MOTOMAN-SP225H, SP180H, SP180H-110 INSTRUCTIONS

TYPE:
YR-1-06VXH225-A00
(MOTOMAN-SP225H STANDARD SPECIFICATION)
YR-1-06VXH180-A00
(MOTOMAN-SP180H STANDARD SPECIFICATION)
YR-1-06VXH180-A10
(MOTOMAN-SP180H-110 STANDARD SPECIFICATION)

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

Please have the following information available when contacting Yaskawa Customer Support:
- System
- Primary Application
- Software Version (Located on Programming Pendant by selecting:
 (Main Menu) - (System Info) - (Version))
 Robot Serial Number (Located on robot data plate)
 Robot Sales Order Number (Located on controller data plate)

Part Number: 185218-1CD
Revision: 1
DANGER

- This instruction manual is intended to explain mainly on the mechanical part of this manipulator for the application to the actual operation and for proper maintenance and inspection. It describes on safety and handling, details on specifications, necessary items on maintenance and inspection, to explain operating instructions and maintenance procedures. Be sure to read and understand this instruction manual thoroughly before installing and operating the manipulator. Any matter not described in this manual must be regarded as “prohibited” or “improper”.
- General information related to safety are described in “Chapter 1. Safety” of the YRC1000 INSTRUCTIONS. To ensure correct and safe operation, carefully read “Chapter 1. Safety” of the YRC1000 INSTRUCTIONS.

CAUTION

- In some drawings in this manual, protective covers or shields are removed to show details. Make sure that all the covers or shields are installed in place before operating this product. The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.
- YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids the product warranty.

NOTICE

- The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.
- YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.
- If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of your manipulator.

In this manual, the Notes for Safe Operation are classified as "DANGER", "WARNING", "CAUTION", "MANDATORY", or "PROHIBITED".

![DANGER]
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Safety Signs identified by the signal word DANGER should be used sparingly and only for those situations presenting the most serious hazards.

![WARNING]
Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury. Hazards identified by the signal word WARNING present a lesser degree of risk of injury or death than those identified by the signal word DANGER.

![CAUTION]
Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury. It may also be used without the safety alert symbol as an alternative to "NOTICE".

![NOTICE]
NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol should not be used with this signal word. As an alternative to "NOTICE", the word "CAUTION" without the safety alert symbol may be used to indicate a message not related to personal injury.

Even items described as "CAUTION" may result in a serious accident in some situations.

At any rate, be sure to follow these important items.

![NOTE]
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as "DANGER", "WARNING" and "CAUTION".
DANGER

- Do not remove the motor, and do not release the brake. Failure to observe these safety precautions may result in death or serious injury from unexpected turning of the manipulator's arm.

WARNING

- Maintenance and inspection must be performed by specified personnel. Failure to observe this caution may result in electric shock or injury.
- For disassembly or repair, contact your YASKAWA representative.
• Before operating the manipulator, make sure the servo power is turned OFF by performing the following operations. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.
 – Press the emergency stop buttons on the front door of the YRC1000, on the programming pendant, on the external control device, etc.
 – Disconnect the safety plug of the safety fence.
 (when in the play mode or in the remote mode)
If operation of the manipulator cannot be stopped in an emergency, personal injury and/or equipment damage may result.

Fig. : Emergency Stop Button

• Before releasing the emergency stop, make sure to remove the obstacle or error caused the emergency stop, if any, and then turn the servo power ON.
Failure to observe this instruction may cause unintended movement of the manipulator, which may result in personal injury.

Fig. : Release of Emergency Stop

• Observe the following precautions when performing a teaching operation within the manipulator’s operating range:
 – Be sure to perform lockout by putting a lockout device on the safety fence when going into the area enclosed by the safety fence. In addition, the operator of the teaching operation must display the sign that the operation is being performed so that no other person closes the safety fence.
 – View the manipulator from the front whenever possible.
 – Always follow the predetermined operating procedure.
 – Always keep in mind emergency response measures against the manipulator’s unexpected movement toward a person.
 – Ensure a safe place to retreat in case of emergency.
Failure to observe this instruction may cause improper or unintended movement of the manipulator, which may result in personal injury.

• Confirm that no person is present in the manipulator's operating range and that the operator is in a safe location before:
 – Turning ON the YRC1000 power
 – Moving the manipulator by using the programming pendant
 – Running the system in the check mode
 – Performing automatic operations
Personal injury may result if a person enters the manipulator's operating range during operation. Immediately press an emergency stop button whenever there is a problem. The emergency stop buttons are located on the front panel of the YRC1000 and on the right of the programming pendant.

• Read and understand the Explanation of the Warning Labels before operating the manipulator.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRC1000 controller</td>
<td>YRC1000</td>
</tr>
<tr>
<td>YRC1000 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and TM are omitted.
Explanation of Warning Labels

The following warning labels are attached to the manipulator. Always follow the warnings on the labels. Also, an identification label with important information is placed on the body of the manipulator. Prior to operating the manipulator, confirm the contents.

Note: Taking the maintenance-relevant trainings offered by YASKAWA is indispensable for replacing the L-axis of the balancer-equipped manipulator.

Fig. : Warning Label Locations
Fall down hazard label

Description
Make sure to secure the manipulator base by using the bolts of the specified sizes and by tightening the bolts with the specified tightening torques. If the power is turned ON and the manipulator is operated without securing the manipulator properly, the manipulator may fall down, which may result in personal injury and/or equipment damage.

Collision hazard label

Description
Personal injury may result if a person enters the manipulator’s operating range during operation. Immediately press an emergency stop button whenever there is a problem. Confirm that no person is present in the manipulator’s operating range and that the operator is in a safe location before:

- Turning ON the YRC1000 power
- Moving the manipulator by using the programming pendant
- Running the system in the check mode
- Performing automatic operations
Crush hazard label

Description
Keep clear of moving parts when performing a teaching operation within the manipulator's operating range. Failure to observe this instruction may result in personal injury.

Balancer disassembly prohibited label

Description
Do not disassemble the balancer. When disassembling the balancer, the internal energy is released and the L-arm rotates. Failure to observe this caution may result in injury or malfunction.

Motor removing prohibited label

Description
Do not remove the motor without mounting the jig for fixing the motor. Failure to observe this safety precaution may result in injury from unexpected turning of the manipulator's arm.
1 Product Confirmation
 1.1 Contents Confirmation
 1.2 Order Number Confirmation

2 Transport
 2.1 Transport Method
 2.1.1 Using a Crane
 2.1.2 Using a Forklift
 2.2 Shipping Bracket
 2.3 Cushioning Material for Transport

3 Installation
 3.1 Installation of the Safety Fence
 3.2 Mounting Procedures for Manipulator Base
 3.2.1 Mounting Example
 3.3 Mounting Method
 3.4 Location
 3.5 Notes on Dust-Proof/Water-Proof Specifications

4 Wiring
 4.1 Grounding
 4.2 Cable Connection

5 Basic Specifications
 5.1 Basic Specifications
 5.2 Part Names and Working Axes
 5.3 Dimensions and P-Point Maximum Envelope
 5.4 Stopping Distance and Time for S-, L-, and U-Axes
 5.4.1 General Information
 5.4.2 Definition of Use
 5.4.3 Stopping Distance and Time for Stop Category 0: S-, L- and U-Axes
 5.4.4 Stop Category 1: Stopping Distance and Time for Stop Category 1: S-, L- and U-Axes
 5.4.4.1 Extension
 5.4.4.2 Stopping Distance and Time for Stop Category 1: S-axis
 (YR-1-06VXH225-A00)
 5.4.4.3 Stopping Distance and Time for Stop Category 1: L-axis
 (YR-1-06VXH225-A00)
5.4.4.4 Stopping Distance and Time for Stop Category 1: U-axis
(YR-1-06VXH225-A00)... 5-13
5.4.4.5 Stopping Distance and Time for Stop Category 1: S-axis
(YR-1-06VXH180-A00).. 5-14
5.4.4.6 Stopping Distance and Time for Stop Category 1: L-axis
(YR-1-06VXH180-A00).. 5-15
5.4.4.7 Stopping Distance and Time for Stop Category 1: U-axis
(YR-1-06VXH180-A00).. 5-16
5.4.4.8 Stopping Distance and Time for Stop Category 1: S-axis
(YR-1-06VXH180-A10).. 5-17
5.4.4.9 Stopping Distance and Time for Stop Category 1: L-axis
(YR-1-06VXH180-A10).. 5-18
5.4.4.10 Stopping Distance and Time for Stop Category 1: U-axis
(YR-1-06VXH180-A10).. 5-19

5.5 Alterable Operating Range .. 5-20
 5.5.1 Components for Altering Operating Range ... 5-20
 5.5.2 Notes on the Mechanical Stopper Installation ... 5-22

6 Allowable Load for Wrist Axis and Wrist Flange ... 6-1
 6.1 Allowable Wrist Load .. 6-1
 6.2 Wrist Flange.. 6-5

7 System Application ... 7-1
 7.1 Peripheral Equipment Mounts .. 7-1
 7.1.1 Allowable Load .. 7-1
 7.1.2 Installation Position ... 7-2
 7.2 Internal User I/O Wiring Harness and Air Line... 7-3
 7.3 Mating Connector for Internal User I/O Wiring Harness (Optional) 7-6

8 Electrical Equipment Specification .. 8-1
 8.1 Overrun Limit Switches (Optional).. 8-1
 8.1.1 Position of Limit Switch... 8-1
 8.1.2 Adjustment to the Activation Angle of Limit Switch 8-2
 8.2 Servo ON Lamp (Optional) .. 8-3
 8.3 Internal Connections... 8-4

9 Maintenance and Inspection ... 9-1
 9.1 Inspection Schedule ... 9-1
 9.2 Notes for Maintenance... 9-5
 9.2.1 Multi-Port Connector... 9-5
 9.3 Notes on Maintenance Procedures ... 9-6
9.3.1 Home Position Check ... 9-6
9.3.2 Seeped Oil Check ... 9-7
9.3.3 L-, U-, R-, B-, and T-axis Motors ... 9-8
9.3.4 Battery Pack Replacement ... 9-9

9.4 Notes on Grease Replenishment/Exchange Procedures ... 9-13
 9.4.1 Grease Exchange Procedures for the Speed Reducers 9-13
 9.4.1.1 Notes on Grease Exchange Procedures ... 9-13
 9.4.1.2 Grease Exchange Procedure ... 9-15
 9.4.1.3 Grease Replenishment for Gas Balancer Link Part 9-20

9.5 Gas Maintenance Procedure in the Gas Balancer ... 9-21
 9.5.1 Notes on Gas Maintenance Procedure in the Gas Balancer 9-21
 9.5.2 Gas Pressure Inspection .. 9-22
 9.5.2.1 Adequate Gas Pressure ... 9-22
 9.5.2.2 Necessary Device .. 9-23
 9.5.2.3 Inspection Procedures ... 9-23
 9.5.3 Gas Discharging Procedure ... 9-25
 9.5.3.1 Necessary Devices ... 9-25
 9.5.3.2 Gas Discharging Procedure ... 9-25
 9.5.4 Gas Injecting Procedure ... 9-28
 9.5.4.1 Necessary Devices ... 9-28
 9.5.4.2 Gas Injecting Procedures ... 9-28

10 Recommended Spare Parts ... 10-1
1 Product Confirmation

1.1 Contents Confirmation

Confirm the contents of the delivery when the product arrives. Standard delivery includes the following five items (information for the content of optional goods are shown separately):

- Manipulator (accessories included)
- YRC1000 (spare parts included)
- Programming pendant
- Manipulator cable (between the YRC1000 and the Manipulator)
- Manual

CAUTION

- Confirm that the manipulator and the YRC1000 have the same order number. Pay special attention when installing two or more manipulators.

Failure to observe this instruction may cause improper movement of the manipulator, which may result in personal injury and/or equipment damage.

Fig. 1-1: Five Items for Standard Delivery
Accessories of Manipulator

<table>
<thead>
<tr>
<th>Accessories of Manipulator</th>
<th>Pcs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexagon socket head cap screw M20 (length: 80 mm)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Spring washer M20 “stainless”</td>
<td>8</td>
<td>For mounting the manipulator</td>
</tr>
<tr>
<td>Washer M20 “stainless”</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Grease zerk A-PT1/8</td>
<td>5</td>
<td>For grease replenishment of L-, U-, R-, B-, and T-axes</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>For grease replenishment for the joint of the balancer</td>
</tr>
<tr>
<td>Grease zerk A-PT1/4</td>
<td>1</td>
<td>For grease replenishment of S-axis</td>
</tr>
</tbody>
</table>
1.2 Order Number Confirmation

Confirm the order number of the manipulator corresponds to the YRC1000. The order number is located on a nameplate as shown below.

Fig. 1-2: Location of Order Number Labels
WARNING

• Operation of the crane, sling, or forklift must be performed only by authorized personnel.
Failure to observe this instruction may result in personal injury and/or equipment damage.

NOTICE

• Avoid excessive vibration or shock while transporting or moving the YRC1000.
Failure to observe this instruction may adversely affect the performance of the YRC1000 because it consists of precision components.
2 Transport
2.1 Transport Method

2.1.1 Using a Crane

As a rule, the manipulator must be lifted by a crane with four wire ropes when removing the manipulator from the package and moving it. Be sure to fix the manipulator with the cushioning materials for transport, and lift it in the posture as shown in fig. 2-1 “Transporting Position (factory setting) (YR-1-06VXH225-A00)”. The length of the wire rope must be 2000 mm or longer.

Fig. 2-1: Transporting Position (factory setting) (YR-1-06VXH225-A00)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Angle</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>60°</td>
<td>1837.56</td>
</tr>
<tr>
<td>U</td>
<td>36°</td>
<td>2427.56</td>
</tr>
<tr>
<td>B</td>
<td>115°</td>
<td>2352.44</td>
</tr>
<tr>
<td>T</td>
<td>0°</td>
<td>0°</td>
</tr>
</tbody>
</table>

When lifting the manipulator, be careful not to damage the motor, connector, cable, etc.
2 Transport

2.1 Transport Method

2.1.2 Using a Forklift

When using a forklift, as shown in fig. 2-2) “Using a Forklift”, there are two methods to transport the manipulator: using shipping brackets or using a pallet.

When using the shipping brackets, insert the claws of the forklift into four brackets and transport the manipulator.

When using the pallet, put the pallet under the manipulator and secure the manipulator by using the bolts M20 (eight places). Insert the claws of the forklift into the pallet, and transport the manipulator together with the pallet.

The pallet must be strong enough to support the manipulator.

Transport the manipulator slowly with due caution in order to avoid overturning or slippage.

Fig. 2-2: Using a Forklift

The approximate weight of the manipulator is shown below.

- 1130 kg (including the shipping bolts/screws and brackets)

Use a wire rope strong enough to withstand the weight.

- When transporting, be sure to install the shipping brackets and the cushioning materials for transport.

- Avoid applying external force on the arm or motor unit when transporting by a crane, forklift, or other equipment. Failure to observe this instruction may result in injury.
2.2 Shipping Bracket

To protect the manipulator's machinery from external forces during transportation, shipping brackets are installed. (Refer to fig. 2-3 “Shipping Bracket”.)

Fig. 2-3: Shipping Bracket

- The shipping brackets are painted yellow.
- The shipping brackets are fixed with the hexagon head screw M20 (length: 70 mm) (two screws) (four places) (trivalent chromate) and the spring washer M20 (two washers) (four places) (stainless).

NOTE

Before turning ON the power, check to be sure that the shipping bolts/screws and brackets are removed. The shipping bolts/screws and brackets then must be stored for future use, in the event that the manipulator must be moved again.
2.3 Cushioning Material for Transport

To protect the manipulator's machinery from external forces during transportation, the cushioning materials for transport are installed in the sections A and B. (Refer to fig. 2-4 "Cushioning Materials for Transport").

Fig. 2-4: Cushioning Materials for Transport

• A rubber cushion is respectively wedged at the sections A and B.

NOTE
Before turning ON the power, check to be sure that the cushioning materials for transport are removed.
In the event that the manipulator must be moved again, to avoid its main body from being damaged, the cushioning materials such as rubber plate, etc. must be used.
3 Installation

DANGER

- Install the safety fence.
Failure to observe this warning may result in injury or damage.

WARNING

- Do not perform the welding operation for a pedestal or etc. when the power cable is being connected.
Failure to observe this instruction may result in damage to an electric device due to the current of welding.
- Install the manipulator in a location where the tool or the workpiece held by its fully extended arm will not reach the wall, the safety fence, or the YRC1000, etc.
Failure to observe this warning may result in injury or damage.
- Make sure to firmly anchor the manipulator before turning ON the power and operating the manipulator.
Failure to observe this instruction may cause overturning of the manipulator, which may result in personal injury and/or equipment damage.
- Do not install or operate a damaged manipulator or a manipulator any of whose components is missing.
Failure to observe this instruction may cause improper movement, etc. of the manipulator, which may result in personal injury and/or equipment damage.

NOTICE

- After completing the installation of the manipulator, make sure to remove the shipping bolts/screws and brackets and cushioning materials for transport before turning ON the power.
Failure to observe this instruction may result in damage to the main drive unit.
3 Installation

3.1 Installation of the Safety Fence

To insure safety, be sure to install safety fence. It prevents unforeseen accidents with personnel and damage to equipment. Refer to the following quoted clause for your information and guidance.

Responsibility for Safeguarding (ISO10218)

The user of a manipulator or robot system shall ensure that safety fences are provided and used in accordance with Sections 6, 7, and 8 of this standard. The means and degree of safeguarding, including any redundancies, shall correspond directly to the type and level of hazard presented by the robot system consistent with the robot application. Safeguarding may include but not be limited to safeguarding devices, barriers, interlock barriers, perimeter guarding, awareness barriers, and awareness signals.
3.2 Mounting Procedures for Manipulator Base

The manipulator should be firmly mounted on a baseplate or foundation strong enough to support the manipulator and withstand reaction forces during acceleration and deceleration.

Construct a solid foundation with the appropriate thickness to withstand maximum reaction forces of the manipulator referring to table 3-1 "Manipulator Reaction Force and Torque".

A baseplate flatness must be kept at 0.5 mm or less: insufficient flatness of installation surface may deform the manipulator shape and affect its functional abilities. Mount the manipulator base as instructed in chapter 3.2.1 "Mounting Example".

<table>
<thead>
<tr>
<th></th>
<th>Horizontal rotation</th>
<th>Vertical rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reaction force F_H</td>
<td>Torque M_H</td>
</tr>
<tr>
<td>Emergency stop</td>
<td>24000 N (2500 kgf)</td>
<td>37630 N•m (3840 kgf•m)</td>
</tr>
<tr>
<td>Acceleration/</td>
<td>6370 N (650 kgf)</td>
<td>9400 N•m (960 kgf•m)</td>
</tr>
<tr>
<td>deceleration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3-1: Manipulator Reaction Force and Torque
3.2 Mounting Procedures for Manipulator Base

3.2.1 Mounting Example

For the first process, anchor the baseplate firmly to the ground. The baseplate must be rugged and durable to prevent shifting of the manipulator or the mounting fixture. It is recommended to prepare a baseplate of 50 mm or more in thickness, and anchor bolts of M20 or larger size.

The manipulator base is tapped for eight mounting holes; securely fix the manipulator base to the baseplate with eight hexagon socket head cap screws M20 (Tensile strength: 1200 N/mm² or more) (80 mm long is recommended) by using a tightening torque 402 N•m.

Next, fix the manipulator base to the baseplate. Tighten the hexagon socket head cap screws and anchor bolts firmly so that they will not work loose during the operation. Refer to fig. 3-2 "Mounting the Manipulator on Baseplate".

Fig. 3-2: Mounting the Manipulator on Baseplate
3.3 Mounting Method

This manipulator is mounted on the floor only. A wall-mounted way, a tilt-mounted way, and a ceiling-mounted way are not available.

3.4 Location

When installing a manipulator, it is necessary to satisfy the following environmental conditions:

- Ambient temperature: 0°C to + 45°C
- Humidity: 20% to 80%RH (no-condensing)
- Free from dust, soot, oil, or water
- Free from corrosive gas or liquid, or explosive gas or liquid.
- Free from excessive vibration (Vibration acceleration: 4.9 m/s² [0.5 G] or less)
- Free from large electrical noise (plasma)
- Free from the strong magnetic field
- Altitude: 1000 m or less
- Flatness for installation: 0.5 mm or less

NOTE

When the operation is started after the manipulator has been out of operation and left in the low temperature (almost 0°C) for a long period, the alarm may occur since the friction torque of the drive unit is large. If the alarm occurs, perform the break-in for few minutes.
3.5 Notes on Dust-Proof/Water-Proof Specifications

This manipulator conforms to:
- IP65 for the wrist part
- IP54 for the main part of the manipulator

< Definition of IP (protection class) >

- **Definition of IP65**
 - IP6: Protection from the entry of dust
 - IP □5: Protection from water that is directly sprayed from any direction.

- **Definition of IP54**
 - IP5□: Protection from a certain amount of dust which is harmful enough to affect the normal operation of equipments.
 - IP □4: Protection from sprays and splashing of water in all directions.

However, the following precautions must be observed:

- Do not use the following liquids, because the rubber parts of the manipulator (oil seal, O-ring, etc.) may be deteriorated or corroded:
 - Organic solvent
 - Chlorine-based cutting fluid
 - Amine-based cleaning fluid
 - Corrosive substances such as acids, alkalis, or liquids/solutions causing rust
 - Other liquids/solutions to which nitrile-butadiene rubber (NBR/ FKM) is not resistant

- Do not use cutting fluid or cleaning fluid which contains unknown chemical substances.
4 Wiring

WARNING

• Ground resistance must be 100 Ω or less. Failure to observe this warning may result in fire and/or electric shock.
• Before wiring, make sure to turn the primary power supply OFF, and put up a warning sign. (ex. DO NOT TURN THE POWER ON.) Failure to observe this warning may result in electric shock and/or personal injury.
• Wiring must be performed by authorized or certified personnel. Failure to observe this caution may result in fire and/or electric shock.
• When laying the cables from the manipulator to the YRC1000, DO NOT cover the cable with heat insulating material and avoid multiple cabling. Failure to observe this caution may result in burn caused by cable heat emission failure.
4.1 Grounding

Follow electrical installation standards and wiring regulations for grounding. A ground wire of 5.5 mm² or more is recommended.

Refer to fig. 4-1 “Grounding Method” to connect the ground line directly to the manipulator.

- Never use this wire sharing with other ground lines or grounding electrodes for other electric power, motor power, welding devices, etc.
- Where metal ducts, metallic conduits, or distributing racks are used for cable laying, ground in accordance with electrical installation standards.

Fig. 4-1: Grounding Method
4 Wiring
4.2 Cable Connection

4.2 Cable Connection

Connect the both edge of the manipulator cable to the manipulator base connectors and to the YRC1000. Before connecting the cable to the manipulator, verify the numbers on the connector as shown in fig. 4-3 "Manipulator Cables".

For the connecting position, refer to fig. 4-4 "Manipulator Cable Connection (Manipulator Side)" and fig. 4-5 "Manipulator Cable Connection (YRC1000 Side)".

Refer to table 4-1 "Specifications of Manipulator Cable" and fig. 4-6 "Overhead View of Manipulator Cable Connection (Manipulator Side)" for the outside diameter and the minimum bending radius (for fixed part and moving part) of the manipulator cable and the details of the manipulator cable connection on the manipulator side.

■ Procedures for Inserting the Connector

1. Confirm the connector lever of the manipulator cable is at the initial position. Insert the cable straight into the connector on the back side of the YRC1000. Insert the manipulator cable to a fixed depth then the lever rotates about 30 degree forward automatically.
2. Push the lever with hand and turn it (about 30 degree) until the lock is clicked.

■ Procedures for Removing the Connector

1. Release the lock by pushing the unlock part of the lever to unlock. Turn the lever about 60 degree to return to the initial position.
2. Pull out the connector straight.

Fig. 4-2: Connection of Manipulator Cable
4 Wiring

4.2 Cable Connection

Fig. 4-3: Manipulator Cables

The YRC1000 side

The Manipulator side

Fig. 4-4: Manipulator Cable Connection (Manipulator Side)

Connector Details (Manipulator side)
4. Wiring

4.2 Cable Connection

Fig. 4-5: Manipulator Cable Connection (YRC1000 Side)

![Manipulator Cable Connection (YRC1000 Side)](image)

Table 4-1: Specifications of Manipulator Cable

<table>
<thead>
<tr>
<th>Outside diameter (mm)</th>
<th>Minimum bending radius (mm)</th>
<th>Distance between A and B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Fixed part 135</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Moving part 320</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4-6: Overhead View of Manipulator Cable Connection (Manipulator Side)

![Overhead View of Manipulator Cable Connection (Manipulator Side)](image)

5 Basic Specifications

5.1 Basic Specifications

Table 5-1: Basic Specifications (YR-1-06VXH225-A00)\(^1\)

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>YR-1-06VXH225-A00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Vertically articulated</td>
<td></td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td>Wrist part</td>
<td>225 kg</td>
</tr>
<tr>
<td></td>
<td>U-arm</td>
<td>30 kg</td>
</tr>
<tr>
<td>Repeatability(^2)</td>
<td>±0.2 mm</td>
<td></td>
</tr>
<tr>
<td>Range of Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Axis (turning)</td>
<td>-180° ~ +180°</td>
<td></td>
</tr>
<tr>
<td>L-Axis (lower arm)</td>
<td>-60° ~ +75°</td>
<td></td>
</tr>
<tr>
<td>U-Axis (upper arm)</td>
<td>-90° ~ +90°</td>
<td></td>
</tr>
<tr>
<td>R-Axis (wrist roll)</td>
<td>-210° ~ +210°</td>
<td></td>
</tr>
<tr>
<td>B-Axis (wrist pitch/yaw)</td>
<td>-130° ~ +130°</td>
<td></td>
</tr>
<tr>
<td>T-Axis (wrist twist)</td>
<td>-360° ~ +360°</td>
<td></td>
</tr>
<tr>
<td>Maximum Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Axis</td>
<td>2.09 rad/s, 120°/s</td>
<td></td>
</tr>
<tr>
<td>L-Axis</td>
<td>1.69 rad/s, 97°/s</td>
<td></td>
</tr>
<tr>
<td>U-Axis</td>
<td>2.01 rad/s, 115°/s</td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>2.62 rad/s, 150°/s</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>2.62 rad/s, 150°/s</td>
<td></td>
</tr>
<tr>
<td>T-Axis</td>
<td>4.01 rad/s, 230°/s</td>
<td></td>
</tr>
<tr>
<td>Allowable Moment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>1372 Nm (140 kgf•m)</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>1372 Nm (140 kgf•m)</td>
<td></td>
</tr>
<tr>
<td>T-Axis</td>
<td>735 Nm (75 kgf•m)</td>
<td></td>
</tr>
<tr>
<td>Allowable Inertia (^3) (GD(^2)/4)</td>
<td>209.8 kgf•m(^2)</td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>209.8 kgf•m(^2)</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>162.1 kgf•m(^2)</td>
<td></td>
</tr>
<tr>
<td>Approx. Mass</td>
<td>1090 kg</td>
<td></td>
</tr>
<tr>
<td>Protective enclosure</td>
<td>Body: IP54, Wrist part: IP65</td>
<td></td>
</tr>
<tr>
<td>Mounting method</td>
<td>Floor-mounted</td>
<td></td>
</tr>
<tr>
<td>Ambient Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0°C ~ 45°C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>20% ~ 80%RH</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>4.9 m/s(^2) (0.5 G) or less</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>1000 m or less</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Free from corrosive gas or liquid, or explosive gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free from dust, soot, or water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free from excessive electrical noise (plasma)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Free from strong magnetic field</td>
<td></td>
</tr>
<tr>
<td>Power Capacity</td>
<td>5.0 kVA</td>
<td></td>
</tr>
<tr>
<td>Applicable controller</td>
<td>YRC1000</td>
<td></td>
</tr>
<tr>
<td>Equivalent continuous sound pressure level (^4)</td>
<td>80 dB or less</td>
<td></td>
</tr>
</tbody>
</table>

1. SI units are used in this table. However, gravitational unit is used in ().
2. Conformed to ISO96283
3. Refer to chapter 6.1 "Allowable Wrist Load" for details on the allowable moment and the allowable inertia.
4. Conformed to equivalent continuous A-weighted sound pressure level measured in accordance with ISO11201 (EN31201).

1. Measurement is carried out when the maximum load is mounted to the manipulator and operated in the maximum speed.
2. Measurement is carried out:
 - between 1.2 m and 1.5 m above the ground.
 - 400 mm away from the P-point maximum envelope.
5 Basic Specifications

5.1 Basic Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>YR-1-06VXH180-A00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Vertically articulated</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>6</td>
</tr>
<tr>
<td>Payload</td>
<td>Wrist part 180 kg</td>
</tr>
<tr>
<td></td>
<td>U-arm 30 kg</td>
</tr>
<tr>
<td>Repeatability<sup>2)</sup></td>
<td>±0.2 mm</td>
</tr>
<tr>
<td>Range of Motion</td>
<td>S-Axis (turning) -180° - +180°</td>
</tr>
<tr>
<td></td>
<td>L-Axis (lower arm) -60° - +70°</td>
</tr>
<tr>
<td></td>
<td>U-Axis (upper arm) -45° - +45°</td>
</tr>
<tr>
<td></td>
<td>R-Axis (wrist roll) -210° - +210°</td>
</tr>
<tr>
<td></td>
<td>B-Axis (wrist pitch/yaw) -130° - +130°</td>
</tr>
<tr>
<td></td>
<td>T-Axis (wrist twist) -360° - +360°</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>S-Axis 2.09 rad/s, 120°/s</td>
</tr>
<tr>
<td></td>
<td>L-Axis 1.69 rad/s, 97°/s</td>
</tr>
<tr>
<td></td>
<td>U-Axis 2.01 rad/s, 115°/s</td>
</tr>
<tr>
<td></td>
<td>R-Axis 2.62 rad/s, 150°/s</td>
</tr>
<tr>
<td></td>
<td>B-Axis 2.62 rad/s, 150°/s</td>
</tr>
<tr>
<td></td>
<td>T-Axis 4.01 rad/s, 230°/s</td>
</tr>
<tr>
<td>Allowable Moment<sup>3)</sup></td>
<td>R-Axis 1000 Nm (102 kgf•m)</td>
</tr>
<tr>
<td></td>
<td>B-Axis 1000 Nm (102 kgf•m)</td>
</tr>
<tr>
<td></td>
<td>T-Axis 618 Nm (63 kgf•m)</td>
</tr>
<tr>
<td>Allowable Inertia<sup>3)</sup></td>
<td>R-Axis 104 kgm²</td>
</tr>
<tr>
<td></td>
<td>B-Axis 104 kgm²</td>
</tr>
<tr>
<td></td>
<td>T-Axis 55 kgm²</td>
</tr>
<tr>
<td>Approx. Mass</td>
<td>1090 kg</td>
</tr>
<tr>
<td>Protective enclosure</td>
<td>Body: IP54 Wrist part: IP65</td>
</tr>
<tr>
<td>Mounting method</td>
<td>Floor-mounted</td>
</tr>
<tr>
<td>Ambient Conditions</td>
<td>Temperature 0°C - 45°C</td>
</tr>
<tr>
<td></td>
<td>Humidity 20% - 85%RH</td>
</tr>
<tr>
<td></td>
<td>Vibration 4.9 m/s² (0.5 G) or less</td>
</tr>
<tr>
<td></td>
<td>Altitude 1000 m or less</td>
</tr>
<tr>
<td></td>
<td>Others Free from corrosive gas or liquid, or explosive gas</td>
</tr>
<tr>
<td></td>
<td>Free from dust, soot, or water</td>
</tr>
<tr>
<td></td>
<td>Free from excessive electrical noise (plasma)</td>
</tr>
<tr>
<td></td>
<td>Free from strong magnetic field</td>
</tr>
<tr>
<td>Power Capacity</td>
<td>5.0 kVA</td>
</tr>
<tr>
<td>Applicable controller</td>
<td>YRC1000</td>
</tr>
<tr>
<td>Equivalent continuous sound pressure level<sup>4)</sup></td>
<td>76 dB or less</td>
</tr>
</tbody>
</table>

¹ SI units are used in this table. However, gravitational unit is used in ().

² Conformed to ISO9283

³ Refer to chapter 6.1 “Allowable Wrist Load” for details on the allowable moment and the allowable inertia.

⁴ Conformed to equivalent continuous A-weighted sound pressure level measured in accordance with ISO11201 (EN31201).
1. Measurement is carried out when the maximum load is mounted to the manipulator and operated in the maximum speed.
2. Measurement is carried out:
 - between 1.2 m and 1.5 m above the ground.
 - 400 mm away from the P-point maximum envelope.
5 Basic Specifications
5.1 Basic Specifications

Table 5-3: Basic Specifications (YR-1-06VX180-A10)\(^1\)

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Vertically articulated</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>6</td>
</tr>
<tr>
<td>Payload</td>
<td>Wrist part 110 kg</td>
</tr>
<tr>
<td></td>
<td>U-arm 30 kg</td>
</tr>
<tr>
<td>Repeatability(^2)</td>
<td>±0.2 mm</td>
</tr>
<tr>
<td>Range of Motion</td>
<td>S-Axis (turning) (-180° - +180°)</td>
</tr>
<tr>
<td></td>
<td>L-Axis (lower arm) (-45° - +75°)</td>
</tr>
<tr>
<td></td>
<td>U-Axis (upper arm) (-86° - +90°)</td>
</tr>
<tr>
<td></td>
<td>R-Axis (wrist roll) (-210° - +210°)</td>
</tr>
<tr>
<td></td>
<td>B-Axis (wrist pitch/yaw) (-130° - +130°)</td>
</tr>
<tr>
<td></td>
<td>T-Axis (wrist twist) (-360° - +360°)</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>S-Axis 2.44 rad/s, 140°/s</td>
</tr>
<tr>
<td></td>
<td>L-Axis 1.69 rad/s, 97°/s</td>
</tr>
<tr>
<td></td>
<td>U-Axis 2.01 rad/s, 115°/s</td>
</tr>
<tr>
<td></td>
<td>R-Axis 3.67 rad/s, 210°/s</td>
</tr>
<tr>
<td></td>
<td>B-Axis 3.49 rad/s, 200°/s</td>
</tr>
<tr>
<td></td>
<td>T-Axis 5.41 rad/s, 310°/s</td>
</tr>
<tr>
<td>Allowable Moment</td>
<td>R-Axis 883 N•m (90.1 kgf•m)</td>
</tr>
<tr>
<td></td>
<td>B-Axis 883 N•m (90.1 kgf•m)</td>
</tr>
<tr>
<td></td>
<td>T-Axis 520 N•m (53.1 kgf•m)</td>
</tr>
<tr>
<td>Allowable Inertia (^3) & ((GD^2A))</td>
<td>R-Axis 85 kg•m(^2)</td>
</tr>
<tr>
<td></td>
<td>B-Axis 85 kg•m(^2)</td>
</tr>
<tr>
<td></td>
<td>T-Axis 40 kg•m(^2)</td>
</tr>
<tr>
<td>Approx. Mass</td>
<td>1090 kg</td>
</tr>
<tr>
<td>Protective enclosure</td>
<td>Body: IP54</td>
</tr>
<tr>
<td></td>
<td>Wrist part: IP65</td>
</tr>
<tr>
<td>Mounting method</td>
<td>Floor-mounted</td>
</tr>
<tr>
<td>Ambient Conditions</td>
<td>Temperature (0°C - 45°C)</td>
</tr>
<tr>
<td></td>
<td>Humidity 20% - 80% RH</td>
</tr>
<tr>
<td></td>
<td>Vibration 4.9 m/s(^2) (0.5 G) or less</td>
</tr>
<tr>
<td></td>
<td>Altitude 1000 m or less</td>
</tr>
<tr>
<td></td>
<td>Others Free from corrosive gas or liquid,</td>
</tr>
<tr>
<td></td>
<td>or explosive gas</td>
</tr>
<tr>
<td></td>
<td>Free from dust, soot, or water</td>
</tr>
<tr>
<td></td>
<td>Free from excessive electrical noise</td>
</tr>
<tr>
<td></td>
<td>(plasma)</td>
</tr>
<tr>
<td></td>
<td>Free from strong magnetic field</td>
</tr>
<tr>
<td>Power Capacity</td>
<td>5.0 kVA</td>
</tr>
<tr>
<td>Applicable controller</td>
<td>YRC1000</td>
</tr>
<tr>
<td>Equivalent continuous sound pressure level (^4)</td>
<td>78 dB or less</td>
</tr>
</tbody>
</table>

1 SI units are used in this table. However, gravitational unit is used in ().
2 Conformed to ISO9283
3 Refer to chapter 6.1 “Allowable Wrist Load” for details on the allowable moment and the allowable inertia.
4 Conformed to equivalent continuous A-weighted sound pressure level measured in accordance with ISO11201 (EN31201).

1. Measurement is carried out when the maximum load is mounted to the manipulator and operated in the maximum speed.
2. Measurement is carried out:
 - between 1.2 m and 1.5 m above the ground.
 - 400 mm away from the P-point maximum envelope.

1, Measurement is carried out when the maximum load is mounted to the manipulator and operated in the maximum speed.
2. Measurement is carried out:
 - between 1.2 m and 1.5 m above the ground.
 - 400 mm away from the P-point maximum envelope.
5.2 Part Names and Working Axes

Fig. 5-1: Part Names and Working Axes

- **S**+ - S-head
- **S**- - Manipulator base
- **L**+ - L-arm
- **L**- - Wrist flange
- **U**+ - U-arm
- **U**- - S-head
- **R**+ - Manipulator base
- **R**- - Wrist flange
5.3 Dimensions and P-Point Maximum Envelope

Fig. 5-2: Dimensions and P-Point Maximum Envelope
5 Basic Specifications

5.3 Dimensions and P-Point Maximum Envelope

Fig. 5-3: Home Position and Operating Range of Each Axis

(1) S-axis

(2) L-axis

(3) U-axis

(4) R-axis

(5) B-axis

(6) T-axis
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.1 General Information

- The stopping distance is an angle traveled by the manipulator from the moment when the stop signal is activated until the manipulator comes to a complete standstill.
- The stopping time is a time elapsed from the moment that the stop signal is activated until the manipulator comes to a complete standstill.
- The data that are shown for the main axes S, L and U are the maximum displacement.
- Superposed axes motions may result in longer stopping distance.
- Stopping distance and stopping time are measured in accordance with ISO 10218-1, Annex B.
- Stop categories: According to IEC60204-1
 - Stop category 0
 - Stop category 1
- The values specified for Stop category 0 are the reference values that are determined by tests and simulations. The actual stopping distance and stopping time may differ.

5.4.2 Definition of Use

Load: Rated load weight and load on an arm
Speed: Operating speed of the manipulator
Extension: Distance between the rotation center and the P-point of each axis

5.4.3 Stopping Distance and Time for Stop Category 0: S-, L- and U-Axes

Measurement Conditions
- Load: Maximum load
- Speed: Maximum speed
- Posture: Maximum inertia generation posture

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (deg)</th>
<th>Stopping time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>27.0</td>
<td>0.77</td>
</tr>
<tr>
<td>L-axis</td>
<td>21.0</td>
<td>0.70</td>
</tr>
<tr>
<td>U-axis</td>
<td>24.8</td>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (deg)</th>
<th>Stopping time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>31.6</td>
<td>0.77</td>
</tr>
<tr>
<td>L-axis</td>
<td>23.8</td>
<td>0.66</td>
</tr>
<tr>
<td>U-axis</td>
<td>22.0</td>
<td>0.43</td>
</tr>
</tbody>
</table>
5.4 Stopping Distance and Time for S-, L-, and U-Axes

Table 5-6: YR-1-06VXH180-A10

<table>
<thead>
<tr>
<th>Axis</th>
<th>Stopping distance (deg)</th>
<th>Stopping time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>32.0</td>
<td>0.72</td>
</tr>
<tr>
<td>L-axis</td>
<td>24.0</td>
<td>0.51</td>
</tr>
<tr>
<td>U-axis</td>
<td>15.6</td>
<td>0.32</td>
</tr>
</tbody>
</table>
5.4.4 Stop Category 1: Stopping Distance and Time for Stop Category 1: S-, L- and U-Axes

5.4.4.1 Extension

Refer to fig. 5-4 "S-Axis Extension", fig. 5-5 "L-Axis Extension" and fig. 5-6 "U-Axis Extension" for each axis arm extension.

Fig. 5-4: S-Axis Extension

<table>
<thead>
<tr>
<th>Type</th>
<th>100% extension length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YR-1-08VH025-A00</td>
<td>2702</td>
</tr>
<tr>
<td>YR-1-08VXH180-A00</td>
<td>2702</td>
</tr>
<tr>
<td>YR-1-08VXH180-A10</td>
<td>2702</td>
</tr>
</tbody>
</table>
5 Basic Specifications
5.4 Stopping Distance and Time for S-, L-, and U-Axes

Fig. 5-5: L-Axis Extension

<table>
<thead>
<tr>
<th>Type</th>
<th>100% extension length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YR-1-06VXH225-A00</td>
<td>2377</td>
</tr>
<tr>
<td>YR-1-06VXH180-A00</td>
<td>2377</td>
</tr>
<tr>
<td>YR-1-06VHX180-A10</td>
<td>2377</td>
</tr>
</tbody>
</table>

Fig. 5-6: U-Axis Extension

<table>
<thead>
<tr>
<th>Type</th>
<th>100% extension length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YR-1-06VXH225-A00</td>
<td>1261</td>
</tr>
<tr>
<td>YR-1-06VXH180-A00</td>
<td>1261</td>
</tr>
<tr>
<td>YR-1-06VHX180-A10</td>
<td>1261</td>
</tr>
</tbody>
</table>
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.4.2 Stopping Distance and Time for Stop Category 1: S-axis (YR-1-06VXH225-A00)
5.4.3 Stopping Distance and Time for Stop Category 1: L-axis (YR-1-06VXH225-A00)

- Extension 100%
 - Load 100%
 - Load 66%
 - Load 33%

- Extension 66%
 - Load 100%
 - Load 66%
 - Load 33%

- Extension 33%
 - Load 100%
 - Load 66%
 - Load 33%
5.4.4.4 Stopping Distance and Time for Stop Category 1: U-axis (YR-1-06VXH225-A00)

![Graphs showing stopping distance and time for different loads and extension percentages.](image)
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.4.5 Stopping Distance and Time for Stop Category 1: S-axis (YR-1-06VXH180-A00)

![Graphs showing stopping distance and time for different extensions and loads.](image_url)
Stopping Distance and Time for Stop Category 1: L-axis (YR-1-06VXH180-A00)

- Extension 100%
 - Load 100%
 - Load 66%
 - Load 33%

- Extension 66%
 - Load 100%
 - Load 66%
 - Load 33%

- Extension 33%
 - Load 100%
 - Load 66%
 - Load 33%
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.4.7 Stopping Distance and Time for Stop Category 1: U-axis (YR-1-06VXH180-A00)
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.4.8 Stopping Distance and Time for Stop Category 1: S-axis (YR-1-06VXH180-A10)

Extension 100%

<table>
<thead>
<tr>
<th>Load</th>
<th>Speed [deg/s]</th>
<th>Stopping Distance [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>66%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Extension 66%

<table>
<thead>
<tr>
<th>Load</th>
<th>Speed [deg/s]</th>
<th>Stopping Distance [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>66%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Extension 33%

<table>
<thead>
<tr>
<th>Load</th>
<th>Speed [deg/s]</th>
<th>Stopping Distance [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>66%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33%</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
5 Basic Specifications
5.4 Stopping Distance and Time for S-, L-, and U-Axes

5.4.4.9 Stopping Distance and Time for Stop Category 1: L-axis (YR-1-06VXH180-A10)

[Diagrams showing stopping distance and time for different load percentages (100%, 66%, 33%) and speeds (0 to 250 deg/s)]
5.4.10 Stopping Distance and Time for Stop Category 1: U-axis (YR-1-06VXH180-A10)
5.5 Alterable Operating Range

The operating range of the S-axis can be altered in accordance with the operating conditions as shown in table 5-7 “S-Axis Operating Range”. If alteration is necessary, contact your YASKAWA representative in advance.

Table 5-7: S-Axis Operating Range

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis operating range*</td>
<td>-180° - +180° (standard)</td>
</tr>
<tr>
<td></td>
<td>-150° - +150°</td>
</tr>
<tr>
<td></td>
<td>-135° - +135°</td>
</tr>
<tr>
<td></td>
<td>-120° - +120°</td>
</tr>
<tr>
<td></td>
<td>-105° - +105°</td>
</tr>
<tr>
<td></td>
<td>-90° - +90°</td>
</tr>
<tr>
<td></td>
<td>-75° - +75°</td>
</tr>
<tr>
<td></td>
<td>-60° - +60°</td>
</tr>
<tr>
<td></td>
<td>-45° - +45°</td>
</tr>
<tr>
<td></td>
<td>-30° - +30°</td>
</tr>
</tbody>
</table>

*For the settable angles, refer to table 5-8 “The Settable Angle for S-Axis Stopper”.

5.5.1 Components for Altering Operating Range

Arrange the components listed in fig. 5-7 “Components of the S-Axis Stopper and Stopper Mounting Position”, when modifying the angle of S-axis.

- Pin (drawing No. HW0402104-1) (1 pin)
- Stopper (drawing No. HW1405450-1) (1 pc)
- Hexagon socket head cap screw M16 “FA coat” (length: 35 mm) (4 screws) (Tensile strength: 1200 N/mm² or more)
- Spring washer M16 “FA coat” (4 washers)
5 Basic Specifications
5.5 Alterable Operating Range

Fig. 5-7: Components of the S-Axis Stopper and Stopper Mounting Position

Hexagon head screw M16 "FA coat" (length: 35 mm) (4 screws)
(Tensile strength: 1200 N/mm² or more)
Conical spring washer M16 "FA coat" (4 washers)
Tightening torque: 348N·m

Example: For S-Axis Operating Angle of +180°

<table>
<thead>
<tr>
<th>S-axis operating angle</th>
<th>Stopper position</th>
</tr>
</thead>
<tbody>
<tr>
<td>±180°</td>
<td>①</td>
</tr>
<tr>
<td>(±165°)</td>
<td>②</td>
</tr>
<tr>
<td>±150°</td>
<td>③</td>
</tr>
<tr>
<td>±135°</td>
<td>④</td>
</tr>
<tr>
<td>±120°</td>
<td>⑤</td>
</tr>
<tr>
<td>±105°</td>
<td>⑥</td>
</tr>
<tr>
<td>±90°</td>
<td>⑦</td>
</tr>
<tr>
<td>±75°</td>
<td>⑧</td>
</tr>
<tr>
<td>±60°</td>
<td>⑨</td>
</tr>
<tr>
<td>±45°</td>
<td>⑩</td>
</tr>
<tr>
<td>±30°</td>
<td>⑪</td>
</tr>
<tr>
<td>±15°</td>
<td>⑫</td>
</tr>
<tr>
<td>0°</td>
<td>⑬</td>
</tr>
</tbody>
</table>

1. For the setting angle, refer to table 5-8.
5 Basic Specifications
5.5 Alterable Operating Range

5.5.2 Notes on the Mechanical Stopper Installation

When mounting the S-axis mechanical stopper, as shown in fig. 5-7 "Components of the S-Axis Stopper and Stopper Mounting Position", mount a pin (HW0402104-1) down on the stopper (HW1405450-1).

When mounting the pin on the stopper, apply LOCTITE 243 to the thread part.

Mount the stopper by using the hexagon socket head cap screw M16 (length: 35 mm) (four screws) (FA coated) on the S head and tighten them with the tightening torque 348 N•m.

If the operating range is ± 180°, the mechanical stopper is mounted as shown in fig. 5-7 "Components of the S-Axis Stopper and Stopper Mounting Position".

The S-axis mechanical stopper can be set at a pitch of 15°, however, other stops may be overlapped, for example, ± 15° or ± 165°. Therefore, mount the S-axis mechanical stopper using the combinations in table 5-8 "The Settable Angle for S-Axis Stopper".

5.5.3 Adjustment to the Pulse Limitation of S-Axis

For altering the range of motion of S-Axis, refer to chapter 6.13 “Softlimit Setting Function” in “YRC1000 GENERAL OPERATOR'S MANUAL (RE-CSO-A051)”. With programming pendant, input the numeric value as shown in the following table to modify the parameter.

<table>
<thead>
<tr>
<th>Degree</th>
<th>0°</th>
<th>±15°</th>
<th>±30°</th>
<th>±45°</th>
<th>±60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse</td>
<td>±28672</td>
<td>±57344</td>
<td>±86016</td>
<td>±114688</td>
<td></td>
</tr>
<tr>
<td>Degree</td>
<td>±75°</td>
<td>±90°</td>
<td>±105°</td>
<td>±120°</td>
<td>±135°</td>
</tr>
<tr>
<td>Pulse</td>
<td>±143360</td>
<td>±172032</td>
<td>±200704</td>
<td>±229376</td>
<td>±258048</td>
</tr>
<tr>
<td>Degree</td>
<td>±150°</td>
<td>±165°</td>
<td>±180°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>±286720</td>
<td>±315392</td>
<td>±344064</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Refer to chapter 5.5 “Alterable Operating Range”.

Adjust both of the pulse limitation and the angle of S-Axis mechanical stopper as modifying the range of motion for machinery.

NOTE

1. Apply the specified components when mounting the S-Axis mechanical stopper.
2. Turn OFF the electric power supply before mounting.
Table 5-8: The Settable Angle for S-Axis Stopper

| Angle (°) | -180 | -165 | -150 | -135 | -120 | -105 | -90 | -75 | -60 | -45 | -30 | -15 | 0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 |
|-----------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Direction | <180 | 165 | 150 | 135 | 120 | 105 | 90 | 75 | 60 | 45 | 30 | 15 | 0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 |

The Angle of S-Axis Stopper for - Direction

The Angle of S-Axis Stopper for + Direction
6 Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load

The allowable payload of the wrist axis including the mass of the grip is shown below.

○ YR-1-06VXH225-A00
 : a maximum of 225 kg
 (Refer to fig. 5-2 "Dimensions and P-Point Maximum Envelope").

○ YR-1-06VXH180-A00
 : a maximum of 180 kg
 (Refer to fig. 5-2 "Dimensions and P-Point Maximum Envelope").

○ YR-1-06VXH180-A10
 : a maximum of 110 kg
 (Refer to fig. 5-2 "Dimensions and P-Point Maximum Envelope").

However, the conditions listed in table 6-1(a), table 6-1(b), and table 6-1(c) must be satisfied due to limits of moments and the moment of inertia.

The values in table 6-1(a), table 6-1(b), and table 6-1(c) must not be exceeded even if the load is not applied as mass but applied as force.

Table 6-1(a): Allowable Wrist Load (YR-1-06VXH225-A00)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Allowable moment N•m (kgf•m)</th>
<th>Allowable inertia (GD^2/4) kg•m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Axis</td>
<td>1372 (140)</td>
<td>209.8</td>
</tr>
<tr>
<td>B-Axis</td>
<td>1372 (140)</td>
<td>209.8</td>
</tr>
<tr>
<td>T-Axis</td>
<td>735 (75)</td>
<td>162.1</td>
</tr>
</tbody>
</table>

1 (): Gravitational unit

Table 6-1(b): Allowable Wrist Load (YR-1-06VXH180-A00)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Allowable moment N•m (kgf•m)</th>
<th>Allowable inertia (GD^2/4) kg•m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Axis</td>
<td>1000 (102)</td>
<td>104</td>
</tr>
<tr>
<td>B-Axis</td>
<td>1000 (102)</td>
<td>104</td>
</tr>
<tr>
<td>T-Axis</td>
<td>618 (63)</td>
<td>52</td>
</tr>
</tbody>
</table>

1 (): Gravitational unit

Table 6-1(c): Allowable Wrist Load (YR-1-06VXH180-A10)

<table>
<thead>
<tr>
<th>Axis</th>
<th>Allowable moment N•m (kgf•m)</th>
<th>Allowable inertia (GD^2/4) kg•m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Axis</td>
<td>883 (90.1)</td>
<td>85</td>
</tr>
<tr>
<td>B-Axis</td>
<td>883 (90.1)</td>
<td>85</td>
</tr>
<tr>
<td>T-Axis</td>
<td>520 (53.1)</td>
<td>40</td>
</tr>
</tbody>
</table>

1 (): Gravitational unit
6. Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load

When the volume of the load is relatively small, refer to the moment arm rating \((L_2, L_1)\) shown in fig. 6-1(a), fig. 6-1(b), and fig. 6-1(c).

Each value of the allowable inertia above is calculated assuming that the moment load is at the maximum. Thus, in the case when only the inertia load is applied, when the moment load is small while the inertia load is large, or when the load is not applied as mass but applied as force, etc., contact your YASKAWA representative in advance.

When a tool is installed, the tool information and the load information must be set. For the setting, refer to chapter 8.3 “Tool Data Setting” and chapter 8.4 “ARM Control” in “YRC1000 INSTRUCTIONS (RE-CTO-AC21)”.
6 Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load

Fig. 6-1(a): Moment Arm Rating (YR-1-06VXH225-A00)

![Diagram](image1)

Fig. 6-1(b): Moment Arm Rating (YR-1-06VXH180-A00)

![Diagram](image2)
6 Allowable Load for Wrist Axis and Wrist Flange
6.1 Allowable Wrist Load

Fig. 6-1(c): Moment Arm Rating (YR-1-06VXH180-A10)

- B-axis rotation center
- R-, T-axis rotation center
- Center of gravity (COG) of end tool
- LB
- LT

<table>
<thead>
<tr>
<th>LB (mm)</th>
<th>LT (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Load vs. Moment Arm Chart

W=110
W=80
W=60
W=50
6.2 Wrist Flange

The wrist flange dimensions are shown in fig. 6-2: “Wrist Flange (YR-1-06VXH225-A00)”. When mounting an attachment, it is recommended that a knock pin be used so that the alignment mark can be seen. Since the alignment mark and option mounting part are on the outside, the fitting depth shall be 9 mm or less.

Fig. 6-2: Wrist Flange (YR-1-06VXH225-A00)

Holes M10 (6 holes) (Pitch: 1.5) (Depth: 17 mm)

Holes M10 (6 holes) (Pitch: 1.5) (Depth: 17 mm)

8 mm (200 dia. (2 holes) (Depth: 8 mm)

10 dia. (2 holes) (Depth: 8 mm)

10 dia. (2 holes) (Depth: 8 mm)

NOTE

Wash off anti-corrosive paint (yellow) on the wrist flange surface with thinner before mounting the tools.
7 System Application

7.1 Peripheral Equipment Mounts

The peripheral equipment mounts are provided as shown in fig. 7-1) "Installation Position (YR-1-06VXH225-A00)" for easier installation of the user’s system applications. The following conditions shall be observed to attach or install peripheral equipment.

7.1.1 Allowable Load

The allowable load on the peripheral equipment mounts of the U-arm (A1 and A2) is 30 kg or less in total. And the amount of increase for the upper arm moment must be 49 N•m (5 kgf•m) or less when loading the allowable load. The allowable load on the peripheral equipment mounts (B) of the rotation head is up to 250 kg.

When a load is applied on the U-arm or the rotary head, the load setting must be performed. For setting procedures, refer to chapter 8.4 “ARM Control” in “YRC1000 INSTRUCTIONS (RE-CTO-A221)”.

CAUTION

- Do not make any additional holes or tapped holes on the manipulator’s body. Failure to observe this instruction may adversely affect the safety and/or performance of the manipulator.
- YASKAWA provides no guarantee against damages, malfunctions, failures, etc. caused by using any means other than the tapped holes shown in the following figure. The tightening bolts used for the mechanical parts of the manipulator must be used only to secure the mechanical parts. Do not additionally secure or attach any other things by using these tightening bolts.
7.1.2 Installation Position

There is a limitation on where to install the peripheral equipment as shown in fig. 7-1 "Installation Position (YR-1-06VXH225-A00)".

Fig. 7-1: Installation Position (YR-1-06VXH225-A00)
7 System Application
7.2 Internal User I/O Wiring Harness and Air Line

7.2 Internal User I/O Wiring Harness and Air Line

Internal user I/O wiring harness (0.75 mm² x 11 wires, 0.5 mm² x 12 wires), the cable of the external 1 axis (2.0 mm² x 4 cables, 0.75 mm² x 2 cables, 0.2 mm² x 6 cables) and one air line are incorporated into the manipulator for driving peripheral devices mounted on the U-arm as shown in fig. 7-2 “Connectors for Internal User I/O Wiring Harness and Air Line”.

The connector pins are assigned as shown in fig. 7-3 “Details of the Connector Pin Numbers”. Wiring must be performed by user.

The operating conditions are shown in the following table.

<table>
<thead>
<tr>
<th>The allowable current for cables</th>
<th>The total current value for connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 A or less for each wire (2.0 mm²)</td>
<td>78.3 A or less (connector for the power of the external axis)</td>
</tr>
<tr>
<td>10.0 A or less for each wire (0.75 mm²)</td>
<td>12.9 A or less (connector for the encoder of the external axis)</td>
</tr>
<tr>
<td>7.5 A or less for each wire (0.5 mm²)</td>
<td>42.0 A or less (connector for the internal user I/O wiring harness)</td>
</tr>
<tr>
<td>3.0 A or less for each wire (0.2 mm²)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The maximum pressure for the air line</th>
<th>The allowable temperature range of the air line</th>
</tr>
</thead>
<tbody>
<tr>
<td>490 kPa (5 kgf/cm²) or less. (The inside diameter: 8.0 mm)</td>
<td>0°C - +45°C</td>
</tr>
</tbody>
</table>

Fig. 7-2: Connectors for Internal User I/O Wiring Harness and Air Line

Connector for the internal user I/O wiring harness
JL05-2A24-28SC (socket connector with a cap)
Prepare pin connector: JL05-6A24-28P

Connector for the encoder of the external axis
JL05-2A20-29SC (socket connector with a cap)
Prepare pin connector: JL05-6A20-29P

Connector for the power supply of the external axis
CE01-2A20-29S(D69)-D (socket connector with a cap)
Prepare pin connector: JL05-6A20-15S

Connector for the internal user I/O wiring harness
JL05-2A24-28SC (socket connector with a cap)
Prepare pin connector: JL05-6A24-28P

==Exhaust port==

Air Inlet
PT3/8 with a pipe plug

Connector for the internal user I/O wiring harness
JL05-2A24-28S (pin connector with a cap)
Fig. 7-3: Details of the Connector Pin Numbers

For the U-arm: View B

For the Connector Base: View A

For the Internal user I/O wiring harness:

- 4×2.0 mm²
- 2×0.75 mm²

Details of the connector for the power of the external axis:

- 6×0.2 mm²

Details of the connector for the encoder of the external axis:

- 6×0.2 mm²

Details of the connector for internal user I/O wiring harness pin numbers:

- 12×0.5 mm²
- 11×0.75 mm²

Pins used:

1 (2.0 mm²)
2 (2.0 mm²)
3 (2.0 mm²)
4 (2.0 mm²)
5 (0.75 mm²)
6 (0.75 mm²)
7 (0.75 mm²)
8 (0.75 mm²)
9 (2.0 mm²)
10 (0.75 mm²)
11 (0.75 mm²)
12 (Open)
• Pins No. 3, 4, 5, 6, 7, 8, 13, 14, and 16 of the connector for the encoder of the external axis are not connected.
• For wiring, refer to fig. 8-5(a) "Internal Connection Diagram (YRC1000)" fig. 8-5(b) "Internal Connection Diagram (YRC1000)".
7 System Application

7.3 Mating Connector for Internal User I/O Wiring Harness (Optional)

The mating connector for internal user I/O wiring harness is optional. For the position of the mating connector for internal user I/O wiring harness, refer to fig. 7-4 “Location of Connector”.

For the mating connector for internal user I/O wiring harness, two different types of the end bell are prepared depending on the form: Straight type and Elbow type. Select either one type.

Fig. 7-4: Location of Connector

<table>
<thead>
<tr>
<th></th>
<th>Manipulator’s base part</th>
<th>U-arm part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector for the internal user I/O wiring harness</td>
<td>Plug: JL05-6A24-28S or the equivalent</td>
<td>Plug: JL05-6A24-28P or the equivalent</td>
</tr>
<tr>
<td></td>
<td>End bell: JL05-24EB1A-R or the equivalent</td>
<td>End bell: JL05-24EB1A-R or the equivalent</td>
</tr>
<tr>
<td></td>
<td>Casing plug: N/MS3057-16A or the equivalent (straight form)</td>
<td>Cable clamp: N/MS3057-16A or the equivalent (straight form)</td>
</tr>
<tr>
<td>Elbow Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector for the internal user I/O wiring harness</td>
<td>Plug: JL05-6A24-28S or the equivalent</td>
<td>Plug: JL05-6A24-28P or the equivalent</td>
</tr>
<tr>
<td></td>
<td>End bell: JL05-24EB1A-R or the equivalent</td>
<td>End bell: CE-24BA-S-D or the equivalent</td>
</tr>
<tr>
<td></td>
<td>Casing plug: N/MS3057-16A or the equivalent (straight form)</td>
<td>Cable clamp: N/MS3057-16A or the equivalent (elbow form)</td>
</tr>
</tbody>
</table>
7 System Application
7.3 Mating Connector for Internal User I/O Wiring Harness (Optional)

Straight Type

The appearance of the manipulator with the connector installed is shown in fig. 7-5(a) “Manipulator With the Mating Connector for Internal User I/O Wiring Harness (straight type)”. When operating, be careful not to let the connector and/or cable touch the other equipment.

Fig. 7-5(a): Manipulator With the Mating Connector for Internal User I/O Wiring Harness (straight type)

Elbow Type

The appearance of the manipulator with the connector installed is shown in fig. 7-5(b) “Manipulator With the Mating Connector for Internal User I/O Wiring Harness (elbow type)”. When the connector with the elbow type of end bell is installed, the direction shown in the following figure is recommended for the connector installation. When assembling the connector, the key must be located at the position shown in the following figure.

Fig. 7-5(b): Manipulator With the Mating Connector for Internal User I/O Wiring Harness (elbow type)
8 Electrical Equipment Specification

8.1 Overrun Limit Switches (Optional)

The overrun limit switches (referred to below as the limit switches) can be optionally installed for the S-, L-, and U-axes.

The soft limit and the activation angles of the limit switch for each axis when the manipulator is shipped with limit switches installed at the factory are given in Table 8-1 “Degrees of Angle (with limit switch installed)".

Table 8-1: Degrees of Angle (with limit switch installed)

<table>
<thead>
<tr>
<th>Soft limit</th>
<th>Limit switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>-180° to +180°</td>
</tr>
<tr>
<td>L-axis</td>
<td>-60° to +76°</td>
</tr>
<tr>
<td>U-axis</td>
<td>-86° to +90°</td>
</tr>
</tbody>
</table>

8.1.1 Position of Limit Switch

For the locations of the limit switches, refer to fig. 8-1 “Location of Limit Switches".
8 Electrical Equipment Specification
8.1 Overrun Limit Switches (Optional)

8.1.2 Adjustment to the Activation Angle of Limit Switch

When altering the operating angle of the manipulator, adjust both the soft limit and the activation angle of the limit switch. The activation angle of the limit switch must be larger than the soft limit.

For adjusting soft limit, refer to chapter 6.13 “Softlimit Setting Function” in “YRC1000 GENERAL OPERATOR'S MANUAL (RE-CSO-A051)”.

For releasing soft limit, refer to chapter 8.10 “Soft Limit Release Function” in “YRC1000 INSTRUCTIONS (RE-CTO-A221)”.

For adjusting limit switch, refer to the following.

- **Adjusting activation angle of limit switch of S-axis**
 The activation angle of limit switch of S-axis can be adjusted by altering the position of the S-axis stopper. For altering the stopper’s position, refer to chapter 5.5 “Alterable Operating Range”.

- **Adjusting activation angle of limit switch of L-axis**
 The activation angle of limit switch of L-axis can be adjusted by altering the position of the dog on the ring which is mounted on the L-axis. Refer to fig. 8-2 “Adjustment of Dog (L-axis)”.

- **Adjusting activation angle of limit switch of U-axis**
 The activation angle of limit switch of U-axis can be adjusted by altering the position of the dog on the ring which is mounted on the U-axis. Refer to fig. 8-3 “Adjustment of Dog (U-axis)”.

Fig. 8-2: Adjustment of Dog (L-axis)

Fig. 8-3: Adjustment of Dog (U-axis)
8.2 Servo ON Lamp (Optional)

The servo ON lamp can be installed (optional). For the location of the servo ON lamp, refer to fig. 8-4 "Location of Servo ON Lamp".

Fig. 8-4: Location of Servo ON Lamp
8.3 Internal Connections

Diagrams for Internal connections of the manipulator are shown in fig. 8-5(a) “Internal Connection Diagram (YRC1000)”, fig. 8-5(b) “Internal Connection Diagram (YRC1000)”.
When performing the wiring of the overrun limit switch, pay attention to wires. The letter marked on the marker tube at point (LB1 and LD1) are the same.
Fig. 8-5(b): Internal Connection Diagram (YRC1000)
9 Maintenance and Inspection

9.1 Inspection Schedule

Proper inspections are essential not only to assure that the mechanism will be able to function for a long period, but also to prevent malfunctions and assure safe operation. Inspection intervals are classified into six levels as shown in table 9-1 “Inspection Items”.

In table 9-1, the inspection items are categorized by three types of operations: operations which can be performed by personnel authorized by the user, operations to be performed by trained personnel, and operations to be performed by service company personnel. Only specified personnel shall perform the inspection work.

- The interval between inspections is calculated according to the total servo operation time.
- If axes are used very frequently (in handling applications, etc.), inspections may be required at shorter intervals. Contact your YASKAWA representative.
- A small amount of oil used to maintain sealing performance may leak from the bottom part of the gas balancer.

DANGER
• Do not remove the motor, and do not release the brake.
Failure to observe these safety precautions may result in death or serious injury from unexpected turning of the manipulator's arm.

WARNING
• Maintenance and inspection must be performed by specified personnel.
Failure to observe this caution may result in electric shock or injury.
• For disassembly or repair, contact your YASKAWA representative.
• Before maintenance or inspection, be sure to turn the main power supply OFF, and put up a warning sign. (ex. DO NOT TURN THE POWER ON.) Failure to observe this warning may result in electric shock or injury.

NOTICE
• Do not remove the connector between the motor and the multi-port connector during maintenance and inspection.
Failure to observe this caution may result in the loss of home position data.

NOTE
• The interval between inspections is calculated according to the total servo operation time.
• If axes are used very frequently (in handling applications, etc.), inspections may be required at shorter intervals. Contact your YASKAWA representative.
• A small amount of oil used to maintain sealing performance may leak from the bottom part of the gas balancer.
Table 9-1: Inspection Items (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Items</th>
<th>Schedule</th>
<th>Method</th>
<th>Operation</th>
<th>Inspection Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
<td>1000 h Cycle</td>
<td>6000 h Cycle</td>
<td>12000 h Cycle</td>
</tr>
<tr>
<td>1. Alignment mark</td>
<td>Visual</td>
<td>Check alignment mark accordance at the home position. Check for damage. Check for misalignment of the position at the check point.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>2. Working area and manipulator</td>
<td>Visual</td>
<td>Check for seeped oil. Clean the work area if dust, spatter or seeped oil is present. Check for damage and outside cracks.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>3. Base plate mounting bolts</td>
<td>Spanner Wrench</td>
<td>Tighten loose bolts. Replace if necessary.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>4. Covers, bolts for the connector base</td>
<td>Driver Wrench</td>
<td>Tighten loose bolts. Replace if necessary.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>5. Connector for manipulator cable</td>
<td>Manual</td>
<td>Check for loose connectors.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>6. Protective tubing</td>
<td>Visual</td>
<td>Clean the spatter. Check for holes or tears. (Replace it if any.)</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>7. Gas balancer</td>
<td>Grease Gun</td>
<td>Supply grease to the joint of the gas balancer</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>8. Wire harness in manipulator (Lead wires for the S-, L-, U-, R-, B-, T-axes) (Power supply board included)</td>
<td>Visual</td>
<td>Check the condition of the internal wiring harness Check wear to the protective spring (replace if there is abnormal wear).</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>9. Battery pack in manipulator</td>
<td></td>
<td>Replace the battery pack when the battery alarm occurs or the manipulator drove for 24000 h.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
<tr>
<td>10. Motors for all axes</td>
<td>Visual</td>
<td>Check for grease leakage.</td>
<td>Specified Personnel</td>
<td>Licensee</td>
</tr>
</tbody>
</table>
9 Maintenance and Inspection

9.1 Inspection Schedule

11 Speed reducers for all axes
 • Grease Gun Check for malfunction. (Replace if necessary.)
 • Replace grease 2) (12000 h cycle).

12 R-, B-, and T-axes gear
 • Grease Gun Check for malfunction. (Replace if necessary.)
 • Supply grease 2) (12000 h cycle).

13 Overhaul

1 Inspection No. correspond to the numbers in fig. 9-1 “Inspection Items”.
2 For the grease, refer to table 9-2 “Inspection Parts and Grease Used”.

<table>
<thead>
<tr>
<th>No.</th>
<th>Grease Used</th>
<th>Inspected Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Alvania EP grease 2</td>
<td>Joint of the balancer</td>
</tr>
<tr>
<td>12</td>
<td>Molywhite RE No. 00</td>
<td>Speed reducers for all axes R-, B-, and T-axis gear</td>
</tr>
</tbody>
</table>

Table 9-1: Inspection Items (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Items 1)</th>
<th>Schedule Method</th>
<th>Operation</th>
<th>Inspection Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Daily 1000 h Cycle</td>
<td>Grease Gun</td>
<td>Check for malfunction. (Replace if necessary.)</td>
</tr>
<tr>
<td></td>
<td>6000 h Cycle</td>
<td></td>
<td>Replace grease 2) (12000 h cycle).</td>
</tr>
<tr>
<td></td>
<td>12000 h Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24000 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36000 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R-, B-, and T-axes gear</td>
<td>Grease Gun</td>
<td>Check for malfunction. (Replace if necessary.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Supply grease 2) (12000 h cycle).</td>
</tr>
<tr>
<td>13</td>
<td>Overhaul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9-2: Inspection Parts and Grease Used
9.1 Inspection Schedule

The numbers in the above table correspond to the numbers in Table 9-1: Inspection Items.
9.2 Notes for Maintenance

9.2.1 Multi-Port Connector

Multi-port connectors (refer to fig. 9-2 “Multi-Port Connector”) for the motor signals are mounted on each part of the manipulator. (For the locations, refer to fig. 9-7 “Location of the Battery and Multi-port Connector”) The multi-port connector has four ports: two for the motor and the other two for the wire harness. (Refer to fig. 9-3 “Wiring of Multi-Port Connector Part”)

When disconnecting the connector of the multi-port connector during the battery replacement, be careful not to disconnect the connector between the motor and the multi-port connector. If the connector between the motor and the multi-port connector is disconnected, the encoder absolute data will disappear.

Fig. 9-2: Multi-Port Connector

Fig. 9-3: Wiring of Multi-Port Connector Part
9.3 Notes on Maintenance Procedures

9.3.1 Home Position Check

There are alignment marks on each axis to check the home position. With those alignment marks, periodically check for home position deviation. When home position is disappeared or deviated, contact your YASKAWA representative.

Fig. 9-4: Alignment Mark Check
9.3.2 Seeped Oil Check

Periodically check for contamination due to seeped oil or oil spot. Especially the parts indicated in fig. 9-5: “Inspection Parts for Seeped Oil Check” must be inspected carefully. Wipe off seeped oil or oil spot with a cloth before use.

Fig. 9-5: Inspection Parts for Seeped Oil Check
9.3.3 L-, U-, R-, B-, and T-axis Motors

For castings of the L-, U-, R-, B- and T-axis motor, there is a notch for detecting grease leakage.

Check if grease is leaking from the notch.

For the notch part of each axis, refer to fig. 9-6 “Positions of Grease-Leakage Detection Hole”.

If grease leakage is detected, contact your YASKAWA representative.

Fig. 9-6: Positions of Grease-Leakage Detection Hole
9.3.4 Battery Pack Replacement

The battery packs are installed in the position shown in Fig. 9-7 “Location of the Battery and Multi-port Connector”. If the battery alarm occurs in the YRC1000, replace the battery in accordance with the following procedure:

Fig. 9-7: Location of the Battery and Multi-port Connector

- Battery pack for the external axis
- Battery pack for U-, R-axes
- Battery pack for the external axis

Fixing bolt for the cover
- Hexagon socket head cap screw M5 (length: 12 mm) (4 screws)
- Conical spring washer M5 (4 washers)
- Tightening torque: 6.0 Nm

- Multi-port connector
- Protective tube
- Battery pack for S-, L-axes
- Cable tie
- Cover

Fixing bolt for the cover
- Hexagon socket head cap screw M5 (length: 12 mm) (2 screws)
- "Trivalent chromate"
- Tightening torque: 6.0 Nm

Section B-B

When the Cover is Removed

View A

View B

View C
9.3 Notes on Maintenance Procedures

- Normal (The power supply of the YRC1000 can be turned ON)

Fig. 9-8: Battery connection (the power supply of the YRC1000 can be turned ON)

1. Turn ON the power supply of the YRC1000 and turn OFF the servo power.

DANGER

- Make sure to perform the battery replacement with the emergency stop button being pressed.
Failure to observe this instruction may cause improper movement of the manipulator which may result in personal injury and/or equipment damage.

NOTE

- When reinstalling the cover, be careful not to get caught the cable.

2. Loosen the cover mounting bolts and remove the cover.
3. The old battery pack is fixed by using the cable tie. Cut the cable tie (1 place) to remove the old battery pack from the protective tube.
4. The connector is in the protective tube. Cut the cable ties (2 places) fixing the protective tube, and take out the connector.
5. Remove the old battery pack from the multi-port connector and mount the new battery pack.
6. Fix the new battery pack by using the cable tie T50R-HSW.
7. After placing the connector and the lead wires around the connector into the protective tube, fix the opening of the protective tube by using the cable tie T18L-HSW.
8. Fix the new battery pack and the protective tube in which the connector is placed at step 7 by using the cable tie T18L-HSW.
9. Tighten the cover mounting bolts to reinstall the cover.
9 Maintenance and Inspection

9.3 Notes on Maintenance Procedures

When the Power Supply of the YRC1000 Cannot Be Turned ON

Fig. 9-9: Battery Connection (the power supply of the YRC1000 cannot be turned ON)

1. Prepare lead wires for battery replacement and a battery pack for backup. (Apart from the new battery pack for replacement, prepare a battery pack for backup)
2. Loosen the cover mounting bolts and remove the cover.
3. Remove the connector from the “IN” port of the multi-port connector. Connect the lead wires for battery replacement to the “IN” port of the multi-port connector.
4. Connect the battery pack for backup to the lead wires for battery replacement.
5. The old battery pack is fixed by using the cable tie. Cut the cable tie (1 place) to remove the old battery pack from the protective tube.
6. The connector is in the protective tube. Cut the cable ties (2 places) fixing the protective tube, and take out the connector.
7. Remove the old battery pack from the multi-port connector and mount the new battery pack.
8. Remove the lead wires for battery replacement and the battery pack for backup from the multi-port connector, connect the connector which has been removed at step 3 of this procedure to the “IN” port again.

NOTE

Before removing the old battery pack, make sure to connect the battery pack for backup to prevent the encoder absolute data from disappearing.

5. The old battery pack is fixed by using the cable tie. Cut the cable tie (1 place) to remove the old battery pack from the protective tube.
6. The connector is in the protective tube. Cut the cable ties (2 places) fixing the protective tube, and take out the connector.
7. Remove the old battery pack from the multi-port connector and mount the new battery pack.
8. Remove the lead wires for battery replacement and the battery pack for backup from the multi-port connector, connect the connector which has been removed at step 3 of this procedure to the “IN” port again.

NOTE

If the battery pack for backup remains connected, an electric current flows from the new battery to the backup battery and which may result in the voltage drop in the new battery. Remove the battery pack for backup immediately after connecting the new battery.

9. Fix the new battery pack by using the cable tie T50R-HSW.
9 Maintenance and Inspection
9.3 Notes on Maintenance Procedures

10. After placing the connector and the lead wires around the connector into the protective tube, fix the opening of the protective tube by using the cable tie T18L-HSW.

11. Fix the new battery pack and the protective tube in which the connector is placed at step 10 by using the cable tie T18L-HSW.

12. Tighten the cover mounting bolts to reinstall the cover.

NOTE
When reinstalling the cover, be careful not to get caught by the cable.
9.4 Notes on Grease Replenishment/Exchange Procedures

9.4.1 Grease Exchange Procedures for the Speed Reducers

Make sure to follow the instructions listed below at grease replenishment/exchange. Failure to observe the following notes may result in damage to motor and speed reducer.

- If grease is injected without removing the plug from the grease exhaust port, the grease will leak inside a motor, or an oil seal of a speed reducer will come off. Make sure to remove the plug or it may result in a failure. Also, when using a tube, the length must be 150 mm or shorter and the inside diameter must be 6 mm or longer. If the tube is too long, the exhaust resistance at the tube part is increased, and the inner pressure of the grease bath is raised. It may result in coming off of an oil seal.

- Make sure to use a grease pump to inject grease. Set the grease injection rate to 7 g/s or less. (Air supply pressure to the grease pump: 0.3 MPa or less (rough standard))

- When using extrusion air for discharging the grease, set air supply pressure at 0.025 MPa or less. If the air supply pressure is higher than above mentioned value, an oil seal of a speed reducer will come off, and it may result in a failure.

- When using extrusion air for discharging grease, grease may be vigorously discharged from the exhaust port. Perform an operation such as using a tube at the grease exhaust port to pour into an appropriate container.

- Make sure to fill the hose on the grease inlet with grease beforehand to prevent air from leaking into the speed reducer.

- After injecting grease, discharge the specified amount of grease. If insufficient, the inner pressure is raised during the operation, and grease may leak. When discharged too much, the speed reducer is not lubricated sufficiently during the operation, and it may cause the early failure of the speed reducer.

- When filling/exchanging grease, the grease may flow out from the grease inlet or the grease exhaust port. Prepare a container to receive the grease and a waste cloth to wipe the grease in advance.

- After mounting a speed reducer or a motor, and then wait for 30 minutes or more and then inject grease. If grease is filled before the sealing bond is solidified, it may cause grease to leak.
WARNING

- When operating the manipulator, do not enter into the working area of the manipulator. Injury may result if anyone enter into the working area during operation.
9.4.2 Grease Exchange Procedure

Fig. 9-10: Grease Inlets and Exhaust Ports for Each Axis

- Grease inlet of L-axis (Hexagon socket head plug PT1/8)
- Grease exhaust port of L-axis (Hexagon socket head plug PT3/8)
- Grease inlet of S-axis (Hexagon socket head plug PT1/4)
- Grease exhaust port of S-axis (Hexagon socket head plug PT3/8)
- Grease inlet of U-axis (Hexagon socket head plug PT1/8)
- Grease exhaust port of U-axis (Hexagon socket head plug PT3/8)
- Grease inlet of B-axis (Hexagon socket head plug PT1/8)
- Grease exhaust port of B-axis (Hexagon socket head plug PT1/8)
- Grease inlet of T-axis (Hexagon socket head plug PT1/8)
- Grease exhaust port of T-axis (Hexagon socket head plug PT3/8)
- Grease inlet of R-axis in the casing (Hexagon socket head plug PT1/8)
- Grease exhaust port of R-axis in the casing (Hexagon socket head plug PT3/8)
- Grease inlet of R-axis speed reducer in the casing (Hexagon socket head plug PT1/8)
- Grease exhaust port of R-axis speed reducer in the casing (Hexagon socket head plug PT3/8)
- Grease inlet of L-axis 2 (Hexagon socket head plug PT1/8)
- Grease exhaust port of L-axis 2 (Hexagon socket head plug PT3/8)
- Grease inlet of U-axis (Hexagon socket head plug PT1/8)
1. Before injecting grease, the posture of the manipulator must be set as indicated in Table 9-3 “Recommended Posture for Grease Injection”. If it is difficult to make the recommended posture because of external cabling or etc., adjust the posture as much as possible to make the position of the grease inlet located in the lower part and the position of exhaust port located in the upper part. If the exhaust port is located in the lower part, grease may not be exchanged properly.

Table 9-3: Recommended Posture for Grease Injection

<table>
<thead>
<tr>
<th>Axis to inject</th>
<th>S-axis</th>
<th>L-axis</th>
<th>U-axis</th>
<th>R-axis</th>
<th>B-axis</th>
<th>T-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>L-axis</td>
<td>Any</td>
<td>0°</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>U-axis</td>
<td>Any</td>
<td>0°</td>
<td>0°</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>R-axis</td>
<td>Any</td>
<td>0°</td>
<td>0°</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>B-axis</td>
<td>Any</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>Any</td>
</tr>
<tr>
<td>T-axis</td>
<td>Any</td>
<td>20°</td>
<td>-70°</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
</tbody>
</table>

*1 If the recommended posture of the L-axis cannot be made, make the U-arm horizontal to the ground.

*2 If the recommended posture of the L- and U-axis cannot be made, set that the wrist part is on the ground side and the U-arm is horizontal to the ground.

2. Remove the hexagon socket head plugs from the grease inlet and grease exhaust port.

3. Install a grease zerk A-PT3/8 to the grease inlet.

(The grease zerk is delivered with the manipulator.)

4.Inject the grease through the grease inlet using a grease gun.

※ There are two grease inlets on the speed reducer of both the R-axis and T-axis.

Grease inlets of R-axis 1 and 2 and grease inlets of T-axis 1 and 2 as shown in Table 9-10 “Grease Inlets and Exhaust Ports for Each Axis”.

To fill the hollow structure of the speed reducer with new grease, fill the speed reducer with grease from grease inlet 1 until the new grease starts to come out of grease inlet 2. Next, mount the plug to grease inlet 1, and then fill the speed reducer with the remaining amount of grease from grease inlet 2.

- Grease type: Molywhite RE No.00
- Recommended grease lubricator “Powerlube P3C (made by Macnaught)”
- Amount of grease: 7 g/s or less
 (For example, if grease is supplied from the lubricator at 2 times/s, set the amount to 3.5 g/time or less.)
- Air supply pressure of grease pump: Approximately 0.3 MPa or less

Table 9-4: Amount of Grease

<table>
<thead>
<tr>
<th>Axis to exchange grease</th>
<th>Amount of grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>Approx. 4350 g</td>
</tr>
<tr>
<td>L-axis</td>
<td>Approx. 2180 g</td>
</tr>
<tr>
<td>U-axis</td>
<td>Approx. 2180 g</td>
</tr>
<tr>
<td>R-axis</td>
<td>Approx. 2090 g</td>
</tr>
<tr>
<td>B-axis</td>
<td>Approx. 3160 g</td>
</tr>
<tr>
<td>T-axis</td>
<td>Approx. 3550 g</td>
</tr>
</tbody>
</table>
9 Maintenance and Inspection

9.4 Notes on Grease Replenishment/Exchange Procedures

5. Injection stop:
 – <When replacing the speed reducer>
 Stop injecting grease when grease can be seen from the exhaust port.
 – <When exchanging grease>
 The old grease is discharged from the grease exhaust port. At this time, stop injection when the mixture of the old grease and the new grease in an equal ratio is seen.
 And then, skip the steps 6 and 7, and proceed to the step 8.

6. Operate each axis about 5 times in the teach mode as shown in table 9-5 “Teaching Operation for Each Axis”.

<table>
<thead>
<tr>
<th>Axis to replenish grease</th>
<th>Angle for teaching operation</th>
<th>Speed for teaching operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>S-axis ±45°</td>
<td>User-specified</td>
</tr>
<tr>
<td>L-axis</td>
<td>L-axis ±45°</td>
<td></td>
</tr>
<tr>
<td>U-axis</td>
<td>U-axis ±45°</td>
<td></td>
</tr>
<tr>
<td>R-axis</td>
<td>R-axis ±90°</td>
<td></td>
</tr>
<tr>
<td>B-axis</td>
<td>B-axis ±45°</td>
<td></td>
</tr>
<tr>
<td>T-axis</td>
<td>T-axis ±90°</td>
<td></td>
</tr>
</tbody>
</table>

7. Inject grease again, and when grease comes out of the exhaust port, grease injection is completed.

8. Discharge the specified amount of grease from the grease inlet or grease exhaust port. (Refer to table 9-5 “Teaching Operation for Each Axis”.) In order to discharge the specified amount of grease, receive the discharged grease by using a container, and then measure the weight of the discharged grease by weighing the container till the amount reaches to the specified amount.
 Use one of the following methods to discharge grease.
 Method 1: Extruding grease by air
 (1) Connect the joint and the hose to the grease inlet.
 (2) Connect the regulator to the grease exhaust port.
 (3) Inject air from the grease exhaust port to extrude grease by air.
 (Extrusion air pressure: 0.025 MPa or less)
 (4) If the grease is not discharged enough by injecting air, operate the manipulator about 5 times in the teach mode as shown in table 9-6.
 Method 2: Suctioning grease out
 (1) Keep the inlet open and insert the tube into the exhaust port.
 (2) Discharge grease by suctioning grease out of the exhaust port.
 (Suction pressure: 0.025 MPa or less)
 (3) If grease is not discharged by suctioning, operate the manipulator again about 5 times in the teach mode as shown in table 9-5.
9 Maintenance and Inspection

9.4 Notes on Grease Replenishment/Exchange Procedures

9. For the axis where grease is exchanged, perform a playback operation indicated in table 9-7 “Running-In Operation for Each Axis” for running-in the speed reducer with grease. At this time, grease may be discharged during the operation. Remove the grease zerk from the grease inlet, and clean and degrease the tap part and the thread part of the plug. Wrap the seal tape TB4501 around the plug, and then attach it to the grease inlet. Tighten the plug with the tightening torque shown in table 9-8 “Plug Type and Tightening Torque for Each Axis”. Also, discharge the excess grease in order not to increase the inner pressure of the speed reducer. Attach a bag to receive grease such as indicated in fig. 9-11 “Grease Receiving Bag (Rough Standard)”, and then perform the running-in operation.

<table>
<thead>
<tr>
<th>Axis to exchange grease</th>
<th>Amount of exhausted grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>0 [unnecessary]</td>
</tr>
<tr>
<td>L-axis</td>
<td>240±30</td>
</tr>
<tr>
<td>U-axis</td>
<td>250±30</td>
</tr>
<tr>
<td>R-axis</td>
<td>310±40</td>
</tr>
<tr>
<td>B-axis</td>
<td>470±40</td>
</tr>
<tr>
<td>T-axis</td>
<td>530±40</td>
</tr>
</tbody>
</table>

Table 9-7: Running-In Operation for Each Axis

<table>
<thead>
<tr>
<th>Axis to exchange grease</th>
<th>Operation angle</th>
<th>Operation speed</th>
<th>Timer after each operation</th>
<th>Operating time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-axis</td>
<td>S-axis ±45°</td>
<td>MOVJ VJ=50.00</td>
<td>1.0 s</td>
<td>15 minutes</td>
</tr>
<tr>
<td>L-axis</td>
<td>L-axis ±45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-axis</td>
<td>U-axis ±45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-axis</td>
<td>R-axis ±90°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-axis</td>
<td>B-axis ±45°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-axis</td>
<td>T-axis ±90°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9-8: Plug Type and Tightening Torque for Each Axis

<table>
<thead>
<tr>
<th>Axis to exchange grease</th>
<th>Plug for the grease inlet</th>
<th>Plug for the grease exhaust port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug type</td>
<td>Tightening torque</td>
<td>Plug type</td>
</tr>
<tr>
<td>S-axis</td>
<td>PT1/4</td>
<td>12 N•m (1.2 kgf•m)</td>
</tr>
<tr>
<td>L-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-axis</td>
<td>PT1/8</td>
<td>4.9 N•m (0.5 kgf•m)</td>
</tr>
<tr>
<td>R-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-axis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Wipe the discharged grease with a cloth, and reinstall the plug. Clean and degrease the tap part and the thread part of the plug. Wrap the seal tape TB4501 around the plug, attach the plug with seal tape to the grease exhaust port, and then tighten it with the tightening torque shown in table 9-8 "Plug Type and Tightening Torque for Each Axis".
9.4.1.3 Grease Replenishment for Gas Balancer Link Part

Fig. 9-12: Gas Balancer Link Part

1. Remove the plugs from the grease inlet and from the grease exhaust port of the link 1 and 2.
 (Refer to fig. 9-12 “Gas Balancer Link Part”.)
2. Inject grease through the grease inlet of the link 1 and 2 using a grease gun.
 - Grease type: Alvania EP Grease 2
 - Amount of grease: to the link 1: 8 cc (30 cc for 1st supply) to the link 2: 8 cc (16 cc for 1st supply)
3. Wipe the discharged grease with a cloth at the grease exhaust port and reinstall the plug to the exhaust port of the link 1 and 2. Before installing the plug, clean and degrease the thread part of the plug. Wrap the seal tape TB4501 around the thread part, and then tighten the plug with a tightening torque of 4.9 N•m (0.5 kgf•m).
4. Reinstall the plug to the grease inlet of the link 1 and 2. Before installing the plug, clean and degrease the thread part of the plug. Wrap the seal tape TB4501 around the thread part, and then tighten the plug with a tightening torque of 4.9 N•m (0.5 kgf•m).
9.5 Gas Maintenance Procedure in the Gas Balancer

9.5.1 Notes on Gas Maintenance Procedure in the Gas Balancer

Be sure to read the following precautions thoroughly and understand the contents before performing gas inspections or discharging/injecting gas. Failure to observe this may cause malfunctions of the gas balancer or occurrence of accidents or injury.

DANGER

- This gas balancer uses high-pressure nitrogen gas.
- Do not inject other gas than nitrogen gas to this gas balancer. Failure to observe this may cause malfunctions of the gas balancer or occurrence of accidents or injury.
- There is a possibility of suffocation accident in the high-density nitrogen gas environment. For this reason, enough ventilation is required when performing the operations.
- Before inspecting the gas pressure in the gas balancer or discharging/filling the gas from/into the gas balancer, confirm that the L-axis motor brake is appropriately functioning and L-axis is firmly fixed so that it will not rotate. Failure to observe this may cause very dangerous situation due to releasing of the L-axis motor brake. Because the L-axis without retaining force leads the L-arm to rotate by the lengthened or shortened gas balancer.

CAUTION

- When handling high-pressure gas, sufficient caution and observing of the related laws and local government regulations are required.
- For gas filling devices, contact your YASKAWA service representative.

NOTE

To maintain the sealing performance, small quantity of oil used may leak from the bottom part of the gas balancer.
9.5 Gas Maintenance Procedure in the Gas Balancer

9.5.2 Gas Pressure Inspection

NOTICE

- Perform the gas pressure inspection every 6000H.
- Operation of the manipulator with inadequate gas pressure, gas balancer may cause failure or breakage.

9.5.2.1 Adequate Gas Pressure

Adequate nitrogen gas pressure in the gas balancer varies depending on the temperature of the gas balancer surface. Refer to Table 9-9 "Adequate Gas Pressure per Gas Balancer Surface Temperature".

Table 9-9: Adequate Gas Pressure per Gas Balancer Surface Temperature

<table>
<thead>
<tr>
<th>Gas balancer surface temperature (°C)</th>
<th>-10</th>
<th>-5</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate gas pressure (MPa)</td>
<td>10.5</td>
<td>10.8</td>
<td>11.1</td>
<td>11.4</td>
<td>11.6</td>
<td>11.9</td>
<td>12.2</td>
<td>12.4</td>
<td>12.7</td>
<td>13.0</td>
<td>13.2</td>
<td>13.5</td>
<td>13.8</td>
<td>14.1</td>
<td>14.4</td>
</tr>
</tbody>
</table>

Fig. 9-13: Adequate Gas Pressure per Gas Balancer Surface Temperature
9.5.2.2 Necessary Device

Prepare following devices when checking the gas pressure.

- Gas filling device: HW1485204
 The device includes:
 - Digital pressure gauge: GC64-173
 - Quick connector: 10-358-6297
- Thermometer (for measuring the gas balancer surface)

9.5.2.3 Inspection Procedures

1. Move the manipulator to the home position and turn OFF the power supply of the YRC1000.
2. Remove the cover and the hexagon socket head screw plug with flange, which are mounted to the gas inlet, and insert the quick connector.
3. Connect the gas filling device to the quick connector after confirming that the blowdown valve, needle valve, and gate valve of the gas filling device are firmly closed.
4. Check the temperature of the gas balancer surface.
5. Slowly open the needle valve of the gas filling device, and then check that the pressure indicated on the digital pressure gauge is satisfying the value shown in table 9-9 “Adequate Gas Pressure per Gas Balancer Surface Temperature”. Depending on the value, procedures after this are subject to change.
 - Case 1: When the value is exceeding the adequate value
 → Discharge the gas till the value satisfies the adequate value.
 (Refer to chapter 9.5.3 “Gas Discharging Procedure”.)
 - Case 2: When the value is lower than the adequate value by 0.5 MPa or more.
 → Inject the gas till the value satisfies the adequate value.
 (Refer to chapter 9.5.4 “Gas Injecting Procedure”.)
 - Other than Case 1 and 2:
 → Proceed to Step 6
6. Close the needle valve of the gas filling device, and then remove the gas filling device from the quick connector.

DANGER

Before inspecting the gas pressure in the gas balancer or discharging/filling the gas from/into the gas balancer, confirm that the L-axis motor brake is appropriately functioning and L-axis is firmly fixed so that it will not rotate. Failure to observe this may cause very dangerous situation due to releasing of the L-axis motor brake. Because the L-axis without retaining force leads the L-arm to rotate by the lengthened or shortened gas balancer.
9.5 Gas Maintenance Procedure in the Gas Balancer

7. Remove the quick connector and mount the cover, then tighten the hexagon socket head screw plug with flange by using a tightening torque shown in Table 9-10 "Gas in Gas Balancer Pressure Inspection".

8. Mount the cover and tighten the hexagon socket head cap screws.

9. Turn ON the power supply of the YRC1000.

Fig. 9-14: Gas Pressure Inspection in Gas Balancer

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Qty.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Cover HW1405134-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>G1/8 plug</td>
<td>1</td>
<td>Tightening torque 4.9 N•m</td>
</tr>
<tr>
<td>③</td>
<td>Hexagon socket head cap screw M4 (length: 6 mm) Conical spring washer 2L-4</td>
<td>2</td>
<td>Tightening torque 2.8 N•m each</td>
</tr>
</tbody>
</table>

Table 9-10: Gas in Gas Balancer Pressure Inspection
9.5 Gas Maintenance Procedure in the Gas Balancer

9.5.3 Gas Discharging Procedure

NOTICE

- Discharge all gas from the gas balancer when in the following cases.
 - When dismounting the gas balancer from the manipulator.
 - When air-flight the gas balancer.
 (It is treated as a hazardous material when the gas balancer is air-flight with gas filled.)

9.5.3.1 Necessary Devices

Prepare following devices when discharging gas

- Gas filling device: HW1485204
 The device includes:
 - Digital pressure gauge: GC64-173
 - Quick connector: 10-358-6297
 - Valve of the service gauge: SS-1KS4
 - Thermometer (for measuring the gas balancer surface)

9.5.3.2 Gas Discharging Procedure

DANGER

Before discharging/filling the gas from/into the gas balancer, confirm that the L-axis motor brake is appropriately functioning and L-axis is firmly fixed so that it will not rotate. Failure to observe this may cause very dangerous situation due to releasing of the L-axis motor brake. Because the L-axis without retaining force leads the L-arm to rotate by the lengthened or shortened gas balancer.

NOTICE

- When discharging the gas, the blowdown valve must not be fully opened. Take time and discharge gas little by little. If the blowdown valve is fully opened with high internal pressure, the non-return valve in the gas balancer can be damaged.

When Discharging All Gas

1. Move the manipulator to the home position and turn OFF the power supply of the YRC1000.
2. Remove the cover ① and the hexagon socket head screw plug with flange ②, which are mounted to the gas inlet, and insert the quick connector.
3. Connect the gas filling device to the quick connector after confirming that the blowdown valve, needle valve, and gate valve of the gas filling device are firmly closed.
4. Slowly open the needle valve.
5. Discharge gas a small amount at a time by slowly releasing the blowdown valve.

6. Close the needle valve and blowdown valve, and then remove the gas filling device from the quick connector.

7. Remove the quick connector and mount the cover, then tighten the hexagon socket head screw plug with flange ② by using a tightening torque shown in table 9-11 “Discharging Gas Procedure”.

8. Mount the cover ① and tighten the hexagon socket head cap screws ③ by using the tightening torque shown in table 9-11.

9. Turn ON the power supply of the YRC1000.

When Discharging Gas for Adjusting Pressure

1. Move the manipulator to the home position and turn OFF the power supply of the YRC1000.

2. Remove the cover ① and the hexagon socket head screw plug with flange ②, which are mounted to the gas inlet, and insert the quick connector.

3. Connect the gas filling device to the quick connector after confirming that the blowdown valve, needle valve, and gate valve of the gas filling device are firmly closed.

4. Check the temperature of the gas balancer surface.

5. Slowly open the needle valve.

6. Discharge gas by slowly releasing the blowdown valve until the gas pressure is the value shown in table 9-9 “Adequate Gas Pressure per Gas Balancer Surface Temperature”.

NOTE

After discharging/injecting gas, wait for a few minutes to stabilize the gas pressure, and then measure the gas pressure.

7. Close the needle valve and blowdown valve, and then remove the gas filling device from the quick connector.

8. Remove the quick connector, then tighten the hexagon socket head screw plug with flange ② by using the tightening torque shown in table 9-11.

9. Mount the cover ① and tighten the hexagon socket head cap screws ③ by using the tightening torque shown in table 9-11.

10. Turn ON the power supply of the YRC1000.
9 Maintenance and Inspection
9.5 Gas Maintenance Procedure in the Gas Balancer

Fig. 9-15: Discharging Gas Procedure

Table 9-11: Discharging Gas Procedure

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Qty.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cover HW1405134-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G1/8 plug</td>
<td>1</td>
<td>Tightening torque 4.9 N•m</td>
</tr>
<tr>
<td>3</td>
<td>Hexagon socket head cap screw M4</td>
<td>2</td>
<td>Tightening torque 2.8 N•m</td>
</tr>
<tr>
<td></td>
<td>(length: 6 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conical spring washer 2L-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.5.4 Gas Injecting Procedure

9.5.4.1 Necessary Devices

Prepare following devices when injecting gas:

- Nitrogen gas cylinder
- Gas filling device: HW1485204
 The device includes:
 - Digital pressure gauge: GC64-173
 - Quick connector: 10-358-6297
- Thermometer (for measuring the gas balancer surface)

9.5.4.2 Gas Injecting Procedures

DANGER

Before discharging/filling the gas from/into the gas balancer, confirm that the L-axis motor brake is appropriately functioning and L-axis is firmly fixed so that it will not rotate. Failure to observe this may cause very dangerous situation due to releasing of the L-axis motor brake. Because the L-axis without retaining force leads the L-arm to rotate by the lengthened or shortened gas balancer.

1. Move the manipulator to the home position and turn OFF the power supply of the YRC1000.
2. Remove the cover ① and the hexagon socket head screw plug M6 with flange ②, which are mounted to the gas inlet, and insert the quick connector.
3. Connect the gas filling device to the quick connector after confirming that the blowdown valve, needle valve, and gate valve of the gas filling device are firmly closed.
4. Check the temperature of the gas balancer surface.
5. Connect the nitrogen gas cylinder to the gas filling device.
6. Release the valve of the nitrogen gas cylinder, and then set the gas pressure slightly higher than the adequate pressure shown in table 9-9 "Adequate Gas Pressure per Gas Balancer Surface Temperature" by rotating the regulator handle of the gas filling device.
7. Slowly open the needle valve of the gas filling device.
8. Release the gate valve of the gas filling device to inject gas until the gas pressure indicated by the digital pressure gauge is slightly higher than the adequate pressure shown in table 9-9.

100/107
9. Close the gate valve of the gas filling device, wait for the gas pressure in the gas balancer to stabilize, and then confirm that the gas pressure is the adequate pressure shown in table 9-9 “Adequate Gas Pressure per Gas Balancer Surface Temperature”.

If the pressure is higher than the adequate pressure, discharge the gas gradually and stabilize the gas pressure, then confirm that the gas pressure finally reached the adequate value.

- After discharging/injecting gas, wait for a few minutes to stabilize the gas pressure, and then measure the gas pressure.

10. Close needle valve of the gas filling device and the valve of the nitrogen gas cylinder.

11. Disconnect the gas filling device from the quick connector.

12. Remove the quick connector and mount the cover, then tighten the hexagon socket head screw plug M6 with flange ② by using a tightening torque shown in table 9-12 “Injecting Gas procedure”.

13. Mount the cover ① and tighten the hexagon socket head cap screws ③ by using the tightening torque shown in table 9-12.

14. Release the blowdown valve of the gas filling device and regulator, and then discharge the gas in the hose.

15. Disconnect the gas filling device from the nitrogen gas cylinder.

16. Turn ON the power supply of the YRC1000.

Fig. 9-16: Injecting Gas procedure

<table>
<thead>
<tr>
<th>No.</th>
<th>Item Description</th>
<th>Qty.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Cover HW1405134-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>G1/8 plug</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>Hexagon socket head cap screw M4 (length: 6 mm) Conical spring washer 2L-4</td>
<td>2 each</td>
<td>Tightening torque 4.9 N•m</td>
</tr>
<tr>
<td>④</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It is recommended to keep the parts and components in the following table in stock as spare parts for your manipulator.

To purchase lead wires of the wire harness or etc., check the order/ manufacture no. and contact your YASKAWA representative.

Product performance cannot be guaranteed when using spare parts from any company other than YASKAWA. The spare parts are ranked as follows:

- Rank A: Expendable and frequently replaced parts.
- Rank B: Parts for which replacement may be necessary as a result of frequent operation.
- Rank C: Drive unit.

NOTE

For replacing parts in Rank B or Rank C, contact your YASKAWA representative.

Table 10-1: Recommended Spare Parts (YR-1-06VXH225-A00, YR-1-06VXH180-A00) (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Grease</td>
<td>Molywhite RE No.00</td>
<td>YASKAWA Electric Corporation</td>
<td>16 kg</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>Grease</td>
<td>Alvania EP grease 2</td>
<td>Showa Oil Co., Ltd.</td>
<td>16 kg</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>Liquid Gasket</td>
<td>TB1206C</td>
<td>Three Bond Co., Ltd.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>Adhesive</td>
<td>LOCTITE243</td>
<td>Henkel Japan Ltd</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>Sealing Bond for Flange</td>
<td>LOCTITE518</td>
<td>Henkel Japan Ltd</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>Seal Tape</td>
<td>TB4501</td>
<td>Three Bond Co., Ltd.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>Battery Pack</td>
<td>HW1483880-A</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>Lead Wire for Battery Replacement</td>
<td>HW1471281-A</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>-</td>
<td>Speed reducer: HW0388208-B Input gear: HW1303369-1</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>Replacement Kit for S-Axis Speed Reducer(1)</td>
<td>HW1485042-A</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1303369-1</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>Replacement Kit for L-Axis Speed Reducer(1)</td>
<td>HW1485043-A</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1303372-1</td>
</tr>
</tbody>
</table>
Table 10-1: Recommended Spare Parts (YR-1-06VXH225-A00, YR-1-06VXH180-A00) (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>11</td>
<td>Replacement Kit for U-Axis Speed Reducer®</td>
<td>HW1485514-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1385441-A input gear: HW1306848-A</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>Replacement Kit for R-Axis Speed Reducer®</td>
<td>HW1485515-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1385081-A</td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>Replacement Kit for B-Axis Speed Reducer®</td>
<td>HW1485516-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1385011-A</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>Replacement Kit for T-Axis Speed Reducer®</td>
<td>HW1485517-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Speed reducer: HW1385682-A</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>Gas Balancer</td>
<td>HW1382567-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>Wrist Unit</td>
<td>HW1173232-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>Internal Wiring Harness 1</td>
<td>HW1173167-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Between the S-axis and U-axis</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>Lead Wire for S-Axis Signal</td>
<td>HW1372910-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the S-axis motor and the multi-port connector</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>Lead Wire for L-Axis Signal</td>
<td>HW1372910-B YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the L-axis motor and the multi-port connector</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>Lead Wire for U-Axis Signal</td>
<td>HW1372597-AX YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the U-axis motor and the multi-port connector</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>Lead Wire for R-Axis Signal</td>
<td>HW1372597-AY YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the R-axis motor and the multi-port connector</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>Internal Wiring Harness 2</td>
<td>HW1372942-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>U-arm part</td>
</tr>
<tr>
<td>C</td>
<td>23</td>
<td>Bypass Cable</td>
<td>HW1471212-C YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Signal lead wires for tentative recovery from failure</td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>S-, L-, and U-Axis AC Servomotor</td>
<td>SGMTG-37APK-YRT1 HW1385397-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>R-Axis AC Servomotor</td>
<td>SGMTG-13APK-YRT1 HW1385395-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>B- and T-Axis AC Servomotor</td>
<td>SGMTG-13APK-YRT2 HW1385622-A YASKAWA Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table 10-1: Recommended Spare Parts (YR-1-06VXH225-A00, YR-1-06VXH180-A00) (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name Type</th>
<th>Manufacturer</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>27</td>
<td>Multi-Port Connector</td>
<td>HW1384619-A</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>Power Supply Board BOX Unit</td>
<td>HW1372943-A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>29</td>
<td>Dummy Connector</td>
<td>HW1471285-A</td>
<td>1</td>
<td>For dismounting function of the axis</td>
</tr>
</tbody>
</table>

Note: The replacement kit for speed reducer includes the speed reducer and gear described in the remarks column. For details on the speed reducer replacement kit, contact your YASKAWA representative.
Table 10-2: Recommend Spare Parts (YR-1-06VXH180-A10) (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Grease</td>
<td>Molywhite RE No.00</td>
<td>YASKAWA Electric Corporation</td>
<td>16 kg</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>Grease</td>
<td>Alvania EP grease 2</td>
<td>Showa Oil Co., Ltd.</td>
<td>16 kg</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>Liquid Gasket</td>
<td>TB1206C</td>
<td>Three Bond Co., Ltd.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>Adhesive</td>
<td>LOCTITE243</td>
<td>Henkel Japan Ltd</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>Sealing Bond for Flange</td>
<td>LOCTITE518</td>
<td>Henkel Japan Ltd</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>Seal Tape</td>
<td>TB4501</td>
<td>Three Bond Co., Ltd.</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>Battery Pack</td>
<td>HW1483880-A</td>
<td>YASKAWA Electric Corporation</td>
<td>14</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8</td>
<td>Lead Wire for Battery Replacement</td>
<td>HW1471281-A</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
| B | 9 | Replacement Kit for S-Axis Speed Reducer¹⁾ | HW1485042-A | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW0388208-B
Input gear: HW1303369-1 |
| B | 10 | Replacement Kit for L-Axis Speed Reducer¹⁾ | HW1485043-A | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW1382455-B
Input gear: HW1303372-1 |
| B | 11 | Replacement Kit for U-Axis Speed Reducer¹⁾ | HW1485514-A | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW1385441-A
Input gear: HW1306948-1 |
| B | 12 | Replacement Kit for R-Axis Speed Reducer¹⁾ | HW1485515-B | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW1385681-A |
| B | 13 | Replacement Kit for B-Axis Speed Reducer¹⁾ | HW1485619-A | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW1385011-A |
| B | 14 | Replacement Kit for T-Axis Speed Reducer¹⁾ | HW1485620-A | YASKAWA Electric Corporation | 1 | 1 | Speed reducer: HW1385682-A |
| B | 15 | Gas Balancer | HW1382567-A | YASKAWA Electric Corporation | 1 | 1 | |
| B | 16 | Wrist Unit | HW1173306-B | YASKAWA Electric Corporation | 1 | 1 | |
| B | 17 | Internal Wiring Harness 1 | HW1173167-A | YASKAWA Electric Corporation | 1 | 1 | Between the S-axis and U-axis |
| B | 18 | Lead Wire for S-Axis Signal | HW1372910-A | YASKAWA Electric Corporation | 1 | 1 | Lead wire between the S-axis motor and the multi-port connector |
Table 10-2: Recommend Spare Parts (YR-1-06VXH180-A10) (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name Type</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 19</td>
<td>HW1372910-B</td>
<td>Lead Wire for L-Axis Signal</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the L-axis motor and the multi-port connector</td>
<td></td>
</tr>
<tr>
<td>B 20</td>
<td>HW1372597-AX</td>
<td>Lead Wire for U-Axis Signal</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the U-axis motor and the multi-port connector</td>
<td></td>
</tr>
<tr>
<td>B 21</td>
<td>HW1372597-AY</td>
<td>Lead Wire for R-Axis Signal</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Lead wire between the R-axis motor and the multi-port connector</td>
<td></td>
</tr>
<tr>
<td>B 22</td>
<td>HW1372942-A</td>
<td>Internal Wiring Harness 2</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>U-arm part</td>
<td></td>
</tr>
<tr>
<td>C 23</td>
<td>HW1471212-C</td>
<td>Bypass Cable</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Signal lead wires for tentative recovery from failure</td>
<td></td>
</tr>
<tr>
<td>C 24</td>
<td>SGM7G-37APK-YR1*</td>
<td>6-, L-, and U-Axis AC Servomotor</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 25</td>
<td>SGM7G-13APK-YR1*</td>
<td>R-Axis AC Servomotor</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 26</td>
<td>SGM7G-13APK-YR2*</td>
<td>B- and T-Axis AC Servomotor</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 27</td>
<td>HW1384619-A</td>
<td>Multi-Port Connector</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 28</td>
<td>HW1372943-A</td>
<td>Power Supply Board BOX Unit</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 29</td>
<td>HW1471285-A</td>
<td>Dummy Connector</td>
<td>YASKAWA Electric Corporation</td>
<td>1</td>
<td>-</td>
<td>For dismounting function of the axis</td>
<td></td>
</tr>
</tbody>
</table>

a The replacement kit for speed reducer includes the speed reducer and gear described in the remarks column. For details on the speed reducer replacement kit, contact your YASKAWA representative.
MOTOMAN-SP225H, SP180H, SP180H-110
INSTRUCTIONS

HEAD OFFICE
2-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
Phone +81-93-645-7703 Fax +81-93-645-7802

YASKAWA America Inc. (Motoman Robotics Division)
109 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA Europe GmbH (Robotics Division)
Yaskawastrasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Nordic AB
Virkstadsgatan 2, Box 504 SE-385 25 Torsos, Sweden
Phone +46-480-417-80 Fax +46-486-414-10

YASKAWA Electric (China) Co., Ltd.
22F, One Corporate Avenue, No.222, Hubin Road, Huangpu District, Shanghai 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299

YASKAWA SHOUGANG ROBOT Co. Ltd.
No 7 Yongchang North Road, Beijing E&T Development Area, China 100176
Phone +86-10-6788-2858 Fax +86-10-6788-2878

YASKAWA Electric Korea Corporation
35F, Three IFC, 10 Gukjeageumyung-ro, Yeongdeungpo-gu, Seoul, Korea 07326
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric Taiwan Corporation
12F, No.207, Sec. 3, Bauhin Rd., Shidian District, New Taipei City 23143, Taiwan
Phone +886-2-8913-1333 Fax +886-2-8913-1513

YASKAWA Electric (Singapore) PTE Ltd.
151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6288-3000 Fax +65-6288-3003

YASKAWA Electric (Thailand) Co., Ltd.
59, 1-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, THAILAND
Phone +66-2-017-0099 Fax +66-2-017-0199

PT. YASKAWA Electric Indonesia
Secure Building Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia
Phone +62-21-2982-6470 Fax +62-21-2982-6741

YASKAWA

YASKAWA ELECTRIC CORPORATION
Published by YASKAWA

MANUAL NO.
HW1484446