at least 5 minutes after turning the power off. Failure to observe this warning may result in electric shock or personal injury because of the residual voltage of the condenser.
- During power ON, do not touch the board. Failure to observe this warning may result in fire or electric shock.
- Perform the following inspection procedures prior to conducting manipulator teaching. If there is any problem, immediately take necessary steps to solve it, such as maintenance and repair.
 - Check for a problem in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.
- Return the programming pendant to a safe place after use.

If the programming pendant is left unattended on the manipulator, on a fixture, or on the floor, etc., the Enable Switch may be activated due to surface irregularities of where it is left, and the servo power may be turned ON. In addition, in case the operation of the manipulator starts, the manipulator or the tool may hit the programming pendant left unattended, which may result in personal injury and/or equipment damage.
- Wiring and installation must be performed by authorized or certified personnel.

Failure to observe this caution may result in fire or electric shock.
CAUTION

- Check to be sure that there is no foreign matter (metal piece, etc.) on the board.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Check to be sure that there is no problem (damage, bend, etc.) with the components of the board.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Connect the cables and connectors properly.
 Failure to observe this caution may result in fire or equipment failure.
- Make sure to properly perform the setting of the switches, etc.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Do not touch the solder surface of the board directly with a finger.
 Failure to observe this caution may result in personal injury because of solder projection, etc.

NOTICE

- Do not touch the component-mounting surface of the board directly with a finger.
 Failure to observe this caution may result in the failure of IC, etc. because of static electricity.
- Avoid shock on the board.
 Failure to observe this caution may result in the failure of the board.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the YRC1000micro controller, manipulator cables, the YRC1000micro programming pendant (optional), and the YRC1000micro programming pendant safety signal short circuit connector (optional).

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRC1000micro controller</td>
<td>YRC1000micro</td>
</tr>
<tr>
<td>YRC1000micro programming pendant</td>
<td>Programming pendant (optional)</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
<tr>
<td>YRC1000micro programming pendant safety signal short circuit connector</td>
<td>Programming pendant safety signal short circuit connector (optional)</td>
</tr>
</tbody>
</table>
Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td></td>
</tr>
<tr>
<td>Character Keys /Symbol Keys</td>
<td>The keys which have characters or symbols printed on them are denoted with [].</td>
</tr>
<tr>
<td></td>
<td>e.g. [ENTER]</td>
</tr>
<tr>
<td>Axis Keys /Numeric Keys</td>
<td>[Axis Key] and [Numeric Key] are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them, e.g. [SHIFT]+[COORD].</td>
</tr>
<tr>
<td>Mode Switch</td>
<td>Mode Switch can select three kinds of modes that are denoted as follows: REMOTE, PLAY or TEACH. (The switch names are denoted as symbols)</td>
</tr>
<tr>
<td>Button</td>
<td>The three buttons on the upper side of the programming pendant are denoted as follows: START, HOLD, or EMERGENCY STOP. (The button names are denoted as symbols)</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. e.g. {JOB}</td>
</tr>
</tbody>
</table>

![Diagram of the programming pendant with labeled keys and buttons](image-url)
Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • •” means that the cursor is moved to the object item and [SELECT] is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and ™ are omitted.
1 Outline .. 1-1
 1.1 System Configuration .. 1-1
2 Hardware Specifications ... 2-1
 2.1 Board External View .. 2-1
 2.2 Board Specifications .. 2-2
 2.3 Communication Specifications ... 2-2
3 Mounting the SST-PN-2-PE Board .. 3-1
4 I/O Signal Allocation .. 4-1
 4.1 Setting of the SST-PN-2-PE Board .. 4-1
 4.1.1 IO Controller Settings .. 4-1
 4.1.2 IO Device Settings ... 4-8
 4.2 Setting of Option Board and I/O Module ... 4-13
 4.3 Transmission Data ... 4-23
 4.3.1 YRC1000micro I/O Allocation example ... 4-24
 4.3.2 The Alarm when Communication Error Occurs Using the Board Status 4-26
5 Error Indication ... 5-1
This manual describes the PROFINET board SST-PN-2-PE (manufactured by Molex Inc.) to be used in the YRC1000micro.

The application of the SST-PN-2-PE board allows the general-purpose I/O data exchange between a PROFINET device and the YRC1000micro.

To configure the SST-PN-2-PE board, the setting tool made by Molex is required. Download the tool from the following Molex website.
https://www.molex.com/webdocs/mysst/setupPCT_Yaskawa.zip

1.1 System Configuration

The following diagram shows an example of the configuration of a system with an SST-PN-2-PE board used in PROFINET slave.

YRC1000micro Controller

PROFINET Cable

HUB

PROFINET IO Device

SST-PN-2-PE

External PLC (sequencer)

PROFINET IO Controller

The following diagram shows an example of the configuration of a system with an SST-PN-2-PE board used in PROFINET master.

YRC1000micro Controller

PROFINET Cable

HUB

PROFINET IO Controller

SST-PN-2-PE

PROFINET IO Device
The following diagram shows an example of the configuration of a system with an SST-PN-2-PE board used in PROFINET master and PROFINET slave simultaneously.
2 Hardware Specifications

2.1 Board External View

- System LEDs
- PROFINET CONNECTOR
2.2 Board Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface to the external device</td>
<td>PROFINET</td>
</tr>
<tr>
<td>Board mounting position</td>
<td>Option PCI Express slot on the YRC1000micro</td>
</tr>
<tr>
<td>Error indicator</td>
<td>LED display</td>
</tr>
<tr>
<td>Number of transmission I/O points</td>
<td>Maximum number of I/O points for SST-PN-2-PE:</td>
</tr>
<tr>
<td></td>
<td>Input: 1008 points; Output: 1008 points</td>
</tr>
</tbody>
</table>

Note on Transmission I/O Points

1. Input points and output points cannot be configured individually.

2. YRC1000micro has 1024 inputs and 1024 outputs prepared for the I/O board. Of these, 8 inputs and 8 outputs are pre-allocated. In addition, 8 I/O points per channel are required for SST-PN-2-PE communication status. The remaining number of I/O points are available for transmission.

3. Fewer I/O points may be available than the number listed above depending on the I/O allocation method configured with the setting tool for the SST-PN-2-PE board, conditions, and other factors.

2.3 Communication Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission speed</td>
<td>10Mbps/100Mbps</td>
</tr>
<tr>
<td>Transmission media</td>
<td>PROFINET cable</td>
</tr>
</tbody>
</table>
3 Mounting the SST-PN-2-PE Board

NOTE
Request a YASKAWA sales representative to mount the board inside the YRC1000micro.
The product warranty will be void if the customer mounts the board.
4 I/O Signal Allocation

4.1 Setting of the SST-PN-2-PE Board

To perform the SST-PN-2-PE board communication settings, it requires the setting tool made by Molex. This section explains the setting method using "Product Configuration Tool". Refer to the instruction manual of Product Configuration Tool for more information on the setting method.

4.1.1 IO Controller Settings

For using the SST-PN-2-PE as the IO controller, conduct the communication settings using Product Configuration Tool, and then write the settings to the SST-PNIO-2-PCIE.

1. Connect the PC with Product Configuration Tool installed to the SST-PN-2-PE with the PROFINET cable, and then turn ON the YRC1000micro.
2. Start Product Configuration Tool.
3. Select {File} – {New}, and then create a new project.
4. Select the IO controller type to be used. Select without IOXS. Press {OK} to create the project.
5. Select the IO controller to set from Configuration tree.
4. I/O Signal Allocation
4.1 Setting of the SST-PN-2-PE Board

6. Select the `{Identification}`.
 In the Communication Provider Settings field, select the network
 interface used for connecting the PC and the SST-PN-2-PE board.
 In the target IP Address, set the IP Address of SST-PN-2-PE board.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Parameters</th>
<th>MRP</th>
<th>Ports</th>
<th>Summary</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Provider Settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Interface:</td>
<td>192.168.1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target IP Address:</td>
<td>192.168.001.062</td>
<td></td>
<td></td>
<td></td>
<td>Detect Target</td>
</tr>
</tbody>
</table>

7. In the IP Configuration field, input the IP address, subnet mask, and
 gateway IP address to be set on the SST-PN-2-PE board.

IP Configuration					
Allow Commissioning Tool To Change IP					
Configuration Type	Static				
IP Address	192.168.001.070				
Sub-Network Mask	255.255.255.000				
Gateway IP Address	000.000.000.000				

8. In the Name Configuration field, set the device name of the SST-PN-2-PE board.

Name Configuration					
Allow Commissioning Tool To Change Name					
Target Name	ctl-oli				

9. In the Operating Mode field, check only IO Controller.
4. I/O Signal Allocation
4.1 Setting of the SST-PN-2-PE Board

10. Add the IO device as follows. From the Device Library, select IO-Device to be used, and then drag and drop it to the Configuration window.

When the target module cannot be found in the Device Library, press {Add GSDML} to add the module.
11. Click the added IO device icon to open the Identification window, and then enter the device name and the IP address assigned to the IO device.
12. Set the Sub-Modules to IO Device.
When you select Input Slot or Output Slot in the Configuration window, the available Sub-Modules are displayed. Make sure to set the Sub-Module to the IO Device according to the actual IO Device configuration.
4 I/O Signal Allocation
4.1 Setting of the SST-PN-2-PE Board

13. Select the Sub-Module and press {Add sub-module}.
 A sub module is added to the slot.

14. Download the configuration project to the SST-PN-2-PE board.
 Push {Download}.

15. Select "Binary only" for the download type and press {Start}.
16. Download is executed.

17. Download is finished. Push {OK}.

18. Continuously, refer to chapter 4.2 “Setting of Option Board and I/O Module”, and perform the settings of the SST-PN-2-PE.
4. I/O Signal Allocation

4.1 Setting of the SST-PN-2-PE Board

4.1.2 IO Device Settings

When using the SST-PN-2-PE as the IO Device, set the device name and the IP address for the SST-PN-2-PE.

1. Connect the PC with Product Configuration Tool installed to the SST-PN-2-PE with the PROFINET cable, and then turn ON the YRC1000micro.

2. Start Product Configuration Tool.

3. Select {File} – {New}, and then create a new project.

4. Select the IO device type to be used. Select without IOXS. Press {OK} to create the project.

5. Select the IO device from Configuration tree.

6. Select the {Identification}.
 In the Communication Provider Settings field, select the network interface used for connecting the PC and the SST-PN-2-PE board. In the target IP Address, set the IP Address of SST-PN-2-PE board.
7. In the IP Configuration field, input the IP address, subnet mask, and gateway IP address to be set on the SST-PN-2-PE board.

8. In the Name Configuration field, set the device name of the SST-PN-2-PE board.

9. In the Operating Mode field, check only the IO device.
10. Set the Sub-Modules.
When you select Input Slot or Output Slot in the Configuration window, the available Sub-Modules are displayed. Make sure to set the Sub-Module to the IO Device according to the actual IO Device configuration.
4 I/O Signal Allocation
4.1 Setting of the SST-PN-2-PE Board

11. Select the Sub-Module and press {Add sub-module).
 A sub module is added to the slot.

12. Download the configuration project to the SST-PN-2-PE board.
 Push {Download}.

13. Select "Binary only" for the download type and press {Start}.
4. I/O Signal Allocation

4.1 Setting of the SST-PN-2-PE Board

14. Download is executed.

15. Download is finished. Push {OK}.

16. Continuously, refer to chapter 4.2 “Setting of Option Board and I/O Module”, and perform the settings of the SST-PN-2-PE.
4.2 Setting of Option Board and I/O Module

In order to use the SST-PN-2-PE board in the YRC1000micro, perform the setting of the option board and I/O module in the following manner.

1. Turn ON the power supply while pressing {MAIN MENU}.
 - The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select {SYSTEM} under the main menu.
 - The sub menu appears.
4. Select \{SETUP\}.
 - The SETUP display appears.

5. Select “OPTION BOARD”.
 - The OPTION BOARD display appears.
4 I/O Signal Allocation
4.2 Setting of Option Board and I/O Module

6. Select “PN-2-PE”.

 – The PN-2-PE setup display appears.
 – Set the following items:
 • “PN-2-PE”: whether to use the PN-2-PE board or not
 • “IO SIZE”: the I/O size (byte)

 – Explanation of Setup Items
 (1) PN-2-PE
 Sets whether to use the SST-PN-2-PE board or not. Set “USED”.
 (2) IO SIZE (byte)
 Sets the I/O size (in byte) reserved for I/O.
 Set the I/O size that was allocated in chapter 4.1 “Setting of the SST-PN-2-PE Board”.

7. Press [ENTER].

 – The confirmation dialog box appears.
8. Select {YES}.

- The IO MODULE display appears. The message, "Select 'Safety Board FLASH Reset'." appears, however, do not perform 'Safety Board FLASH Reset' this time, but perform the settings continuously.

9. Press [ENTER].

- The rest of the IO MODULE display appears, and “PN-2-PE” is displayed.
- The I/O points is displayed under “DI/DO” according to the I/O size in bytes that is set on the “OPTION BOARD” display.

The DI/DO points can be found using the following equation:

\[
\text{DI/DO points} = (\text{IO size} \times 8) + 8
\]

"+ 8": the I/O points for status
4. I/O Signal Allocation
4.2 Setting of Option Board and I/O Module

10. Press [ENTER].
 – The confirmation dialog box appears.

11. Select {YES}.
 – Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

12. The EXTERNAL IO SETUP window appears.
13. Select “AUTO” or “MANUAL” in the ALLOCATION MODE.
 – The selection menu appears after selecting “AUTO” or “MANUAL”.

 ![Allocation Mode Selection](image)

 NOTE
 If the allocation mode is changed from "MANUAL" to "AUTO", the set allocation data is discarded. The data will be allocated by AUTO MODE again. Save the set allocation data to the external devices in advance, if needed.

14. Select the allocation mode to set up.
 – Select “AUTO” to allocate I/O signal allocation automatically. Select “MANUAL” to allocate I/O signal allocation manually.
 – The selected allocation mode is set up.

 ![Allocation Mode Selection](image)
15. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 – When select “AUTO”, the following procedures No.16 to 18 are not necessary. Operate the procedure from No.19.
 – When select “MANUAL”, operate the following procedures No.16 to 18 accordant with the setting manually.

16. Select the external I/O signal number (at the change source) to be changed. (In the setting example, select “#20030”.)
 – The select menu appears.
17. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, enter “#20190”.)

- The external input signal number is changed.

18. Likewise, select/modify the number of the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.

19. Press [ENTER].

- The allocation window of the external output signal appears.

20. Select/modify the number of the external output signal same as the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.
21. Press [ENTER].
 – Confirmation dialog appears.

22. Select {YES}.
 – The settings are confirmed, and returns to the SETUP window.

23. Set the security mode to the “SAFETY MODE”.
24. Select {FILE}- {INITIALIZE}.
 – The INITIALIZE window appears.
25. Select “Safety Board FLASH Reset”.
 – The confirmation dialog box appears.

26. Select {YES}.
 – The setting is completed after beep sound.
4.3 Transmission Data

The data to be transferred from the SST-PN-2-PE board to the inside of the YRC1000micro is not only the I/O data from the external device connected to the PROFINET, but also the status of the SST-PN-2-PE board.

Therefore, inside the YRC1000micro, 8 points (1 byte) each for input and output are reserved for the SST-PN-2-PE board status, besides the area for the digital data. The output area, however, cannot be used.

The transmission data from the SST-PN-2-PE board are allocated to the external I/O signals of concurrent I/O.

Where an SST-PN-2-PE board is mounted as an optional I/O board, the concurrent I/O allocation of the board is shown in the following table.

The I/O area: 20010 to 20017 and 30010 to 30017 is reserved for the standard I/O board of the YRC1000micro.

When the PROFINET communication is disconnected, the transmission data allocated for the concurrent I/O keeps the previous value. (The value is not cleared to 0.) However, when turning ON the YRC1000micro, the previous value is cleared to 0, not kept.

NOTE
4.3 Transmission Data

4.3.1 YRC1000micro I/O Allocation example

Note1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note2) As for the input data/output data of ASF30 (standard I/O), refer to "YRC1000micro INSTRUCTIONS (RE-CTO-A222)" for more details.

<table>
<thead>
<tr>
<th></th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASF30 (standard I/O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Input</td>
<td>External input signal</td>
<td>User input signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30010 to 30017</td>
<td>None (allocated on the system)</td>
<td>Output data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST-PN-2-PE (PROFINET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O Input</td>
<td>External input signal</td>
<td>User input signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20020 to 20027</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Board status ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20030 to 20037</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Input data (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20040 to 20047</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>Input data (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20050 to 20057</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>Input data (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060 to 20067</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>Input data (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20070 to 20077</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>Input data (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20080 to 20087</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>Input data (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20090 to 20097</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>Input data (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20100 to 20107</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>Input data (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20110 to 20117</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>Input data (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20120 to 20127</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>Input data (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20130 to 20137</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>Input data (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20140 to 20147</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>Input data (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20150 to 20157</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>Input data (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20160 to 20167</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>Input data (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20170 to 20177</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>Input data (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20180 to 20187</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>Input data (16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30020 to 30027</td>
<td>10020 to 10027 (OT0009 to OT0016)</td>
<td>Board status ¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30030 to 30037</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>Output data (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30040 to 30047</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>Output data (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30050 to 30057</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>Output data (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30060 to 30067</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>Output data (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30070 to 30077</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>Output data (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30080 to 30087</td>
<td>10080 to 10087 (OT0057 to OT0064)</td>
<td>Output data (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I/O Signal Allocation

4.3 Transmission Data

The status of the SST-PN-2-PE board (the first 8 points of the allocation area) is indicated as follows.

The value “xxx” of the allocated input signals in the table indicates the first number of the SST-PN-2-PE board allocated number. In the table above, where the allocation numbers are 20020 to 20027, “xxx” would be “002”.

1 Board status and system reservation cannot be allocated as IO signal. Also, this data is not able to transmit by PROFINET. (Unable to communicate with the main PLC.)

SST-PN-2-PE (PROFINET) I/O Output

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx3</td>
<td>Reserved for the manufacture. The user cannot use these signals.</td>
</tr>
<tr>
<td>2xxx4</td>
<td>Indicates the PROFINET communication through PROFINET IO Device mode. Normal: 0 Error: 1</td>
</tr>
<tr>
<td>2xxx5</td>
<td>Indicates if communicating with all the IO Device or not through PROFINET IO Controller mode. Communicating with all slaves: 0 Communicating with some slaves: 1</td>
</tr>
<tr>
<td>2xxx6</td>
<td>Indicates the PROFINET communication status. Normal: 0 Error: 1</td>
</tr>
<tr>
<td>2xxx7</td>
<td>Indicates the operation status of the SST-PN-2-PE board. Normal: 0 Error: 1</td>
</tr>
</tbody>
</table>
4.3.2 The Alarm when Communication Error Occurs Using the Board Status

When the SST-PN-2-PE board detects an error of the PROFINET communication, by using the CIO ladder program allows to occur the alarm.

The examples of the method are described below.

There are two alarms of the occurrence alarms.

- SST-PN-2-PE BOARD ERROR
- PROFINET COMMUNICATION ERROR

As for the user alarm registration, refer to “Chap. 13.7 I/O Messages and I/O Alarms” in "YRC1000micro OPTIONS INSTRUCTIONS FOR Concurrent I/O (RE-CKI-A469)” for more details.

■ Register the User Alarm

1. Change the security mode to the Management Mode.
2. Select the {I/O ALARM} from the {IN/OUT} in the main menu.
3. The I/O alarm (user) window appears.

4. Move the cursor over the desired No. to register, and press [SELECT].

- The window changes to the character string entry window.
4 I/O Signal Allocation
4.3 Transmission Data

5. Enter the I/O alarm name.

6. Press [ENTER].
 – The entered alarm is registered.

7. Register the other alarms.
 – Repeat the same procedures to register the alarm to use.
I/O Signal Allocation

4.3 Transmission Data

IO Allocation and the Ladder Program

External input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20026</td>
<td>PROFINET communication error</td>
</tr>
<tr>
<td>20027</td>
<td>SST-PN-2-PE board operation error</td>
</tr>
</tbody>
</table>

System input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40012</td>
<td>User alarm request</td>
</tr>
<tr>
<td>40220</td>
<td>User alarm code d0</td>
</tr>
<tr>
<td>40221</td>
<td>User alarm code d1</td>
</tr>
<tr>
<td>40222</td>
<td>User alarm code d2</td>
</tr>
<tr>
<td>40223</td>
<td>User alarm code d3</td>
</tr>
<tr>
<td>40224</td>
<td>User alarm code d4</td>
</tr>
<tr>
<td>40225</td>
<td>User alarm code d5</td>
</tr>
</tbody>
</table>

Assistant relay

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70017</td>
<td>Control power ON completed (Normality ON)</td>
</tr>
</tbody>
</table>
4.3 Transmission Data

The figure of the ladder
5 Error Indication

SST-PN-2-PE board is provided with LEDs for circuit board status indication. These LEDs indicate the following conditions.

1. SYS LED
2. NET LED
3. IRT LED (reserved)
4. SYNC LED (reserved)

<table>
<thead>
<tr>
<th>SYS</th>
<th>NET</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Card not running.</td>
</tr>
<tr>
<td>Green</td>
<td>Off</td>
<td>PROFINET protocol stack is stopped.</td>
</tr>
<tr>
<td>Green</td>
<td>Red blinking</td>
<td>Default PROFINET configuration.</td>
</tr>
<tr>
<td>Green</td>
<td>Green blinking</td>
<td>Card configured, but not connected to PROFINET devices/controller.</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>Card configured, connected to PROFINET devices/controller.</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Card is booting.</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Initialization internal error.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Turn OFF and ON the YRC1000micro main power to start the system again.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the connection of the SST-PN-2-PE board and the YRC1000micro PCI Express slot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace the SST-PN-2-PE board.</td>
</tr>
</tbody>
</table>
YRC1000micro OPTIONS
PROFINET COMMUNICATION FUNCTION INSTRUCTIONS
FOR SST-PN-2-PE MADE BY Molex, Inc.