Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

The DX100 operator’s manuals above correspond to specific usage.
Be sure to use the appropriate manual.
MANDATORY

- This manual explains the JARCR-XOI01 board of the DX100 system and general operations. Read this manual carefully and be sure to understand its contents before handling the DX100.

- General items related to safety are listed in Chapter 1: Safety of the DX100 Instructions. To ensure correct and safe operation, carefully read the DX100 Instruction before reading this manual.

CAUTION

- Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

- The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

- YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

- If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

- YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product’s warranty.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the DX100.

In this manual, the Notes for Safe Operation are classified as “WARNING,” “CAUTION,” “MANDATORY,” or “PROHIBITED.”

- **WARNING**
 - Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **CAUTION**
 - Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

- **MANDATORY**
 - Always be sure to follow explicitly the items listed under this heading.

- **PROHIBITED**
 - Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “CAUTION” and “WARNING.”
PROHIBITED

• Do not use or keep the board in the following environmental conditions.
 – Where exposed to direct sunshine
 – Where vibration or impact occurs
 – Where high humidity exists
 – Where a strong magnetic field exists
 – Where much dust exists
 – Where a sudden change in the temperature occurs
 – Where corrosive gases occur
 – Where condensation occurs

Improper usage of the board may damage the board.
WARNING

- Before operating the manipulator, check that servo power is turned OFF when the emergency stop buttons on the front door of the DX100 and programming pendant are pressed. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Fig. : Emergency Stop Button

- Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn the servo power ON.

Injury may result from unintentional or unexpected manipulator motion.

Fig. : Release of Emergency Stop

- Observe the following precautions when performing teaching operations within the P-point maximum envelope of the manipulator:
 - View the manipulator from the front whenever possible.
 - Always follow the predetermined operating procedure.
 - Keep in mind the emergency response measures against the manipulator’s unexpected motion toward you.
 - Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

- Confirm that no persons are present in the P-point maximum envelope of the manipulator and that you are in a safe location before:
 - Turning ON the DX100 power
 - Moving the manipulator with the programming pendant
 - Running the system in the check mode
 - Performing automatic operations

- Injury may result if anyone enters the P-point maximum envelope of the manipulator during operation. Always press an emergency stop button immediately if there are problems. The emergency stop buttons are located on the right of the front door of the DX100 and the programming pendant.
WARNING

• Do not touch the inside of the panel for 5 minutes after the power is turned OFF.

The remaining charged voltage in the capacitor may cause an electric shock or an injury.

• Be sure to close the door and install the protection cover while the power is turned ON.

Failure to observe this warning may result in a fire or an electric shock.
CAUTION

• Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 – Check for problems in manipulator movement.
 – Check for damage to insulation and sheathing of external wires.
• Always return the programming pendant to the hook on the cabinet of the DX100 after use.
The programming pendant can be damaged if it is left in the manipulator's work area, on the floor, or near fixtures.
Read and understand the Explanation of Warning Labels in the DX100 Instructions before operating the manipulator:
• The wiring and mounting must be performed by authorized and qualified personnel.
Failure to observe this caution may result in a fire or an electric shock.
• Make sure that there is no foreign matter such as metal chips on the board.
In case of malfunction, etc. it may result in an injury or damage the board.
• Make sure that there is no damage or deflection of parts on the board.
In case of malfunction, etc. it may result in an injury or damage the board.
• Correctly connect each cable and connector.
Failure to observe this caution may result in a fire or damage the board.
• Set the switches, etc. correctly.
Malfunction, caused by an incorrect setting, may result in an injury or damage the board.
• Never touch the mounting surfaces of the board parts directly with fingers.
The generated static electricity may damage the IC.
• Never touch the soldered surfaces of the board directly with fingers.
Protrusions on the soldered surface may result in an injury.
• No shock to the board.
The shock may damage the board.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX100 Controller</td>
<td>DX100</td>
</tr>
<tr>
<td>DX100 Programming Pendant</td>
<td>Programming Pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
<tr>
<td>JARCR-XOI01 board</td>
<td>XOI01 board</td>
</tr>
</tbody>
</table>

Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td>Character Keys</td>
</tr>
<tr>
<td></td>
<td>The keys which have characters printed on them are denoted with []. ex. [ENTER]</td>
</tr>
<tr>
<td></td>
<td>Symbol Keys</td>
</tr>
<tr>
<td></td>
<td>The keys which have a symbol printed on them are not denoted with [] but depicted with a small picture. ex. page key</td>
</tr>
<tr>
<td></td>
<td>The cursor key is an exception, and a picture is not shown.</td>
</tr>
<tr>
<td></td>
<td>Axis Keys</td>
</tr>
<tr>
<td></td>
<td>"Axis Keys" and "Numeric Keys" are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td></td>
<td>Numeric Keys</td>
</tr>
<tr>
<td></td>
<td>Keys pressed simultaneously</td>
</tr>
<tr>
<td></td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a "+" sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td></td>
<td>Displays</td>
</tr>
<tr>
<td></td>
<td>The menu displayed in the programming pendant is denoted with { }. ex. {JOB}</td>
</tr>
</tbody>
</table>

Description of the Operation Procedure

In the explanation of the operation procedure, the expression "Select • • • " means that the cursor is moved to the object item and the SELECT key is pressed, or that the item is directly selected by touching the screen.
1 Outline
 1.1 System Configuration Example

2 Hardware Specifications
 2.1 Board External View
 2.2 Board Specifications
 2.3 User Input/output Connectors

3 Setting the Functions
 3.1 Function Setting Switches
 3.2 Switch Setting Methods

4 Mounting the XOI01 Board
 4.1 Opening Front Door of the DX100
 4.2 Confirming the Switch Settings on the XOI01 Board
 4.3 Mounting the XOI01 Board on the DX100
 4.4 Connecting Each Cable
 4.5 Closing the Front Door of the DX100

5 I/O Signal Allocation
 5.1 I/O Module Setting
 5.2 I/O Data

6 I/O Circuits
 6.1 Input Circuit
 6.1.1 Input Circuit 1 (CN10 to CN13)
 6.2 Output Circuits
 6.2.1 Output Circuit 1 CN12 and CN13 (Transistor Output)
 6.2.2 Output Circuit 2 CN10 and CN11 (Relay Output)
 6.3 Connection Example
 6.3.1 Handling Application
 6.3.2 Arc Welding, Spot Welding, and General-purpose Applications
This instruction manual describes the I/O expansion board, the XOI01. The XOI01 board can be used to expand the number of I/O points when more DX100 I/O points are needed.

1.1 System Configuration Example
2 Hardware Specifications

2.1 Board External View

2.2 Board Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board mounting</td>
<td>Optional board mounting space in the DX100</td>
</tr>
<tr>
<td>position</td>
<td></td>
</tr>
<tr>
<td>Number of I/O</td>
<td>Input: 40 points</td>
</tr>
<tr>
<td>points</td>
<td>Output: 40 points (transistor output 24 points, relay output 16 points)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 User Input/output Connectors

- Connector C detail (cable side)

Connector Model: 1903404-1
(Tyco Electronics Amp)
(MT Type)

Connector Model: 1747053-1
(Tyco Electronics Amp)

I/O Terminal Block

Model: TIFS553YS (KASUGA ELECTRIC)

Stripped length: 10mm
Applicable max cable outside diameter: 3mm dia.
3 Setting the Functions

3.1 Function Setting Switches

The section explains the switches that set the functions of the XOI01 board. Make the proper settings following the instructions. For details of the settings, refer to page 3-2.

S1: Sets the stations for the XOI01 board on the DX100.
 The setting range for a station is 1 (ST#01) to D (ST#13).
 Do not set the station to 0 (ST#00), E (ST#14), or F (ST#15).

SW1: Sets the communication mode.
 This switch sets the communication mode to 16 bytes or 17 bytes.
 Be sure to set this switch to 17 bytes. Do not set it to 16 bytes.
 If the number of I/O points on the XOI01 board does not appear on the Programming Pendant, check if the communication cable or power cable is connected correctly, referring to the I/O module setting in chapter 5 "I/O Signal Allocation" at page 5-1. When the cables are correctly connected, the SW1 may be set to 16 bytes. Change the setting to 17 bytes.
3.2 Switch Setting Methods

<table>
<thead>
<tr>
<th>Switches</th>
<th>Setting Method</th>
</tr>
</thead>
</table>
| S1 | Sets the stations.
The relation between the switch setting and the station is shown below.
Turn the arrow to the number corresponding to the desired station.
(Use a flat tip screwdriver.) |
| | 0: Cannot be set
1: ST#01
2: ST#02
3: ST#03 (Default setting)
4: ST#04
5: ST#05
6: ST#06
7: ST#07
8: ST#08
9: ST#09
A: ST#10
B: ST#11
C: ST#12
D: ST#13
E: Can not be set
F: Can not be set |
| SW1 | Setting of the I/O communication mode |
| | 3 Short-circuit between 1 and 2: 17-byte mode
16 bytes/17 bytes
*Setting indispensable |
| | 3 Short-circuit between 2 and 3: 16-byte mode
16 bytes/17 bytes
(Default setting)
*Setting unavailable |
| | 16 BYTE is the default setting. Be sure to change the setting to 17 bytes. |

NOTE
Do not set S1 to 0, E, or F. Do not set more than one board to one ST#.
Improper settings may prevent the I/O module from being recognized correctly.
Also, do not set SW1 to 16 bytes. If 16 bytes is selected, the I/O module is not recognized.
4 Mounting the XOI01 Board

WARNING

• Before wiring, be sure to turn OFF the power supply and put up a warning sign, such as "DO NOT TURN ON THE POWER."
Failure to observe this warning may result in an electric shock or an injury.
• Do not touch the inside of the panel for 5 minutes after the power is turned OFF.
The remaining charged voltage in the capacitor may cause an electric shock or an injury.
• Be sure to close the door and install the protection cover while the power is turned ON.
Failure to observe this warning may result in a fire or an electric shock.

CAUTION

• The wiring and mounting must be performed by authorized and qualified personnel.
Failure to observe this caution may result in a fire or an electric shock.
• Make sure that there is no foreign matter such as metal chips on the board.
In case of malfunction, etc. it may result in an injury or damage the board.
• Make sure that there is no damage or deflection of parts on the board.
In case of malfunction, etc. it may result in an injury or damage the board.
• Correctly connect each cable and connector.
Failure to observe this caution may result in a fire or damage the board.
• Set the switches, etc. correctly.
In case of malfunction, etc. it may result in an injury or damage the board.
• Never touch the mounting surfaces and the soldered surfaces of the board parts directly with fingers.
The generated static electricity may damage the IC, and protrusions on the soldered surface may result in an injury.
• Never give any shock to the board.
The shock may damage the board.
4.1 Opening Front Door of the DX100

Mount the XOI01 board in the following manner.
1. Turn the two door locks on the front face of the DX100 clockwise for 90° with a coin or a flat tip screwdriver.

2. With the door locks turned clockwise for 90°, turn the main switch handle to the “OFF" position, and slowly open the door.

4.2 Confirming the Switch Settings on the XOI01 Board

1. Be sure that the settings of switches on the board are correct.
2. For the switch settings, refer to chapter 3 “Setting the Functions” at page 3-1.

4.3 Mounting the XOI01 Board on the DX100

1. Be sure that the main power supply is OFF.
2. Fix the XOI01 board on the DX100 with the board fixing screws securely tightened.
4.4 Connecting Each Cable

1. Connect the 24 VDC power supply cable to the CN02 on the XOI01 board.

2. Connect the I/O communication cable to the CN01 on the XOI01 board. Disconnect the terminal connector from CN300(right) on the JZNC-YIU01 unit, and connect it to the non-occupied CN01 on the XOI01 board.

3. Connect the I/O cables to the CN10 through CN13 on the XOI01 board.
4.5 Closing the Front Door of the DX100

1. Close the door slowly.

2. Turn the two door locks counterclockwise for 90° using a coin or a flat tip screwdriver.

A dummy connector is inserted into the CN02 of the 24VDC power supply connector on the XOI01 board.

Do not remove this connector because it is inserted to prevent incorrect cable connections. Removing this connector may result in incorrect connection of the 24VDC power cable to the CN02. This prevents power from being supplied normally to the board, and the board may not start up.

- Do not remove the dummy connector inserted in this position.

<table>
<thead>
<tr>
<th>24V</th>
<th>24VU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>24V</td>
<td>24VU</td>
</tr>
</tbody>
</table>

* Incorrect Connecting Position

** Because the dummy connector is removed, the 24VDC power cable is incorrectly connected, and power cannot be supplied to the board.
5 I/O Signal Allocation

5.1 I/O Module Setting

In order to use a XOI01 board on the DX100, perform the I/O module setting in the following manner.

Make sure that the power supply to the DX100 is OFF. Then, mount the XOI01 board, for which all of its switches have been set, inside the DX100. For the board mounting method, refer to chapter 4 “Mounting the XOI01 Board” at page 4-1.

1. Turn the power supply ON again while pressing [MAIN MENU] simultaneously.
 – The main menu appears.

2. Select {SYSTEM} under the main menu.
 – The sub menu appears.

3. Change the security mode to management mode.
4. Select {SETUP}.
 – The SETUP window appears.

5. Select {IO MODULE}.
 – The current mounted status of the I/O modules is shown as in the following example.

 – To view the current mounted status of the I/O modules for stations that are not displayed, press [ENTER].
6. Confirm the status of the mounted I/O module.

 - Only the I/O modules mounted on DX100 are displayed. Confirm that each station (ST#) indicates the actual mounted status of the I/O module.

 - The following table lists the meanings of each line.

<table>
<thead>
<tr>
<th>ST#</th>
<th>Station address of I/O module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>Number of digital input points(^1)</td>
</tr>
<tr>
<td>DO</td>
<td>Number of digital output points(^1)</td>
</tr>
<tr>
<td>AI</td>
<td>Number of analog input points(^1)</td>
</tr>
<tr>
<td>AO</td>
<td>Number of analog output points(^1)</td>
</tr>
<tr>
<td>BOARD</td>
<td>Circuit board type(^2)</td>
</tr>
</tbody>
</table>

1. A hyphen "-" indicates the corresponding I/O module is not mounted.
2. If the system cannot recognize the circuit board type, "*****" is shown. No problem will occur as long as the values displayed in DI, DO, AI, and AO are correct.

 - In the example shown on the display, the configuration of boards are as follows.

 ST#03: JARCR-XOI01 board
 (digital input 40 points, digital output 40 points).
 Switch S1: set to 3 (This value becomes the ST#).

 ST#14: JANCD-YIO01-E board
 (digital input 40 points, digital output 40 points).
 This board is fixed to ST#14.

7. Press [ENTER].

 - The confirmation dialog box appears.

8. Select "YES."

 - When the mounted status of an I/O module is correct, select "YES."
 The I/O module setting is updated, and an I/O module is added.
If the window does not indicate the actual mounted status, recheck the cable connection and the switch setting.

If the mounted status is correct (but the window does not correspond), the following causes are suspected.

- Improper I/O communication settings
 The setting of SW1 on the XOI01 board may be incorrect, so the DX100 cannot recognize the board.

- Improper or overlapped station settings
 S1 may be erroneously set to 0, E, or F. Each station can be set to only one board. If S1 has been set to two boards, change the setting of S1 so only one board is assigned.

- Improper connection of the 24VDC power cable and the I/O communication cable
 The 24VDC cable and the I/O communication cable may not be connected properly. Recheck the cable connection referring to chapter 4.4 “Connecting Each Cable” at page 4-3. Improper connection of the 24VDC power cable to the CN02 may prevent the board from starting up.

- I/O module failure
 When the above causes do not apply, and the display still does not correspond to the actual mounted status, failure of an I/O module is suspected. Contact your YASKAWA representative.
The data to be transferred from the XOI01 board to the inside of the DX100 is of 40 input points (5 bytes) and 40 output points (5 bytes). The I/O data of the XOI01 board is allocated to external I/O signals of concurrent I/O.

When only a XOI01 board is mounted as an optional I/O board, the concurrent I/O allocation of each board is as follows.

(20010 to 20057 and 30010 to 30057 are used for standard I/O of the DX100.)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>20060 to 20067: CN12</td>
<td>30060 to 30067: CN12</td>
</tr>
<tr>
<td>20070 to 20073: CN12</td>
<td>30070 to 30073: CN12</td>
</tr>
<tr>
<td>20074 to 20077: CN13</td>
<td>30074 to 30077: CN13</td>
</tr>
<tr>
<td>20080 to 20083: CN13</td>
<td>30080 to 30087: CN13</td>
</tr>
<tr>
<td>20090 to 20097: CN10</td>
<td>30090 to 30097: CN10</td>
</tr>
<tr>
<td>20100 to 20107: CN11</td>
<td>30100 to 30107: CN11</td>
</tr>
</tbody>
</table>
6 I/O Circuits

6.1 Input Circuit

The input circuit has 40-points, and all for input circuit 1.

6.1.1 Input Circuit 1 (CN10 to CN13)

<table>
<thead>
<tr>
<th>Circuit structure</th>
<th>Input circuit with photocoupler insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (max.)</td>
<td>8 mA per one point</td>
</tr>
<tr>
<td>Common</td>
<td>0 V common</td>
</tr>
</tbody>
</table>

Connection example

- When an internal power supply is used for the I/O power supply, the allocation to the 24 VDC internal power supply of the DX100 is approximately 1 A. If the total current consumption of the I/O circuits including that of other I/O boards (such as the XIO02 board) exceeds 1 A, use an external power supply. For connecting external power supply, refer to chapter 6.3 “Connection Example” at page 6-4.

- When an external power supply is used for the I/O power supply and the total current consumption of the I/O circuits exceeds 2 A, use a 24 VDC external power supply. However, do not use the 24 VDC power supply from CN10 and CN11 for the 24 VDC power supply used at the relay output contact.

- The I/O circuits of the XOI01 board are exclusive-use for 24 VDC. Connecting a power supply other than 24 VDC causes damages to the circuits and malfunction.
6.2 Output Circuits

The output circuit has 40 points from CN10 through CN13. Two types of circuits are provided: transistor output (24 points) and relay output (16 points). When the contact life of a relay should be considered because of frequent ON/OFF switchings, the transistor output can be used to control a relay mounted on an easily accessible position or a non-contact relay SSR (solid state relay).

6.2.1 Output Circuit 1 CN12 and CN13 (Transistor Output)

<table>
<thead>
<tr>
<th>Circuit structure</th>
<th>Transistor open-collector output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current (max.)</td>
<td>50 mA per one point</td>
</tr>
<tr>
<td>Common</td>
<td>+24 V common</td>
</tr>
</tbody>
</table>

Connection example

NOTE

When connecting an induction load to the output circuit, connect a fly-wheel diode in parallel to the induction load, to suppress the surge voltage. Not using a fly-wheel diode may damage the output circuit.

When connecting a load with a large inrush current such as a lamp, connect a current limiting resistance in series to the load, so that the output current does not exceed its maximum value. Exceeding the maximum output current value may damage the output circuit.
6.2.2 Output Circuit 2 CN10 and CN11 (Relay Output)

<table>
<thead>
<tr>
<th>Circuit structure</th>
<th>Relay contact output (only DC load can be connected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output current (max.)</td>
<td>0.5 A per point</td>
</tr>
<tr>
<td>Common</td>
<td>None (determined according to the external connection)</td>
</tr>
<tr>
<td>Contact resistance</td>
<td>30mΩ or less</td>
</tr>
<tr>
<td>Min. applicable load for contact</td>
<td>0.1 VDC, 0.1 mA</td>
</tr>
</tbody>
</table>
| Relay life | Electrical life: 300,000 times (with induction load 24 VDC, 0.5 A)
Mechanical life: 20,000,000 times |

Connection example

![Connection example diagram]

Inside the board

Internal circuit

24VU

i (0.5A max.)

Fly-wheel diode
6.3 Connection Example

The following are allocation examples when the XOI01 board is added to the DX100: handling application; and arc welding, spot welding, and general-purpose applications. The "general-purpose applications" in this manual includes; assembling and cutting applications.

These examples are applied when only one XOI01 board is used as an optional I/O board. When any other optional I/O boards are added, the XOI01 board allocation will be changed depending on the I/O board allocation.
6.3.1 Handling Application

CN12 User input/output (for handling application)

<table>
<thead>
<tr>
<th>Logical Number</th>
<th>Connector Number</th>
<th>Name</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20065</td>
<td>B1</td>
<td>IN17</td>
<td>IN</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Remove jumper-pin between CN303-1 and -3, CN303-2 and -4 when a external power supply is used.
6 I/O Circuits

6.3 Connection Example

CN13 User input/output (for handling application)

* Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when a external power supply is used.
6.3 Connection Example

CN10 User input/output (for handling application)

- Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when an external power supply is used.
DX100

6 I/O Circuits
6.3 Connection Example

CN11 User input/output (for handling application)

Connector Terminal Converter
(Optional)
Model: TIFS553YS

<table>
<thead>
<tr>
<th>Logical Number</th>
<th>Connector Name</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20090</td>
<td>B1 IN49</td>
<td>IN</td>
</tr>
<tr>
<td>20099</td>
<td>A1 IN50</td>
<td>IN</td>
</tr>
<tr>
<td>20093</td>
<td>B2 IN51</td>
<td>IN</td>
</tr>
<tr>
<td>20094</td>
<td>A2 IN52</td>
<td>IN</td>
</tr>
<tr>
<td>20095</td>
<td>B3 IN53</td>
<td>IN</td>
</tr>
<tr>
<td>20096</td>
<td>A3 IN54</td>
<td>IN</td>
</tr>
<tr>
<td>20097</td>
<td>B4 IN55</td>
<td>IN</td>
</tr>
<tr>
<td>20098</td>
<td>A4 IN56</td>
<td>IN</td>
</tr>
<tr>
<td>20099</td>
<td>B5 IN57</td>
<td>IN</td>
</tr>
<tr>
<td>20100</td>
<td>A5 IN58</td>
<td>IN</td>
</tr>
<tr>
<td>20101</td>
<td>B6 IN59</td>
<td>IN</td>
</tr>
<tr>
<td>20102</td>
<td>A6 IN60</td>
<td>IN</td>
</tr>
<tr>
<td>20103</td>
<td>B6 IN61</td>
<td>IN</td>
</tr>
<tr>
<td>20104</td>
<td>A6 IN62</td>
<td>IN</td>
</tr>
</tbody>
</table>

* Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when a external power supply is used.

Bearer information

DX100

Logical Number Name Signal

20090 B1 IN49 IN
20099 A1 IN50 IN
20093 B2 IN51 IN
20094 A2 IN52 IN
20095 B3 IN53 IN
20096 A3 IN54 IN
20097 B4 IN55 IN
20098 A4 IN56 IN
20099 B5 IN57 IN
20100 A5 IN58 IN
20101 B6 IN59 IN
20102 A6 IN60 IN
20103 B6 IN61 IN
20104 A6 IN62 IN

Internal Power Supply +24 V

External Power Supply +24 V

Connector Number

Terminal Number

JZNC-YIU01-E

Connector Number

Terminal Number

XR100

Each Point
24VDC
8mA max.

Each Point
24VDC
500mA max.

* means internal relay

means internal relay

6.3.2 Arc Welding, Spot Welding, and General-purpose Applications

CN12 User input/output
(for arc welding, spot welding, and general-purpose applications)

* Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when a external power supply is used.
CN13 User input/output
(for arc welding, spot welding, and general-purpose applications)

* Remove jumper-pin between CN303-1 and -3, CN303-2 and -4 when an external power supply is used.
6 I/O Circuits

6.3 Connection Example

CN10 User input/output
(for arc welding, spot welding, and general-purpose applications)

* Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when an external power supply is used.
CN11 User input/output
(for arc welding, spot welding, and general-purpose applications)

* Remove Jumper-pin between CN303-1 and -3, CN303-2 and -4 when an external power supply is used.

+24VU

<table>
<thead>
<tr>
<th>Logical Number</th>
<th>Connector Number</th>
<th>Name</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20100</td>
<td>B1</td>
<td>IN57</td>
<td>IN</td>
</tr>
<tr>
<td>20101</td>
<td>A1</td>
<td>IN58</td>
<td>IN</td>
</tr>
<tr>
<td>20102</td>
<td>B2</td>
<td>IN59</td>
<td>IN</td>
</tr>
<tr>
<td>20103</td>
<td>A2</td>
<td>IN60</td>
<td>IN</td>
</tr>
<tr>
<td>20104</td>
<td>B3</td>
<td>IN61</td>
<td>IN</td>
</tr>
<tr>
<td>20105</td>
<td>A3</td>
<td>IN62</td>
<td>IN</td>
</tr>
<tr>
<td>20106</td>
<td>B4</td>
<td>IN63</td>
<td>IN</td>
</tr>
<tr>
<td>20107</td>
<td>A4</td>
<td>IN64</td>
<td>IN</td>
</tr>
<tr>
<td>20108</td>
<td>B5</td>
<td>IN65</td>
<td>IN</td>
</tr>
<tr>
<td>20109</td>
<td>A5</td>
<td>IN66</td>
<td>IN</td>
</tr>
<tr>
<td>20110</td>
<td>B6</td>
<td>IN67</td>
<td>IN</td>
</tr>
<tr>
<td>20111</td>
<td>A6</td>
<td>IN68</td>
<td>IN</td>
</tr>
<tr>
<td>20112</td>
<td>B7</td>
<td>IN69</td>
<td>IN</td>
</tr>
<tr>
<td>20113</td>
<td>A7</td>
<td>IN70</td>
<td>IN</td>
</tr>
<tr>
<td>20114</td>
<td>B8</td>
<td>OUT57-</td>
<td>OUT</td>
</tr>
<tr>
<td>20115</td>
<td>A8</td>
<td>OUT57+</td>
<td>OUT</td>
</tr>
<tr>
<td>20116</td>
<td>B9</td>
<td>OUT58-</td>
<td>OUT</td>
</tr>
<tr>
<td>20117</td>
<td>A9</td>
<td>OUT58+</td>
<td>OUT</td>
</tr>
<tr>
<td>20118</td>
<td>B10</td>
<td>OUT59-</td>
<td>OUT</td>
</tr>
<tr>
<td>20119</td>
<td>A10</td>
<td>OUT59+</td>
<td>OUT</td>
</tr>
<tr>
<td>20120</td>
<td>B11</td>
<td>OUT60-</td>
<td>OUT</td>
</tr>
<tr>
<td>20121</td>
<td>A11</td>
<td>OUT60+</td>
<td>OUT</td>
</tr>
<tr>
<td>20122</td>
<td>B12</td>
<td>OUT61-</td>
<td>OUT</td>
</tr>
<tr>
<td>20123</td>
<td>A12</td>
<td>OUT61+</td>
<td>OUT</td>
</tr>
<tr>
<td>20124</td>
<td>B13</td>
<td>OUT62-</td>
<td>OUT</td>
</tr>
<tr>
<td>20125</td>
<td>A13</td>
<td>OUT62+</td>
<td>OUT</td>
</tr>
<tr>
<td>20126</td>
<td>B14</td>
<td>OUT63-</td>
<td>OUT</td>
</tr>
<tr>
<td>20127</td>
<td>A14</td>
<td>OUT63+</td>
<td>OUT</td>
</tr>
<tr>
<td>20128</td>
<td>B15</td>
<td>OUT64-</td>
<td>OUT</td>
</tr>
<tr>
<td>20129</td>
<td>A15</td>
<td>OUT64+</td>
<td>OUT</td>
</tr>
<tr>
<td>20130</td>
<td>B16</td>
<td>OUT65-</td>
<td>OUT</td>
</tr>
<tr>
<td>20131</td>
<td>A16</td>
<td>OUT65+</td>
<td>OUT</td>
</tr>
<tr>
<td>20132</td>
<td>B17</td>
<td>OUT66-</td>
<td>OUT</td>
</tr>
<tr>
<td>20133</td>
<td>A17</td>
<td>OUT66+</td>
<td>OUT</td>
</tr>
<tr>
<td>20134</td>
<td>B18</td>
<td>OUT67-</td>
<td>OUT</td>
</tr>
<tr>
<td>20135</td>
<td>A18</td>
<td>OUT67+</td>
<td>OUT</td>
</tr>
<tr>
<td>20136</td>
<td>B19</td>
<td>OUT68-</td>
<td>OUT</td>
</tr>
<tr>
<td>20137</td>
<td>A19</td>
<td>OUT68+</td>
<td>OUT</td>
</tr>
<tr>
<td>20138</td>
<td>B20</td>
<td>FG</td>
<td></td>
</tr>
<tr>
<td>20139</td>
<td>A20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+24VU

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Name</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>A7</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>A10</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>A11</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>A13</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>A14</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>A15</td>
<td></td>
</tr>
<tr>
<td>B16</td>
<td>A16</td>
<td></td>
</tr>
<tr>
<td>B17</td>
<td>A17</td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td>A18</td>
<td></td>
</tr>
<tr>
<td>B19</td>
<td>A19</td>
<td></td>
</tr>
<tr>
<td>B20</td>
<td>A20</td>
<td></td>
</tr>
</tbody>
</table>

* means internal relay
DX100 OPTIONS
JARCR-XOI01 BOARD
INSTRUCTIONS

FOR I/O EXPANSION

HEAD OFFICE
2-1 Kurosaki-Shiroishi, Yahatanishi-ku, Kitakyusyu-shi, 806-0004, Japan
Phone +81-93-645-7745 Fax +81-93-645-7746

MOTOMAN INC. HEADQUARTERS
805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

MOTOMAN ROBOTICS EUROPE AB
Franska Vagen 10, Box 4004, SE-390 04 Kalmar, Sweden
Phone +46-480-417800 Fax +46-480-417999

MOTOMAN ROBOTEC GmbH
Kammerfeld strasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA ELECTRIC KOREA CORPORATION
1F, Samyang Bldg. 89-1, Shinchun-dong, Donk-Ku, Daegu, Korea
Phone +82-53-382-7844 Fax +82-53-382-7845

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-01, New Tech Park, Singapore 556741
Phone +65-6282-3003 Fax +65-6289-3003

YASKAWA ELECTRIC (MALAYSIA) SDN. BHD.
Unit 47-1 and 2, Jalan PJU 5/9, Dataran Sunway, Kota Damansara, 47810, Petaling Jaya Selangor, Malaysia
Phone +60-3614-08919 Fax +60-3614-08929

YASKAWA ELECTRIC (THAILAND) CO., LTD.
252/246, 4th Floor, Muang Thai-Phatra office Tower II Rechadapisek Road, Huaykwang Bangkok 10320, Thailand
Phone +66-2-693-2200 Fax +66-2-693-4200

SHOUGANG MOTOMAN ROBOT CO., LTD.
No.7,Yongchang-North Road, Beijing Economic and Technological and Development Area, Beijing 100076, China
Phone +86-10-6788-0541 Fax +86-10-6788-0542

MOTOMAN MOTHERSON ROBOTICS LTD.
Plot Number 195-196, First Floor, Imt Manesar -Sector 4, Gurgaon (Haryana),Pin-122050, India
Phone +91-124-475-8500 Fax +91-124-475-8542

YASKAWA ELECTRIC CORPORATION

YASKAWA

Specifications are subject to change without notice
for ongoing product modifications and improvements.
© Printed in Japan June 2009 09-06