Motoman XRC 2001 Controller

ArcWorld IV-6200M System Manual

Part Number: 149628-1
Release Date: June 16, 2004
Document Version: 1
Document Status: Final

Motoman, Incorporated
805 Liberty Lane
West Carrollton, OH 45449
TEL: (937) 847-6200
FAX: (937) 847-6277
24-Hour Service Hotline: (937) 847-3200
Table of Contents

Chapter 1

Introduction
1.1 About This Document .. 1
1.2 System Overview .. 2
 1.2.1 System Layout .. 4
 1.2.2 Major Components ... 4
 1.2.3 Optional Equipment .. 4
1.3 Reference to Other Documentation 5
1.4 Customer Service Information 5

Chapter 2

Safety .. 7
2.1 Introduction ... 7
2.2 Standard Conventions ... 8
2.3 General Safeguarding Tips 9
2.4 Mechanical Safety Devices 9
2.5 Installation Safety ... 10
2.6 Programming Safety .. 10
2.7 Operation Safety ... 11
2.8 Maintenance Safety ... 12

Chapter 3

Equipment Description 13
3.1 Robot Description ... 13
3.2 XRC 2001 Controller ... 13
 3.2.1 DR2C Conversion .. 14
 3.2.2 Top-Mount External Axis Cabinet 14
 3.2.3 Playback Panel .. 15
 3.2.4 Programming Pendant 17
3.3 Operator Station .. 20
3.4 MRM2-1200 M3X Positioner 22
3.5 Welding Equipment .. 23
 3.5.1 Power Sources .. 23
 3.5.2 Wire Feeder ... 25
 3.5.3 GMAW Torch ... 25
3.6 Safety Features .. 25
 3.6.1 Arc Screens ... 25
 3.6.2 Fencing .. 25
Chapter 4
Installation ... 29
 4.1 Materials Required 29
 4.1.1 Customer-Supplied Items 29
 4.1.2 List of Tools 30
 4.2 Site Preparation 30
 4.3 Shipping/Leveling Bolts 31
 4.4 Installing the Positioner 31
 4.5 Installing the Robot Common Base 34
 4.5.1 Installing the Controller Base 36
 4.5.2 Installing the Auxiliary Equipment Common Base 38
 4.6 Connecting the Cables 39
 4.6.1 Cable Routing 39
 4.6.2 Connecting the Earth Ground 40
 4.6.3 Connecting the Programming Pendant Cable 40
 4.6.4 Connecting the Welding Cables 40
 4.6.5 Connecting the Robot Cables 42
 4.6.6 Connecting the Positioner Cables 43
 4.6.7 Removing the Shipping Bracket 44
 4.7 Installing the Safety Light Curtains 45
 4.7.1 Installation 45
 4.8 Installing the Operator Station 47
 4.9 Connecting Power 47
 4.10 Conducting a Safety/Operation Check 48
 4.11 Installation of Tooling and Fixtures 48

Chapter 5
Operation ... 49
 5.1 Programming 49
 5.1.1 Sweeping the Positioner 50
 5.1.2 Rotating the Headstock 51
 5.1.3 Programming Specific Jobs 51
 5.2 Daily Operation 54
 5.2.1 Start-Up 54
 5.2.2 Safety Circuit Check 55
5.2.3 Robot Home Position ... 55
5.2.4 Selecting Weld Job (Initial Setup Only) 56
5.2.5 Starting the Master Job ... 56
5.2.6 Perform Operation Cycle ... 57
5.2.7 Shutdown ... 57
5.3 System Recovery ... 57
 5.3.1 Alarms and Errors .. 57
 5.3.2 E-STOP Recovery .. 58
 5.3.3 Shock Sensor Recovery .. 59

Chapter 6
Maintenance ... 61
Notes
Chapter 1

Introduction

The ArcWorld IV-6200M system is part of the ArcWorld family of standardized arc welding solutions. It is a fully integrated welding system, and is supported from wire to weld by Motoman, Inc.

The ArcWorld IV-6200M cell features two EA1400 arc welding robots, two XRC 2001 controllers with menu-driven arc welding application software, two complete welding packages, a 180-degree reciprocating plane positioner with two orbital servo axes, operator interface, and total safety environment. The DR2C can be reconfigured from the dual robot system into two separate robotic systems with independent control (see Motoman DR2C Conversion Instructions, XRC 2001 (P/N 146823-1). For more information, please call the Motoman service staff at (937) 847-3200.

1.1 About This Document

This manual is intended as an introduction and overview for personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman robot model. For more detailed information, refer to the manuals listed in Section 1.3. This manual contains the following sections:

SECTION 1 - INTRODUCTION
This section provides general information about the ArcWorld IV-6200M and its components, a list of reference documents, and customer service information.

SECTION 2 - SAFETY
This section provides information regarding the safe use and operation of the ArcWorld IV-6200M system.

SECTION 3 - DESCRIPTION OF EQUIPMENT
This section provides a detailed description of the major components of the ArcWorld IV-6200M system. This section also includes a table of component specifications.

SECTION 4 - INSTALLATION
This section provides instructions for set up and installation of the ArcWorld IV-6200M system.
SECTION 5 - OPERATION
This section provides instructions for basic operation of the ArcWorld IV-6200M system. This section also provides procedures for start-up, loading, normal operation, fault recovery, and shutdown. Sample robot programs are also included in this section.

SECTION 6 - MAINTENANCE
This section contains a table listing periodic maintenance requirements for the components of the ArcWorld IV-6200M cell.

1.2 System Overview

The ArcWorld IV-6200M provides a complete arc welding solution in a standardized configuration. The system is designed around two Motoman arc welding robots, two XRC 2001 controllers functioning as one, and includes two complete welding packages. A ferris-wheel type reciprocating positioner with two orbital axes, capable of rotation in conjunction with the primary axis (trunion) allows an operator to prepare and set up parts on one side while the robot welds on the other side. The cell provides a full complement of safety features designed to protect both personnel and equipment. The dual robots are controlled from a single controller for programming simplicity. Single programming pendant operation simplifies programming and provides a single point of control for all axes as required by ANSI/RIA R15.06-1999.

Figure 1-1 illustrates the system layout of the ArcWorld IV-6200M cell.
Figure 1 System Layout

Note: This manual is for a standard Motoman system. If your system is a custom or modified system, please use the drawings and Bill of Material (BOM) provided with your system for troubleshooting and spares provisioning.
1.2.1 System Layout

The robot manipulators and positioner are mounted to a common programming platform. The XRC 2001 controllers and welding power sources share a common base and are located at the side of the cell. The robotic cell is fully enclosed by safety fencing and an interlocking door located at the rear of the workcell. Light curtains provide a safety zone to prevent the positioner from cycling while anyone is standing within the zone. All operator controls, including those on the controllers and welding power supplies, are accessible from outside the robotic enclosure.

1.2.2 Major Components

The ArcWorld IV-6200M includes the following major components:

- Two Motoman EA1400 manipulators and XRC 2001 controllers
- MRM2-1200M3X positioner
- Operator station
- Welding equipment, including the following:
 - Welding power sources
 - Motoman torches (water-cooled or air-cooled)
 - Wire feeders
 - Applicable welding interface
 - Torch mounts
- Safety equipment, including the following:
 - Safety fencing with arc curtains
 - Interlocked light curtains
 - Interlocked cell door
 - Positioner arc screen

1.2.3 Optional Equipment

The following optional equipment is available for use with the ArcWorld IV-6200M:

- Torch tender
- Wire cutter
- Com-Arc III seam tracking unit
- Water circulator
- Touch Sense-Starting Point detection unit
1.3 Reference to Other Documentation

For additional information refer to the following:

- Motoman EA1400 Manipulator Manual (P/N 148362-1)
- Motoman Operator's Manual for Arc Welding (P/N 142098-1)
- Motoman Concurrent I/O Parameter Manual (P/N 147626-1)
- Motoman MRM2-1200 M3X Positioner Manual (PN 149286-1)
- Vendor manuals for system components not manufactured by Motoman

1.4 Customer Service Information

If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:

- Robot Type (EA1400N)
- Application Type (welding)
- System Type (ArcWorld IV-6200M)
- Software Version (3.74A)
- Robot Serial Number (located on back side of robot arm)
- Robot Sales Order Number (located on front door of controller)
Notes
Chapter 2
Safety

2.1 Introduction

It is the purchaser’s responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. The robot must not be operated by personnel who have not been trained!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety section addresses the following:

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming Safety (Section 2.6)
- Operation Safety (Section 2.7)
- Maintenance Safety (Section 2.8)

2.2 **Standard Conventions**

This manual includes information essential to the safety of personnel and equipment. As you read through this manual, be alert to the four signal words:

DANGER!

WARNING!

CAUTION!

NOTE:

Pay particular attention to the information provided under these headings which are defined below (in descending order of severity).

⚠️ **DANGER!**

Information appearing under the DANGER caption concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

⚠️ **WARNING!**

Information appearing under the WARNING caption concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

⚠️ **CAUTION!**

Information appearing under the CAUTION caption concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

🔍 **Note:** Information appearing in a Note caption provides additional information which is helpful in understanding the item being explained.
2.3 **General Safeguarding Tips**

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06, section 6.13.4 and 6.13.5, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 **Mechanical Safety Devices**

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety measures are available:

- Safety fences and barriers
- Light curtains
- Door interlocks
- Safety mats
- Floor markings
- Warning lights

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 Programming Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Programming tips are as follows:

Any modifications to PART 1 of the controller PLC can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!

Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.

Back up all programs and jobs onto a floppy disk whenever program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.

The concurrent I/O (Input and Output) function allows the customer to modify the internal ladder inputs and outputs for maximum robot performance. Great care must be taken when making these modifications. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations that may damage the robot or other parts of the system.

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Be sure that all safeguards are in place.
• Check the E-STOP button on the teach pendant for proper operation before programming.
• Carry the teach pendant with you when you enter the workcell.
• Be sure that only the person holding the teach pendant enters the workcell.
• Test any new or modified program at low speed for at least one full cycle.

2.7 Operation Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Operation tips are as follows:

• Be sure that only trained personnel familiar with the operation of this robot, the operator’s manuals, the system equipment, and options and accessories are permitted to operate this robot system.
• Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
• Inspect the robot and work envelope to ensure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Ensure that all safeguards are in place.
• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
• The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
• All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
2.8 Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Maintenance tips are as follows:

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
- Back up all your programs and jobs onto a floppy disk whenever program changes are made. A backup must always be made before any servicing or changes are made to options, accessories, or equipment to avoid loss of information, programs, or jobs.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Be sure all safeguards are in place.
- Use proper replacement parts.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Chapter 3

Equipment Description

3.1 Robot Description

The Motoman six-axis EA1400 “Expert Arc” robot is specifically designed for arc welding applications. The robot payload is 3 kg (6.6 lbs.) and it features a horizontal reach of 1388-mm (54.6 inch) and a relative positioning accuracy of ±0.08 mm (±0.003 inch). The EA1400 has a patented internal cabling design that provides high flexibility and streamlines the robot profile, allowing access into confined spaces. The robot’s B-axis features an expanded range of motion which improves circumferential welding on cylindrical workpieces. The T-axis can rotate the torch ±360 degrees without cable interference.

The robot can reach below its own base as well as behind itself and can be mounted on the floor, wall, or ceiling with few modifications. However, the S-axis has been restricted by hardstops for use in this system. For more information, refer to the manipulator manual that came with your system.

3.2 XRC 2001 Controller

The DR2C (dual robot, two controller) XRC 2001 robotic controllers, shown in Figure 2, features dual-channel safety circuitry. The controller coordinates the operation of the ArcWorld IV-6200M system and is configured so that one controller directs the action of both robots, designated as Robot 1 (R1), and Robot 2 (R2). The R1 controller coordinates the operation of the entire cell and delegates tasks to both robots. The welders (Welder 1, and Welder 2) and positioner are also controlled by the R1 controller. The R1 controller controls manipulator movement, processes input and output signals, and provides the signals to operate the welding system. It maintains variable data and performs numeric processing to convert to and from different coordinate systems. In addition, the controller provides the following: main logic functions, servo control, program and constant data memory, and power distribution. The R2 slave controller contain servo amplifier hardware that is also controlled by the R1 controller. For more information, refer to the manipulator manual that came with your system.
3.2.1 DR2C Conversion

The DR2C can be reconfigured from the dual robot system, with the Master XRC 2001 controlling system operation, to two separate robotic systems with independent control (see Motoman DR2C Conversion Instructions, XRC 2001 P/N 146822-1). For more information, please call the Motoman service staff at (937) 847-3200.

3.2.2 Top-Mount External Axis Cabinet

The external axis cabinet on the R1 controller contains the amplifiers and converters for the servo motors on the positioner. See Figure 3 for external axis cabinet components.

Figure 2 DR2C XRC 2001 Controller
Figure 3 External Axis Cabinet Components

3.2.3 Playback Panel

The playback panel (see Figure 4) contains the primary system controls and consists of the features described below. For more information, refer to the manipulator manual that came with your system.
Figure 4 XRC 2001 Playback Panel

Servo On Ready
The SERVO ON READY pushbutton turns servo power ON. The switch illuminates when servo power is on. In TEACH mode, the SERVO ON READY pushbutton operates only when the TEACH LOCK button on the programming pendant is ON and the ENABLE switch on the programming pendant is held in.

Mode Buttons – Play/Teach
The Mode pushbuttons (PLAY, TEACH and REMOTE) set the robot's mode of operation.

Note: Changing modes from PLAY to TEACH, during playback, will cause the program to cease execution (similar to HOLD); to resume operation, press PLAY and then START.

Alarm
The ALARM indicator light illuminates whenever an alarm or error condition occurs.

Emergency Stop (E-STOP)
The E-STOP button on the playback panel is connected in series with the system Emergency Stop circuit. Pressing E-STOP ceases all system operation.

Start
Pressing the START button while in PLAY mode with servo power on, causes playback execution of the current job to begin.

Hold
The HOLD button is a normally closed, momentarily actuated switch. Pressing HOLD halts operation of the manipulator until another Start signal is sent.

Edit Lock
The EDIT LOCK key switch, when turned on, prevents editing of system/controller files and programs. The operator is limited to only viewing files and jogging the robot axes.

The EDIT LOCK key can only be removed from the lock when it is in the ON position. The key is placed in the Read Me First packet on the side of the R1 controller, for shipping purposes.

Remote
The REMOTE pushbutton transfers primary control of the cell from the controller to the operator station (see Section 3.3). Programming pendant functions, except for E-STOP, are disabled while in REMOTE mode. The REMOTE pushbutton illuminates when activated.

3.2.4 Programming Pendant

The programming pendant (see Figure 5) is the primary user interface for the system. The pendant has a 4x5-inch 12-line, 40-character LCD display and keypad. The system uses the INFORM II robot language and a menu-driven interface to simplify operator interaction with the robot. By using the pendant, the operator can teach robot motion, and perform programming, editing, maintenance, and diagnostic functions. The programming pendant consists of the items described below. For more information, refer to the manipulator manual that came with your system.

Note: The programming pendant display goes dark after a few minutes of inactivity. Press any key to restore screen.

![Programming Pendant Diagram](image)

Figure 5 Programming Pendant

General Purpose Display Area
The General Purpose Display Area displays the currently selected menu choice.

Menu Area
The Menu Area contains menu selections for the currently selected screen.
Emergency Stop (E-STOP)
The E-STOP button on the programming pendant is connected in series with the system Emergency Stop circuit. Pressing the E-STOP button interrupts this circuit and stops all system operation.

Keypad
The user keypad on the programming pendant serves as an input device. The keys are grouped into different functional sections to simplify operator use.

Status Area
The Status Area shows system status via the following symbols:

- Active Robot, External Axis, or Base Axis
 R1, R2, R3; S1, S2, etc.; or B1, B2, etc.
- Coordinate System
 Joint, World, Cylindrical, Tool, or User Frame
- Manual Speed Setting
 Inch, Foot, Low, Medium, or High
- Cycle Mode
 Step, 1-Cycle, or Auto
- System Status
 E-Stop, Stop, Running/Start, Hold, or Alarm
- Additional Pages (when applicable)

MAIN MENU Key
The MAIN MENU key returns the pendant display to the initial start-up menu. The cursor key can then be used to choose from the following menu icons:

- JOB
 This icon accesses job selections including: Master Job, Select Job, Job Capacity, and Create New Job while in TEACH mode.
- ARC WELDING, GENERAL, HANDLING, and SPOT WELDING
 This icon allows you to select the applications available to the controller.
- VARIABLE
 This icon accesses the display and editing menu for the arithmetic variables and display of position variables.
- IN/OUT
 This icon accesses DETAIL and SIMPLE displays of all XRC I/O signals. In EDITING or MAINT. mode, Universal Outputs can be forced ON or OFF.
- ROBOT
 This icon accesses robot information including: CURR.POS, POWER ON/OFF, POS, COMMAND POS, SECOND HOME POS, OPE ORIGIN POS, and TOOL and USER COORDINATE.
• SYSTEM INFO

This icon provides Version information for both hardware and software, Alarm History, and Monitoring Time.

Area Key
The Area key moves the cursor to the different areas of the display screen.

Cursor Key
The Cursor key is an 8-way, directional key that moves the up, down, left or right to highlight a desired item that can then be chosen using the SELECT key.

SELECT Key
The SELECT key is used to choose the item currently highlighted by the cursor.

TEACH LOCK Key
The TEACH LOCK key locks operation of the robot with the programming pendant. Operation is not possible from the operator station. Servo power can not be applied in TEACH mode unless TEACH LOCK is ON.

RS-232C Serial Port
This 9-pin serial port is used for data communication between the XRC controller and a floppy disk controller (FC1 or FC2), FDE (Floppy Disk Emulator) software, or other form of communication (see Figure 6).

![RS-232C Serial Port](image)

Figure 6 RS-232C Serial Port

ENABLE Switch
The ENABLE switch (see Figure 7) is a three-position switch located on the left rear of the programming pendant. It is a safety feature that controls servo power while in TEACH mode. When pressed in, this switch enables servo power to be turned on. However, should the operator release the switch, or grasp it too tightly, servo power is immediately disabled, preventing further robot movement.
3.3 Operator Station

The operator station (see Figure 8) includes a NEMA enclosure on a stand-alone pedestal. The following paragraphs describe the operator station controls.

![Operator Station Diagram]

Figure 8 Operator Station

Cycle Start/Cycle Latched

The operation of the CYCLE START/CYCLE LATCHED button is dependent on the structure of the Master job. Altering the Master job could result in injury to personnel or damage to the equipment. The green CYCLE START/CYCLE LATCHED button, located on the operator station, initiates a positioner sweep cycle if the robot is in the Safe or Home position (Cube 24). If the CYCLE START/CYCLE LATCHED button is pressed while the robot is outside Cube 24, the CYCLE START command is latched into the controller. Once the robot returns to Cube 24 and Output #1 is on, the CYCLE START command is executed and the positioner sweeps. A pulse instruction prevents the operator from holding the button down and continuously cycling the positioner.
Emergency Stop (E-STOP)
Pressing an E-STOP button or interrupting a door interlock stops all system operation. The operator station E-STOP, the robot E-STOP, and the sliding door interlocks are connected to a safety PLC and the Emergency Stop circuit. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped.

Robot Hold
The ROBOT HOLD button is a normally closed, momentarily actuated switch. Pressing ROBOT HOLD stops the operation of the manipulator until another START signal is sent. The indicator light stays ON only while the ROBOT HOLD button is pressed. Operation resumes at the point in the program where the ROBOT HOLD state was initiated. Refer to the manipulator manual for more information.

Alarm
The ALARM lamp is connected to the robot SERVO ON and ALARM OCCURRENCE outputs. The ALARM lamp lights red when the robot encounters an alarm condition or when servo power is cut.

Positioner Auto/Manual
The POSITIONER AUTO/MANUAL selector switch is used to select AUTOMATIC or MANUAL mode for the positioner. The selector switch is connected to robot Input #2. When the selector switch is in the AUTOMATIC position, the robot processes the part after the positioner sweeps. In MANUAL mode, the robot does not process the part after the positioner sweeps, but remains in the Safe position.

Note: The Positioner Auto/Manual command is dependent on the structure of the Master job.

Start
The START button is connected to the robot external start input. The robot will start the current active job when START is pressed. The operator station must be enabled and servo power ON for the START button to work.

Operator Station Enable/Disable
The OPERATOR STATION ENABLE/DISABLE selector switch transfers primary control of the ArcWorld cell from the controller to operator station.

Reset
The RESET button is connected to the robot alarm reset input. A minor alarm or error condition is cleared when this button is pressed. The positioner only needs to be reset after initial power-up and after an emergency stop while in Play mode.

Note: Resetting the positioner may cause some positioner motion. You must be careful when you reset the positioner with the robot close to tooling. If an Emergency Stop occurs during programming, be sure to reset the positioner before resuming programming.

Servo On
The SERVO-ON pushbutton turns servo power ON. In TEACH mode, the SERVO ON pushbutton operates only when the ENABLE switch on the programming pendant is held in.
3.4 MRM2-1200 M3X Positioner

The MRM2-1200 M3X positioner uses a reciprocating motion that sweeps each side of the “ferris wheel” type positioner from the operator’s loading zone, into the robot’s work zone, and back to the operator again. A metal arc screen divides the positioner into two work areas labeled Side A and Side B. When Side A is in the robot’s welding zone, Side B is facing the operator and ready to be loaded or unloaded with parts, and vice versa. Loading fixtures are supplied by the customer. For positioner specifications, refer to Table 4. Refer to the positioner manual for maintenance procedures.

The ArcWorld IV-6200M system is capable of synchronized motion between various components depending on the job configuration. Synchronized robots move at the same time during operation. R1 can be synchronized with the positioner; R2 can be synchronized with the positioner; and R1 can be synchronized with R2. Dual robots can work simultaneously on a rotating workpiece if the tasks are symmetrical.

Note: In high humidity areas, use surface protection to prevent corrosion of the tooling plates.

Table 4 Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model P/N</td>
<td>148706-1</td>
</tr>
<tr>
<td>Rated Payload</td>
<td>2x 1200 kg</td>
</tr>
<tr>
<td>Load Height (from floor to centerline)</td>
<td>910 mm</td>
</tr>
<tr>
<td>Programming Height</td>
<td>1141 mm</td>
</tr>
<tr>
<td>Max Cg Offset</td>
<td>76 mm</td>
</tr>
<tr>
<td>Max. Load Imbalance (Side A vs. Side B)</td>
<td>300 kg</td>
</tr>
<tr>
<td>Number of Motors</td>
<td>3</td>
</tr>
<tr>
<td>Index Motor Power</td>
<td>4.5 kW</td>
</tr>
<tr>
<td>Tooling Motor Power</td>
<td>2.2 kW</td>
</tr>
<tr>
<td>Side A to Side B Sweep Time</td>
<td>3.25 seconds</td>
</tr>
<tr>
<td>Index Axis Speed</td>
<td>0-12.8 rpm</td>
</tr>
<tr>
<td>Index Torque</td>
<td>5800 N•m</td>
</tr>
<tr>
<td>Tooling Index Time</td>
<td>2.25 seconds</td>
</tr>
<tr>
<td>Tooling Axis Speed</td>
<td>0-20.7 rpm</td>
</tr>
<tr>
<td>Tooling Torque</td>
<td>895 N•m</td>
</tr>
<tr>
<td>Total Index Time</td>
<td>3.25 seconds</td>
</tr>
<tr>
<td>Maximum Fixture Diameter</td>
<td>13002 mm</td>
</tr>
<tr>
<td>Standard Fixture Length</td>
<td>3000 mm</td>
</tr>
<tr>
<td>Position Accuracy</td>
<td>+/- 0.1 mm</td>
</tr>
<tr>
<td>Standard Tooling Air Size</td>
<td>2 x 10 mm ID</td>
</tr>
</tbody>
</table>
Table 4 Technical Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model P/N</td>
<td>148706-1</td>
</tr>
<tr>
<td>Standard Tooling Air Location</td>
<td>Headstock</td>
</tr>
<tr>
<td>E-Stop Time</td>
<td>0.3163 seconds</td>
</tr>
<tr>
<td>E-Stop Angle</td>
<td>14.24 degrees</td>
</tr>
<tr>
<td>Tooling Axis Weld Ground Capacity (100% Duty Cycle)</td>
<td>1200 Amps</td>
</tr>
<tr>
<td>Positioner Weight</td>
<td>4100 kg</td>
</tr>
</tbody>
</table>

1. Signal-to-signal time for 180 degrees of tool rotation.
2. Includes Side A to Side B Sweep time plus the Tooling Index time.
3. The fixture diameter of the side that sweeps under is limited to 450 mm in depth to clear the floor. This results in a “D” shaped tooling envelope.
4. Pin to pin dimension is 2920 +/- 7.5 mm
5. The tooling axis weld ground capacity can be increased to 1600 Amps with 149291-1 Block Kit.

For additional information on independent control and coordinated motion, refer to the Independent/Coordinated Function manual (Part Number 142969-1). This system is also capable of true coordinated motion, where linear, circular, or spline motion can be coordinated between R1 and the positioner, between R2 and the positioner, and between R1 and R2. Coordinated motion allows the robots to weld while the positioner rotates the parts. For additional information on coordinated motion, refer to the Coordinated Motion for Multi-Axes Systems manual (Part Number 139418-1)

3.5 Welding Equipment

In its standard configuration, the ArcWorld system includes two welding power sources, wire feeders, torches, and torch mounts. Optional equipment - including water circulators, Com-Arc units, and torch tenders - may also be included with your system.

3.5.1 Power Sources

Motoman offers several different power sources for use with the ArcWorld IV-6200M system, depending the system’s application. Figure 9 shows some of the more common power sources used. However, the power source your system uses may be different. For more specific information, refer to the vendor manual that came with your system.
Figure 9 Available Power Sources
3.5.2 Wire Feeder

The wire feeder mounts on the robot arm. This 4-roll wire feeder provides reliable wire feeding at rates up to 750 inches per minute (ipm). An integral gas valve provides fast gas response time. The wire feeder has an inch forward button to help simplify set-up and reduce change-over time. Interchangeable feed rolls are used to accommodate different types and sizes of wire. A Shock Sensor Override switch located on the front of the feeder is used to recover from torch impact.

3.5.3 GMAW Torch

The ArcWorld system uses either an air-cooled or a water-cooled robotic/automatic GMAW torch. These are heavy-duty torches designed for quick replacement and minimum robot reprogramming. The GMAW torch is installed at the end of the robot wrist. For applications that use the water-cooled torch, the ArcWorld system includes a water circulator kit.

3.6 Safety Features

The ArcWorld system includes a total safety environment. When all standard safety precautions are taken, the safety equipment helps to ensure safe operation of the robotic cell. The ANSI/RIA R15.06-1999 Robot Safety Standard stipulates the user is responsible for safeguarding.

\[\text{Note: Users are responsible for determining whether the provided safeguards are adequate for plant conditions. Users must also ensure that safeguards are maintained in working order.}\]

3.6.1 Arc Screens

\[\text{WARNING!}\]

\[\text{Although the arc curtain blocks dangerous arc radiation, never look directly at the arc without protective eyewear!}\]

Two arc screens are used on the ArcWorld system. The first is a metal arc screen on the positioner. This screen blocks arc radiation and sparks from the welding operation.

The material used to cover the safety fencing of the entire robotic cell acts as the second arc screen. This material reduces the amount of ultra-violet radiation that escapes from the robotic cell.

3.6.2 Fencing

The safety fencing provided with the ArcWorld system encloses the entire robotic cell. It forms a physical barrier preventing entry into the robot operating envelope during automatic operation.
3.6.3 Safety Light Curtains

The safety light curtains help prevent serious injury to anyone entering the positioner area during the sweeping process. In PLAY mode, if the positioner is sweeping and a safety light curtain is activated, servo power is removed from the system and all positioner motion stops. Servo power can be reapplied by pressing SERVO ON. However, the positioner will only continue its motion after it is reset by pressing the reset button on the operator station.

If the positioner is not in motion but the CYCLE START input has been latched (indicated by the CYCLE LATCHED light), the CYCLE START input is unlatched and the CYCLE LATCHED light turns off when the safety light curtain is activated. Servo power remains ON.

3.6.4 Emergency Stops (E-STOPS)

In addition to the safety features described above, the ArcWorld IV-6200M has strategically placed E-STOPS. These are operator actuated devices that, when activated, immediately stop all system operation. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped. The following is a list of their locations:

- The playback box on the controller
- The programming pendant
- The operator station

3.6.5 ENABLE Switch

The ENABLE switch is a safety feature which controls servo power while in TEACH mode. When pressed in, this switch allows the operator to turn servo power ON and initializes the system. However, should the operator release the switch or grasp it too tightly, servo power is immediately disabled, preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the controller manual that came with your system.

3.6.6 Interlocked Cell Door

A safety interlock on the cell entrance door prevents entry into the cell during PLAY mode. Opening the cell door with the robot in PLAY causes a Gate Interlock Error. Brakes are applied to the robot and all servo power is removed from the system, the E-Stop lights come on, and all positioner motion is stopped.
3.6.7 Interference Cubes

Cubic interference zones prevent interference between multiple manipulators or a manipulator and peripheral devices. The controller monitors the robot tool center point (TCP) during operation. If the TCP enters one of the these software-defined interference zones, an output is turned on in the XRC. These outputs can be used to interlock the activity of other manipulators or peripheral devices. The controller has eight possible cubes available. These cubes are internally tied to the following Specified Outputs:

R1 = SOUT #081 - 104

The ArcWorld IV-6200M uses interference cubes to interlock robot position with positioner motion. The robot Home or Safe position (Cube 24) is defined behind the positioner, clear of the sweep zone. Each axis is placed in a position that provides the least amount of strain on the servo motors, with the U- and L- axes at 90 degree angles and the B axis in a relaxed, vertical position. This prevents drifting when servo power is off. Before the positioner can sweep, the robot must be in this safe position.

3.7 Brake Release

WARNING!

Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.

The Brake Release Control is a safety feature that releases the automatic brakes on the robot in case of an emergency or robot failure. The Brake Release Control is mounted on the front of the XRC controller cabinet (see Figure 2). Refer to Operation Section for the proper operation of the brake release.
Notes
Chapter 4

Installation

The ArcWorld IV-6200M system can be installed easily in just a short time by three workers. The more people involved (within reason), the more quickly installation can be completed. Follow established safety procedures at all times throughout the installation process. Failure to use safe work practices can result in damage to the equipment and injury to the workers.

⚠️ CAUTION!
Installation of the ArcWorld system is not a task for the novice. The ArcWorld system is not fragile, but it is a highly sophisticated robotic system. Handle components with care. Rough handling can damage system electronic components.

4.1 Materials Required

All system hardware necessary for installing the ArcWorld IV-6200M system is included with the system. This section identifies customer-supplied items and tools required to complete installation.

4.1.1 Customer-Supplied Items

- Gas for welding torches
- Incoming power
- Two earth ground cables with two earth ground stakes
- Weld wire
- Incoming air supply: 0.04cm³ at 620.5 kPa (1.5scfm at 90 psi) for torch tender or wire cutter options
- Stepladder
- Forklift and/or overhead crane
4.1.2 List of Tools

- Safety glasses
- Face shields
- Gloves
- Level
- Ratchet with 3/4-inch socket
- Adjustable wrench set
- Hammer drill with appropriate concrete bits
- Phillips and flat screwdrivers
- Hammer
- Socket set
- Forklift and/or overhead crane
- Air-impact gun with 3/4-inch socket
- Open-end wrench set
- Two socket-heads (Allen)
- Wrench sets (standard and metric)

4.2 Site Preparation

To prepare your site, proceed as follows:

1. Clear floor space needed for unit (see Figure 10).

 Note: To make installation easier, allow an additional 1.2 to 1.5 m (4 to 5 ft) on all sides of cell.

 ![Figure 10 Area Needed for Installation](image)

2. Gather all customer-supplied items and required tools listed in Section 4.1.
4.3 Shipping/Leveling Bolts

Components of the ArcWorld IV-6300 XHD TR3C cell are secured to wood boards or shipping skids with multiple shipping/leveling bolts (see Figure 11). Once the shipping bolts are removed, the leveling bolts are maintained to level the component before anchoring. Figure 12 shows factory-supplied anchors (with nuts/washers) used to anchor components to concrete floor.

![Figure 11: Shipping/Leveling Bolts](image)

4.4 Installing the Positioner

The positioner should be firmly mounted on a base plate or foundation rigid enough to support the positioner and withstand repulsion forces. The surface of the floor should be level and even. If it is uneven, grind the swell and flatten the surface. The concrete thickness of the floor must be at least 150 mm.

WARNING!
The positioner weighs 4100 kg (9038 lbs). Make sure lifting devices used to move the positioner are capable of safely handling this much weight, or damage to equipment or injury to personnel can result.
1. Move the positioner in place for operation.
2. Insert an M20 concrete drill bit through the primary anchor bolt holes on each end of
 the positioner and drill holes (at least four inches deep into concrete) for anchor bolts.
3. Anchor the primary bolt locations using four M20 or 3/4-inch anchor bolts.

Note: It is important that both the headstock and tailstock are anchored to the floor prior to the removal
of the shipping brackets. This prevents misalignment between the headstock and tailstock.

Figure 13 Positioner Anchor Locations

4. Use a M24 socket/wrench to remove the eight screws securing the shipping bracket
to the positioner.
5. Remove shipping bracket.

Note: Positioner shipping bracket are required to move the positioner. Be sure to keep the positioner shipping brackets for future use.

6. Insert an M20 concrete drill bit through the secondary anchor bolt holes on each end of the positioner and drill holes (at least four inches deep into concrete) for anchor bolts.

7. Anchor the secondary bolt locations using eight M20 or 3/4-inch anchor bolts.

8. Using an M36 socket to turn each leveling bolt, stabilize the positioner.

Note: The MRM2-1200 S3X positioner does not require leveling. The leveling bolts are designed to eliminate instability or “rock” caused by imperfections in the mounting surface.
4.5 Installing the Robot Common Base

⚠️ DANGER!
The robot common base weighs 1630 kg (3593.6 lbs). Be sure that your lifting device is capable of handling this much weight or damage to the equipment or injury to personnel can result.

![Diagram of robot common base installation](image)

Figure 15 Robot Common Base Installation
1. Using a forklift, place the robot common base in position as shown in system prints.
2. Fasten spanners to the positioner and robot common base using the hardware provided.

WARNING!
Metal bands are under tension and, when cut, may cause injury. Be cautious when cutting the metal bands.

3. Cut bands securing the floor cover plate and remove it from the robot common base. The cover plate will be replaced after cables have been routed beneath the common base and programming platform.
4. Using an M36 socket to turn each leveling bolt, level the robot common base.

![Diagram of robot common base with shipping/lagging/leveling bolt locations](image)

Figure 16 Robot Common Base Leveling Points

5. Insert a 1/2-inch concrete drill bit through the center of each leveling bolt (see Figure 12) and drill holes (at least four inches deep into concrete) for anchor bolts.
6. Vacuum concrete dust from holes.
7. Prepare a 1/2-inch anchor (factory-supplied) with accompanying washer and nut (see Figure 16) for each anchor location.
8. Using a hammer, drive an anchor into each drilled hole until the washer stops at leveling bolt.
9. Using a 3/4-inch wrench, tighten the nut (clockwise) on each anchor until tight.
10. Carefully remove protective plastic wrapping from robots and torches.
11. Inspect robots, torches, and positioner for shipping damage.

Note: If damage is found, notify shipper immediately.
4.5.1 Installing the Controller Base

The controller base contains the two controllers and main service disconnect. The base is shipped on wood blocks. To install the controller base, proceed as follows:

1. Unbolt the controller base by removing four shipping bolts using a 3/4-inch socket.

![DIAGRAM OF UNBOLTING CONTROLLER BASE]

Figure 17 Unbolting Controller Base

WARNING!

The controller base weighs 1600 kg (3520 lbs). Be sure that your lifting device is capable of handling this much weight or damage to the equipment or injury to personnel can result.

2. Carefully remove plastic wrapping and cardboard from controller base.
3. Inspect base components for any shipping damage.

Note: If damage is found, notify shipper immediately.

4. Using a forklift, lift the controller base and remove both wood blocks.
5. Using the dimensions in Figure 18, place the controller base next to the robot common base closest to the positioner headstock.
Figure 18 Controller Base Location

6. Insert a 1/2-inch concrete drill bit through the center of each mounting hole and drill holes (at least four inches deep into concrete) for anchors.

7. Vacuum concrete dust from holes.

8. Prepare 1/2-inch anchor (factory-supplied) with accompanying washer and nut.

9. Using a hammer, drive an anchor into each drilled hole until the washer stops at the base.

10. Using a 3/4-inch wrench, tighten the nut (clockwise) on each anchor until tight.
4.5.2 Installing the Auxiliary Equipment Common Base

The Auxiliary Equipment Common (AEC) base contains the two welders and service disconnects, optional water circulators, and Com-Arc seam tracking units. The base is shipped on wood blocks. To install the AEC base, proceed as follows:

1. Unbolt the AEC base by removing four shipping bolts using a 3/4-inch socket.

![Diagram of AEC base]

Figure 19 Controller Base Location

WARNING!

The AEC base weighs 1600 kg (3520 lbs). Be sure that your lifting device is capable of handling this much weight or damage to the equipment or injury to personnel can result.

2. Carefully remove plastic wrapping and cardboard from AEC base.
3. Inspect base components for any shipping damage.

Note: If damage is found, notify shipper immediately.

4. Using a forklift, lift the AEC base and remove both wood blocks.
5. Using the dimensions in Figure 19, place the AEC base next to the robot common base closest to the positioner tailstock.
6. Insert a 1/2-inch concrete drill bit through the center of each mounting hole and drill holes (at least four inches deep into concrete) for anchors.
7. Vacuum concrete dust from holes.
8. Prepare 1/2-inch anchor (factory-supplied) with accompanying washer and nut for each anchor location.
9. Using a hammer, drive an anchor into each drilled hole until the washer stops at the base.
10. Using a 3/4-inch wrench, tighten the nut (clockwise) on each anchor until tight.

4.6 Connecting the Cables

After components are level and securely in place, unwrap the cables and connect them according to the cable diagram included in the system drawing package. All cables are labeled to match the labels at the connection points.

4.6.1 Cable Routing

It is important to keep cables covered/hidden as much as possible. Figure 20 shows the recommended cable routings to avoid cable damage. Cables leading to the robots must be routed under the floor cover plate. Other cables must be routed close to equipment when possible.

CAUTION!
Route wires and cables away from hazardous work areas to avoid wire breakage and unnecessary interruption of cell operation.

![Cable Routing Diagram](image)

Figure 20 Cable Routing
4.6.2 Connecting the Earth Ground

Each robot and controller must each be connected to an earth ground. The ground stake must be driven a minimum of 2.43 m (8 ft) into the earth, and the earth must be treated with chemicals in order to reduce resistance to the ground stake. A maximum of 100 ohms ground resistance is recommended. Deeper ground stakes may be required depending on area soil conditions. To ground the robots and controller, proceed as follows:

⚠️ DANGER!
If proper earth grounds cannot be provided, do not use the equipment! Serious injury or death can occur.
Do not place the MIG system within 15.24 m (50 ft) of other sources of noise (i.e., GTAW arc starters, plasma cutters, induction furnaces, high-power-resistance spot welders, dielectric heaters, etc.). Equipment that generates impulse or high-frequency noise can cause unexpected equipment operation and failure, which may result in serious injury or death.

Note: If the robot and controller are within 4.57 m (15 ft) of each other, a common earth ground may be used. Otherwise, separate earth grounds must be used.

1. Connect one end of each robot earth ground cable to lug marked EARTH GROUND on bottom back of each robot.
2. Connect other end of each robot earth ground cable to the earth ground stake.
3. Connect one end of each controller earth ground cable to the common ground bus bar inside each controller.
4. Connect other end of each controller earth ground cable to the earth ground stake.

4.6.3 Connecting the Programming Pendant Cable

Unwrap the programming pendant and place it on the pendant holder located on the R1 controller. Connect the pendant cable to the R1 controller at the connector labeled PROGRAMMING PENDANT.

4.6.4 Connecting the Welding Cables

Negative (Ground) Cables

The MRM2-1200 M3X positioner has a welding ground bar located inside the headstock housing. The welding ground cables are connected to this ground bar from the welders. The welding ground cables are shipped in an accessories box. To connect the ground welding cables, use your system prints and proceed as follows:

1. Unpack the negative ground cables and check for damage.

Note: If damage is found, notify shipper immediately.

2. Connect one end of the welding ground cable to the Welder 1 negative terminal (see Figure 22). Check that the connection is tight.
CAUTION!
Poor arc performance and cable overheating may result if both welding cables share the same ground. All ground connections must be tight. If connections are loose, arcing can occur and cause the insulator to melt.

3. Connect the other end of the Welder 1 ground cable to the ground bar located inside the headstock housing (see Figure 21). Verify connection is tight.

4. Connect one end of second welding ground cable to the Welder 2 negative terminal (see Figure 22). Check that the connection is tight.

5. Connect the other end of the Welder 2 ground cable to the ground bar located inside the headstock housing (see Figure 21). Verify connection is tight.

![Figure 21 Ground Bar Inside Headstock Housing](image)

![Figure 22 Weld Cable Connections on Power Supply](image)
Positive Cables

The positive welding cables (R1, and R2) are wrapped in leather and wire-tied to each robot. One end of each positive cable is properly connected to the robot.

CAUTION!

Do not remove the leather wrapping or damage to the cables could result.

To connect the positive welding cables, use your system prints and proceed as follows:

1. Cut the wire-ties and unwrap the positive weld cables from each robot.
2. Check cables for damage.

Note: If damage is found, notify shipper immediately.

3. Route the R1 positive welding cable beneath the robot common base to Welder 1.
4. Connect the R1 positive welding cable to the Welder 1 positive (+) terminal (see Figure 22). Check that the connection is tight.
5. Route the R2 positive welding cable beneath the robot common base to Welder 2.
6. Connect the R2 positive welding cable to the Welder 2 positive (+) terminal. Check that the connection is tight.

4.6.5 Connecting the Robot Cables

Two cables, 1BC and 2BC, connect the robot to the XRC 2001 controller. The 1BC cable supplies power to the robot servo motors. The 2BC cable provides communication between the controller and the robot. To connect the robot cables, proceed as follows:

Note: The right side of the controller is on your right as you are facing the front of it.

1. Unpack the manipulator cables and wire feeder cable, connected to each controller, and route beneath the robot common base to the back of each robot.
2. Carefully engaging connectors, connect two cables (labeled 1BC and 2BC) to 1BC and 2BC connections on back of each robot.
3. Connect the wire feeder control cable (3BC-A) to the matching connection on the back of each robot.
4. Replace floor cover plate on robot common base. Make sure all cables leading to the robots are fed through the three slots in the plate (see Figure 20).
4.6.6 Connecting the Positioner Cables

Three cables CA24, CA25, and CA26, connect the positioner to the XRC 2001 controller. The CA24 cable supplies power to the positioner servo motors. The CA25, and CA26 cables provide communication between the controller and the positioner. To connect the robot cables, proceed as follows:
1. Unpack positioner cables CA24, CA25, and CA26 from the R1 controller and route to the positioner headstock.

Figure 24 Positioner Interface Panel Installation

Connect the CA24 cable to the CA24 connector on the positioner headstock.

Connect the CA25 cable to the CA25 connector on the positioner headstock.

Connect the CA26 cable to the CA26 connector on the positioner headstock.

4.6.7 Removing the Shipping Bracket

CAUTION!

Failure to remove shipping brackets from robot before operating the ArcWorld IV-6200M may result in damage to the robot drive mechanisms.

A yellow bracket (see Figure 25) prevents the robot from moving during shipping. The bracket secures the lower arm assembly to the S-axis housing. The smaller bracket on the rear of the robot prevents the S-axis housing from pivoting. After the robot is in place, remove the shipping bracket.
4.7 Installing the Safety Light Curtains

4.7.1 Installation

The three light curtain components, the emitter, collector, and safety fence come pre-assembled and fastened inside the cell for shipping.

1. Unfasten both fences from their shipping position and move into position. The light curtains are oriented properly with the status lights located near the base of the positioner.

2. Use the three bolt holes (see Figure 26) located on the positioner housing to mount the light curtain/fence assemblies.
3. The wiring connections are packaged on the positioner base. Unpack the light curtain cables and connect them to the matching connectors on the light curtains.

4. The emitter and collector must be aligned properly. Refer to the light curtain manufacture’s literature that accompanies the robot cell for exact alignment procedures.

5. Once the light curtains have been properly installed, anchor the fence posts to the floor.

6. Insert a 7/16-inch drill bit through the holes in the fence post feet and drill holes (1 to 2 inches deep) for anchor bolts in floor.

7. Vacuum concrete dust from holes.

8. Push concrete anchors through holes in fence post feet and into drilled holes until it stops. A hammer may be needed.

9. Anchor the cell walls to the floor by tightening each nut.

10. Check the alignment of the light curtains again after fence posts have been anchored. Readjust as necessary.
4.8 Installing the Operator Station

To install the operator station, proceed as follows:

1. Unload operator station.
2. Carefully remove protective plastic wrapping from operator station.
3. Inspect operator station for shipping damage.

Note: If damage is found, notify the shipper immediately.

4. Place operator station outside fence to front of positioner.
5. Insert 1/4-inch concrete drill bit through center of lag holes in operator station and drill holes for lag bolts.
6. Vacuum concrete dust from holes.
7. Lag operator station to floor.

4.9 Connecting Power

After all of the system components have been properly installed, connect the power to the ArcWorld IV-6200M.

DANGER!

Power should be connected only by a qualified electrician. Electrical and grounding connections must comply with applicable portions of the national electrical code and/or local electrical codes.

1. Install 3-phase power wiring to main service disconnect located on the controller base. Table 5 shows size and type of wire needed.
2. Make sure the service disconnect switch is set to the OFF position.
3. Route incoming power cable into disconnect box. Knock-out holes are provided.
4. Using a cord grip, secure incoming power cable to service disconnect housing.
5. Strip the three incoming power wires and secure them to the power disconnect connections inside. Use a phillips screwdriver to tighten.
6. Strip the ground wire and secure it to the ground lug inside the service disconnect box. A ring-tongue terminal will be needed. Nut and lock-washer are provided.
7. Turn service disconnect switch to the ON position.
8. Using a volt/ohm meter, verify incoming voltage and amperage values. Refer to label on service disconnect box and system prints for correct voltage.

Note: The ArcWorld IV-6200M is configured for 3-phase 460/480V AC, unless other voltage was requested. If other voltage is required for your plant, you must make the necessary modifications to the transformer. For more information, refer to the manipulator manual that came with your system.
Table 5 Incoming Power Specifications (Decal)

<table>
<thead>
<tr>
<th>Lug Data</th>
<th>60/75°C wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog No.</td>
<td>TCAL14</td>
</tr>
</tbody>
</table>
| Wire Size | #14-7 Copper
#12-8 Aluminium |
| Torque | #14-7, 4.0 N·m (35 lb-in.) |

4.10 Conducting a Safety/Operation Check

Before installing tooling and/or fixtures for your application, take a few minutes to perform a safety/operation check. To conduct a safety/operation check:

1. Check that all three yellow shipping brackets have been removed from the robot (see Section 4.6.7).
2. Be sure there is a clearance of at least 2.5 cm (1 in.) on either side of the positioner.
3. Be sure the safety light curtains are aligned correctly.
4. Check that the cell door is closed and latched.
5. Check that all cable connections are tight.
6. Be sure that the welding power source is set correctly (see the welding power source vendor's manual).
7. Verify that incoming line power matches the input power specified on the front of the controller.

Your ArcWorld IV-6200M is now ready for power-up. The ArcWorld system should be operated only by personnel who have received operator training from Motoman and who are familiar with the operation of this Motoman robot model. Turn the main power ON, and continue the safety/operation check.

8. Check all system E-STOPS (pendant, op-station, breakaways, playback box).
9. Check system Hold buttons.

4.11 Installation of Tooling and Fixtures

Your ArcWorld IV-6200M system is now ready for the installation of tooling and fixtures for your application. Installation of tooling and fixtures should be performed by personnel who are familiar with the operation of this system. Tooling and fixtures are supplied by the customer. After tooling is installed, test the positioner for proper operation.
Chapter 5

Operation

The ArcWorld IV-6200M is a fully integrated robotic arc welding cell. The Master job setup, and the sub-jobs programmed within it, determine how the robot performs the welding operation or other tasks. The robots weld parts on one side of the 180-degree reciprocating positioner, while the operator loads or unloads parts on the opposite side. Once the robots are finished with the welding process, they return to the Home position. The operator then sweeps the positioner 180 degrees, placing the unwelded parts into the robot work area and the finished parts into the operator area for unloading.

The MRM2-1200 M3X positioner uses a 180-degree reciprocating motion that sweeps the parts tooling and fixtures from the operator’s loading zone, into the robot’s work zone, and back. The positioner arc shield visually divides the positioner into two separate halves, labeled Side A and Side B. As the positioner reciprocates, Side A moves under the primary axis and Side B moves over the primary axis. When Side A is in the robot’s welding zone, Side B is facing the operator, ready to be loaded or unloaded, and vice versa. Additionally, the headstock/tailstock on both Sides A and B rotate, which provides two welding surfaces per side. Loading fixtures and pneumatic or electric lines can be attached to the headstock and tailstock on both sides.

Note: All tooling and fixtures are supplied by the customer.

5.1 Programming

The operation of this system is programming dependent. The following operating instructions are based on one possible configuration of this system. Your system configuration and job structure may differ slightly from that presented here; however, basic operation will be the same. For additional programming instructions, refer to the controller manual that came with your system.

Any changes made to your system configuration and/or job structure will alter the operation of this cell. Motoman recommends you do not modify the original jobs and system configuration that came with your system. If modifications need to be made, they should be made to copies of these jobs and not to the originals. Modifications should only be performed by personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman system. If you have questions concerning the configuration of your system please contact the 24 hour Service Hotline, at (937) 847-3200 (see Section 1.4).
A major advantage of the ArcWorld IV-6200M system is its high degree of flexibility. The operator can fine tune the movement of both the robots and positioner according to parts configuration. The MRM2-1200 M3X positioner, with its programmable primary axis and headstocks, proves highly versatile when configured with the EA1400 robot. The robots can be programmed to weld parts with the headstock stationary, or the robots and headstock can move simultaneously. The robots can be programmed to weld different seams on the same part and to move from part to part to continue welding.

With the programming pendant, the operator can develop a series of jobs for the robots. You can program the robots independently, the station axis independently, or the robots and station axis together. You must select the axis combination when teaching the job initially (see Section 5.1.4). Motoman recommends programming the robots and station axis together to reduce the risk of interference.

Note: Refer to your system’s Independent/Coordinated Motion Manual (P/N 142969-1) for information on coordinated motion, selecting synchronization, group axes, and tooling calibration.

CAUTION!
Remember that only the Tool Center Point (TCP) location on the robot is recognized by the controller. Without careful programming, the robot arm can still damage other equipment.

5.1.1 Sweeping the Positioner

WARNING!
Sweeping the positioner manually from the pendent may result in the fixtures/tooling hitting the ground. Care must be taken to avoid damaging fixtures and/or tooling.

Note: In order to sweep the positioner, the robots must be in the Home position.

MANUAL mode allows you to sweep the positioner without activating the robots. Parts can be loaded onto the fixture to achieve the most efficient configuration and then swept into the welding zone, before teaching the robots. To sweep Side A or Side B of the positioner into the robot’s welding zone, proceed as follows:

1. Place robots in Home position (see Section 5.2.2).
2. Set the op-station POSITIONER switch to MANUAL mode and start the Master Control job (see Section 5.2.3). Normally, robot will not move out of Safe position when POSITIONER switch is in MANUAL (This may vary with job structure).

Note: Cycle Start latching is not operative in Manual mode.

3. Press the CYCLE START button on operator station. Positioner sweeps each time CYCLE START button is pressed.

Note: The Home position turns on an output when the robot tool center point is within established boundaries. If the robot moves outside the Home position, the output is lost and the positioner will not sweep. The Home position is factory set to be clear of the positioner.
5.1.2 Rotating the Headstock

To program rotation of the Motoman MRM2-750 S3X positioner headstock, proceed as follows:

⚠️ **WARNING!**

If the robots are working on a part and the headstock is not turning, DO NOT assume that the headstock will not turn. The robot is executing programmed steps which could index the headstock at any time.

The following preconditions must be met:

- The controller must be in TEACH mode.
- The Servo On Ready key must flashing. If the Servo On Ready key is not flashing, press it.

To move headstock:

1. Press EX. AXIS key on programming pendant to display proper axis of operation.

⚠️ **WARNING!**

Do Not use S1 or S4 for any reason. Use S2 for Side A or S3 for Side B. Misuse will create a SERVO TRACKING ERROR.

2. Check status screen to ensure S2 for Side A or S3 for Side B is displayed.
3. Press S+ or S- (X+ or X-) motion keys on programming pendant to move headstock. Jog speed is set on programming pendant.

Note: The EX. AXIS key must be turned OFF, and the robot LED ON, to move the robots with the motion keys. The S-axis on each robot is restricted by hard stops on the robot base and internal soft stops.

5.1.3 Programming Specific Jobs

For more detailed information on programming user jobs, refer to Motoman Operator's Manual for Arc Welding (P/N 142098-1).

You can program three types of moves:

- Rotation of headstock during air-cut moves
- Robot motion with headstock stationary
- Rotation of headstock during welding

The job you create may consist of a combination of the above. The first two types of moves assume a robot-plus-station group axis specification. The last type of move is called station synchronous and should be programmed with a station-plus-robot group axis specification with the station as the Master control device.

⚠️ **CAUTION!**

Remember, only the Tool Center Point (TCP) location on the robot is recognized by the controller. Without careful programming, the robot arm could still damage other equipment.
Note: Refer to your system’s Independent/Coordinated Motion Manual (P/N 142969-1) for information on coordinated motion, selecting synchronization, group axes, and tooling calibration.

Job Configurations

S1 = Main Trunnion
S2 = A-side headstock
S3 = B-side headstock
S4 = Positioner sweeping (all axes on positioner)

Job axis combinations must be set up as follows:

Valid Axes Combinations for Synchronous Motion

R1 + S3 (=S3) = Robot 1 + B-side headstock with B-side headstock as master
R2 + S3 (=S3) = Robot 2 + B-side headstock with B-side headstock as master
R3 + S3 (=S3) = Robot 3 + B-side headstock with B-side headstock as master
R1 + S2 (=S2) = Robot 1 + A-side headstock with A-side headstock as master
R2 + S2 (=S2) = Robot 2 + A-side headstock with A-side headstock as master
R3 + S2 (=S2) = Robot 3 + A-side headstock with A-side headstock as master

Valid Axes Combinations for Non-synchronous Motion

R1 + S2 = Robot 1 + A-side headstock
R1 + S3 = Robot 1 + B-side headstock
R2 + S2 = Robot 2 + A-side headstock
R2 + S3 = Robot 2 + B-side headstock
R3 + S2 = Robot 3 + A-side headstock
R3 + S3 = Robot 3 + B-side headstock

Non-Valid Axes Combinations

S1 + S4 = Main Trunnion + Positioner sweeping (all axes on positioner)
S2 + S4 = A-side headstock + Positioner sweeping (all axes on positioner)
S3 + S4 = B-side headstock + Positioner sweeping (all axes on positioner)
R1 + S4 = Robot 1 + Positioner sweeping (all axes on positioner)
R2 + S4 = Robot 2 + Positioner sweeping (all axes on positioner)
R3 + S4 = Robot 3 + Positioner sweeping (all axes on positioner)
R1 + S1 = Robot 1 + Main Trunnion
R2 + S1 = Robot 2 + Main Trunnion
R3 + S1 = Robot 3 + Main Trunnion

Rotation of the Headstock During Air-Cut Moves — Non-synchronous Motion

1. Teach robot to desired position.
2. Rotate positioner headstock or station to desired position.
3. Press and hold SHIFT key, then press EX. AXIS key on programming pendant.

CAUTION!
Do not use S1 or S4 for any reason. Use S2 for Side A or S3 for Side B. Misuse will cause a Servo Tracking Error.

4. Press MAN SPEED key to select desired axis speed while teaching.
5. Press S+ or S- (X+ or X-) motion keys on programming pendant to move headstock. Jog speed is set on programming pendant.
6. Record each step after designating motion type and playback speed.
7. Check path with STEP FWD/BWD keys. The position for robot or posioner may need to be altered to prevent torch interference.

WARNING!
The positioner axis operates as another robot axis and has the potential for hazardous motion.

Note: To move the robot, press and hold the SHIFT key, then the ROBOT key until R1 is selected on the Status line.

Normally, air-cut moves are taught as joint moves. The speed for joint moves is specified as a percentage of maximum speed \((V) = 0.01 \text{ to } V = 100.00 \). The axis which takes the longest time to complete the programmed motion automatically determines the speed of the system. This might be a wrist axis, a major robot axis, or the positioner axis. Cycle times can be reduced by changing wrist orientation, robot position, and headstock position simultaneously between program points rather than making the moves independently. Setting the speed to 100.00 will normally establish the quickest time between steps.

Robot Motion with the Headstock Stationary – Non-synchronous Motion

1. Program robot position without moving positioner axis.
2. Set motion type and speeds in normal fashion;
 OR
3. Select GROUP AXIS as R1 only.

Rotation of the Headstock During Welding – Synchronous Motion

The controller can coordinate motion with the external axis. This requires calibration of the headstock and robot at the time of installation. Jobs programmed for coordinated motion must be taught as Robot + Station with Station as master \([R1 + S (2 or 3): S (2 or 3)]\), depending on positioner side during playback. Move instructions for coordinated motion are registered using the following format:
5.2 Daily Operation

The procedures below represent the typical operating sequence from power up to shutdown. Yours basic operating procedures may vary depending on your situation.

- Perform Start-up Procedures (see Section 5.2.1).
- Move robot to Home position (see Section 5.2.2).
- Select master job (see Section 5.2.3).
- Perform Operation Cycle (see Section 5.2.4)
- Perform Shutdown Procedures (see Section 5.2.5)

5.2.1 Start-Up

Note: Due to the configuration of the ArcWorld IV-6200M system, the slave controllers (R2) must be energized before the primary controller (R1) or an alarm condition will occur during power up.

To start the cell from a Power-Off condition, proceed as follows:

1. Make sure the enclosure door is closed and securely latched.
2. Turn ON main service disconnect switch.
3. Set MAIN POWER switch on R2 controller to ON.
4. Set MAIN POWER switch on R1 controller to ON.
5. Set INPUT POWER switch on welding power sources to ON.
6. Turn on welding gas supply.
7. Disable operator station.
8. Make sure E-STOP buttons on programming pendant and operator station are released.
9. Select TEACH mode on programming pendant; indicator light turns on.
10. Place robots in Home position.

Robot Safe (Cube 24) Position

To place the robots in the Home position, proceed as follows:

1. Select TEACH mode button on the programming pendant.
2. Press MAIN MENU on programming pendant.
3. Select JOB icon using cursor keys and press SELECT.
4. Cursor to SELECT JOB and press SELECT key.
5. Using cursor keys, move cursor to SAFE job and press SELECT.
6. Turn servo power ON by pressing SERVO ON, pressing TEACH LOCK and holding in the ENABLE switch.
7. Using the INTERLOCK and FWD buttons on the programming pendant, jog the robots to the Home position.
5.2.2 Safety Circuit Check

Test each of the following safety circuit items daily for proper operation. If any of these items does not work as instructed, contact Motoman service staff at (937) 847-3200 before operating the cell.

Gate Interlock
Open gate interlock while robot is in PLAY mode with servo power ON. Verify that servo power goes off.

Emergency Stop (E-Stop) Buttons
Press each E-Stop button with the robot in PLAY mode and the servo power ON. After each button is pressed, verify that servo power goes off and the programming pendant reads “Robot is Stopped.”

Headstock (side A/B) In-position Switch
1. Place controller in TEACH mode.
2. Turn servo power ON.
3. Rotate headstock (side A/B) out of Home position.
4. Block the light curtain. Verify that servo power goes off.
5. Turn servo power ON.
6. Return positioner to the programmed position.

Trunnion In-position Switch
1. Put controller in TEACH mode.
2. Turn servo power on.
3. Rotate trunnion out of Home position.
4. Block the light curtain. Verify that servo power goes off.
5. Turn servo power on.
6. Return positioner to the programmed position.

5.2.3 Robot Home Position

To move the robots to the Home position, proceed as follows:
1. Press TEACH mode button on controller playback panel.
2. Press TOP MENU on programming pendant.
3. Select JOB icon using cursor keys and press SELECT.
4. Cursor to SELECT JOB and press SELECT key.
5. Using cursor keys, move cursor to SAFEPOS Safe job and press SELECT. The R1R2 Safe job appears on display screen.
6. Turn servo power ON by pressing SERVO ON, TEACH LOCK, and holding in the ENABLE switch.
7. Use INTERLOCK and FWD keys on programming pendant to jog each robot to Safe position.
5.2.4 Selecting Weld Job (Initial Setup Only)

CAUTION!
Selecting the wrong job can cause unexpected robot motion. Care must be taken to ensure that the proper job is selected.

1. In the Sweep A (or B) Job, select the following line: “PStart Job:Test A (or B) sub 2.”
2. Move the cursor to highlight this line “PStart Job:Test A (or B) sub 2.” This command line appears at the bottom of the display screen.
3. Cursor to the TestA (or B) job and push SELECT. The job list is displayed.
4. Select the desired job using the cursor and press ENTER to change the job and modify the PStart command in the sweep job.

5.2.5 Starting the Master Job

With the system powered up and in TEACH mode:

1. Press the MAIN MENU key on the programming pendant.
2. Select the JOB icon using the cursor keys and press SELECT.
3. Cursor to SELECT JOB and press the SELECT key. The job list appears on display screen.
4. Using cursor keys, cursor to the Master job and press SELECT. The Master job appears on display screen.
5. Press the PLAY mode button on controller playback panel. Job playback operation is enabled.
6. Press the SERVO ON button on the programming pendant.
7. Reset the positioner by pressing the RESET button on the operator station.
8. Press the START button on operator station. The Master job cycles, waiting for a Cycle Start input from operator station.

The ArcWorld IV-6200M cell is now ready for operation.
5.2.6 Perform Operation Cycle

The following is the typical sequence of operation for the ArcWorld IV-6200M cell after start-up:

1. Load fixture on operator side of positioner table with parts to be welded.
2. Step out of safety light curtain.
3. Press the CYCLE START button on the operator station. STATION READY light comes on and positioner sweeps, placing unwelded parts into the robot work area. The robots then begin welding parts.
4. While the robots are welding, load the operator side.
5. When parts are loaded, press the CYCLE START button on operator station; CYCLE LATCHED light comes on. When the robots are finished welding, they return to Home position and the positioner sweeps, returning welded parts outside the cell and placing newly loaded, unwelded parts into the robot work area.
6. Unload welded parts from the fixture.

Note: Before sweeping at first power up, make sure the correct job has been loaded.

5.2.7 Shutdown

Use the following procedure to shut down the ArcWorld IV-6200M cell after operation is complete:

1. Make sure robots are in the Home position.
2. Turn off system servo power by pressing E-STOP button on operator station or programming pendant.
3. Select TEACH mode on the programming pendant.
4. Set the main service disconnect switch to the OFF position.
5. Close welding gas supply.

The ArcWorld IV-6200M cell is now shut down.

5.3 System Recovery

When a system error or alarm occurs, you must clear the error or alarm to return the system to normal operation. The paragraphs below describe the different types of alarms and errors you may encounter and how to remedy them when you do.

5.3.1 Alarms and Errors

Alarms and errors will cause the program to stop. There are three levels of alarms and errors: Error Messages, Minor Alarms, and Major Alarms. For more detailed information about alarm recovery, refer to manipulator manual that came with your system.
5.3.1.1 **Error Messages**

These are simple errors such as pressing the START button when the robot is not in PLAY mode, or enabling the programming pendant when servo power is off. Clear these errors by pressing the CANCEL button on the programming pendant.

5.3.1.2 **Minor Alarms**

Minor alarms are usually programming errors. Minor alarms might occur if a circle has been programmed with fewer than three circular points, etc. Clear these errors by pressing the RESET (F5) soft key on the programming pendant.

5.3.1.3 **Major Alarms**

Major alarms are hardware failures. Major alarms might occur because of a servo tracking error or an abnormal speed and are usually associated with crashes. To clear these alarms, you must turn off the controller and then turn it on again.

5.3.2 **E-STOP Recovery**

An E-STOP can occur under any of the following conditions:

- Pressing E-STOP button on the operator station, programming pendant, or the playback panel.
- Opening the cell door on robot enclosure when robot is not in TEACH mode.
- Stepping into light curtain when positioner is sweeping.
- Actuating shock sensor on torch mount.

To restart the ArcWorld IV-6200M cell after an E-STOP condition occurs, proceed as follows:

1. To clear E-STOP condition, perform any of the following actions that apply:
 - Release E-STOP button on operator station, programming pendant, or playback panel.
 - Close cell door.
 - Step out of safety curtain.
 - Clear Shock Sensor condition (refer to Section 5.3.3).

 CAUTION!

 If an emergency stop condition occurs while the positioner is sweeping, the positioner will continue the sweep when system is reinitialized.

 2. Press SERVO ON button on operator station or programming pendant.
 3. Press RESET button and right CYCLE START button on operator station to initialize system.
 4. Ensure operator station is enabled.
 5. Press START button on the operator station.

The ArcWorld IV-6200M cell is now ready to continue operation.
5.3.3 **Shock Sensor Recovery**

The ArcWorld welding package includes a Motoman gun mount. This mount is designed to protect the torch from damage in case of a crash. A slight deflection of the torch activates a SHOCK SENSOR message which triggers an E-STOP condition. To clear the E-STOP condition, you must override the shock sensor and move the robot clear of the impact. To override the shock sensor, proceed as follows:

⚠️ **CAUTION!**

It is possible to crash the robot with the Shock Sensor Override Switch left in the “Override” position. Always remember to reactivate the Shock Sensor before continuing system operation.

1. Press MAIN MENU on programming pendant.
2. Select ROBOT icon using cursor keys and press SELECT.
3. Cursor to OVERRUN-SSENSOR and press SELECT key.
4. Select RELEASE to release shock sensor.
5. Turn servo power ON by holding ENABLE switch on the programming pendant and pressing SERVO ON.

Note: TEACH LOCK must be ON to turn servo power on in TEACH mode.

The ArcWorld IV-6200M cell is now ready to continue operation.
Notes
Chapter 6
Maintenance

Table 8 provides periodic maintenance items and intervals for the ArcWorld IV-6200M cell. Keep in mind that the maintenance intervals serve as guidelines only. You should adjust the frequency of maintenance to suit your specific work conditions.

For periodic maintenance procedures and schedules for the individual components of your ArcWorld IV-6200M, including the MRM2-1200 M3X positioner, refer to the additional manuals that came with your system.

⚠️ CAUTION!
Use only the antifreeze provided by Motoman. Automotive antifreezes contain stop-leak additives that will clog small torch water-cooling ports and damage gaskets in water circulator pump.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Component</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Water Circulator (Water-cooled Torch Application only)</td>
<td>Check the fluid in the water circulator. Add fluid as required. Use only distilled water and approved antifreeze (Motoman P/N 131224-1).</td>
</tr>
<tr>
<td>Daily</td>
<td>Safety Circuit Check</td>
<td></td>
</tr>
</tbody>
</table>

H=Hours of operation
Notes
Index

A
 Alarm 16, 21
 Alarms 57
 ANSI/RIA 7
 Arc Screens 25
 Area Key 19
 Auto/Manual 21
 Auxiliary Equipment Common Base 38
 Axes Combinations 52
B
 Brake Release 20, 27
C
 Cable Routing 39
 Cables 39
 Cell Door 26
 Components 4
 Controller 13
 Controller Base 36
 Cursor Key 19
 Customer Service 5
 Customer-Supplied Items 29
 Cycle Start 20
D
 Display Area 17
 Documentation 5
 DR2C Conversion 14
E
 Earth Ground 40
 Edit Lock 17
 Emergency Stop 16, 21
 Emergency Stop (E-STOP) 18
 Emergency Stops 26
 ENABLE Switch 19, 26
 Enable/Disable 21
 Equipment Description 13
 Error Messages 58
 Errors 57
 E-STOP 58
 External Axis Cabinet 14
F
 Fencing 25
 Fixtures 48
G
 Gate Interlock 55
 GMAW Torch 25
 Ground 40
H
 Headstock 51, 55
 Hold 16, 21
 Home Position 55
I
 Installation 29
 Installation Safety 10
 Interference Cubes 27
 Interlocked Cell Door 26
 Introduction 1
J
 Job Configurations 52
 Jobs 51
K
 Keypad 18
L
 Layout 3, 4
 Light Curtains 26, 45
M
 MAIN MENU 18
 Maintenance 61
 Maintenance Safety 12
 Major Alarms 58
 Master Job 56
 Materials Required 29
 Menu Area 17
 Minor Alarms 58
 MRM2-1200 M3X Positioner 22
N
 Non-synchronous Motion 52
O
 Operation 49, 54
 Operation Cycle 57
 Operation Safety 11
 Operator Station 20, 47
 Optional Equipment 4
 Overview 2
P
 Playback Panel 15
 Positioner 22, 31, 50
 Positioner Cables 43
Power 47
Power Sources 23
Programming 49, 51
Programming Pendant 17, 40
Programming Safety 10
R
Remote 17
Reset 21
Robot Cables 42
Robot Common Base 34
Robot Description 13
Robotic Industries Association 7
S
Safeguarding Tips 9
Safety 7
Safety Circuit 55
Safety Devices 9
Safety Features 25
Safety/Operation Check 48
SELECT Key 19
Serial Port 19
Servo On 21
Servo On Ready 16
Shipping Bracket 44
Shipping/Leveling Bolts 31
Shock Sensor 59
Shutdown 57
Site Preparation 30
Specific Jobs 51
Start 16, 21
Start-Up 54
Status Area 18
Synchronous Motion 52
System Layout 4
System Overview 2
System Recovery 57
T
TEACH LOCK Key 19
Tooling 48
Tools 30
Trunnion 55
W
Weld Job 56
Welding Cables 40
Welding Equipment 23
Wire Feeder 25