YRC1000 OPTIONS
DeviceNet COMMUNICATIONS FUNCTION INSTRUCTIONS
FOR SST-DN4-PCIE/SST-DN4-PCU-2 MADE BY Molex, Inc.

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS
MOTOMAN- INSTRUCTIONS
YRC1000 INSTRUCTIONS
YRC1000 OPERATOR’S MANUAL (GENERAL) (SUBJECT SPECIFIC)
YRC1000 MAINTENANCE MANUAL
YRC1000 ALARM CODES (MAJOR ALARMS) (MINOR ALARMS)

The YRC1000 operator’s manual above corresponds to specific usage. Be sure to use the appropriate manual.
The YRC1000 operator’s manual above consists of “GENERAL” and “SUBJECT SPECIFIC”.
The YRC1000 alarm codes above consists of “MAJOR ALARMS” and “MINOR ALARMS”.

Please have the following information available when contacting Yaskawa Customer Support:
• System
• Primary Application
• Software Version (Located on Programming Pendant by selecting: (Main Menu) - (System Info) - {Version})
• Robot Serial Number (Located on robot data plate)
• Robot Sales Order Number (Located on controller data plate)

Part Number: 178667-1CD
Revision: 1
DANGER

- This manual explains the SST-DN4-PCIE board and the SST-DN4-PCU-2 board (manufactured by Molex, Inc.) of the YRC1000 system. Read this manual carefully and be sure to understand its contents before handling the YRC1000. Any matter, including operation, usage, measures, and an item to use, not described in this manual must be regarded as "prohibited" or "improper".
- General information related to safety are described in "Chapter 1. Safety" of the YRC1000 INSTRUCTIONS. To ensure correct and safe operation, carefully read "Chapter 1. Safety" of the YRC1000 INSTRUCTIONS.

CAUTION

- In some drawings in this manual, protective covers or shields are removed to show details. Make sure that all the covers or shields are installed in place before operating this product.
- YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids the product warranty.

NOTICE

- The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.
- YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.
- If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.
NOTES FOR SAFE OPERATION

Read this manual carefully before installation, operation, maintenance, or inspection of the YRC1000.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, or “NOTICE”.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Safety Signs identified by the signal word DANGER should be used sparingly and only for those situations presenting the most serious hazards.

WARNING Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury. Hazards identified by the signal word WARNING present a lesser degree of risk of injury or death than those identified by the signal word DANGER.

CAUTION Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury. It may also be used without the safety alert symbol as an alternative to “NOTICE”.

NOTICE NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol should not be used with this signal word. As an alternative to “NOTICE”, the word “CAUTION” without the safety alert symbol may be used to indicate a message not related to personal injury.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “WARNING” and “CAUTION”.
NOTICE

- Do not use or keep the board in the following environmental conditions.
 - Where exposed to direct sunshine
 - Where vibration or impact occurs
 - Where high humidity exists
 - Where a strong magnetic field exists
 - Where much dust exists
 - Where a sudden change in the temperature occurs
 - Where corrosive gases occur
 - Where condensation occurs

- Improper usage of the board may damage the board.
DANGER

• Before operating the manipulator, make sure the servo power is turned OFF by performing the following operations. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.
 – Press the emergency stop buttons on the front door of the YRC1000, on the programming pendant, on the external control device, etc.
 – Disconnect the safety plug of the safety fence. (when in the play mode or in the remote mode)

If operation of the manipulator cannot be stopped in an emergency, personal injury and/or equipment damage may result.

Fig. : Emergency Stop Button

• Before releasing the emergency stop, make sure to remove the obstacle or error caused the emergency stop, if any, and then turn the servo power ON.

Failure to observe this instruction may result in personal injury caused by unintended manipulator movement.

Fig. : Release of Emergency Stop

• Observe the following precautions when performing a teaching operation within the P-point maximum envelope of the manipulator:
 – Be sure to perform lockout by putting a lockout device on the safety fence when going into the area enclosed by the safety fence. In addition, the operator of the teaching operation must display the sign that the operation is being performed so that no other person closes the safety fence.
 – View the manipulator from the front whenever possible.
 – Always follow the predetermined operating procedure.
 – Always keep in mind emergency response measures against the manipulator’s unexpected movement toward a person.
 – Ensure a safe place to retreat in case of emergency.

Failure to observe this instruction may result in personal injury caused by improper or unintended manipulator movement.

• Confirm that no person is present in the P-point maximum envelope of the manipulator and that the operator is in a safe location before:
 – Turning ON the YRC1000 power
 – Moving the manipulator by using the programming pendant
 – Running the system in the check mode
 – Performing automatic operations

Injury may result if any person should enter the P-point maximum envelope of the manipulator during operation. Immediately press an emergency stop button whenever there is a problem. The emergency stop buttons are located on the front panel of the YRC1000 and on the right of the programming pendant.

• Read and understand the Explanation of the Warning Labels before operating the manipulator.
WARNING

- Do not touch the inside of the controller cabinet for at least 5 minutes after turning the power off.
Failure to observe this warning may result in electric shock or personal injury because of the residual voltage of the condenser.
- During power on, make sure to close the door and mount the protective cover, and do not touch the board.
Failure to observe this warning may result in fire or electric shock.
- Perform the following inspection procedures prior to conducting manipulator teaching. If there is any problem, immediately take necessary steps to solve it, such as maintenance and repair.
 - Check for a problem in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.
- Always return the programming pendant to the hook on the YRC1000 cabinet after use.
If the programming pendant is left unattended on the manipulator, on a fixture, or on the floor, the Enable Switch may be activated due to surface irregularities of where it is left, and the servo power may be turned ON. In addition, in case the operation of the manipulator starts, the manipulator or the tool may hit the programming pendant left unattended, which may result in personal injury and/or equipment damage.
- Wiring and installation must be performed by authorized or certified personnel.
Failure to observe this caution may result in fire or electric shock.
CAUTION

• Check to be sure that there is no foreign matter (metal piece, etc.) on the board.
Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

• Check to be sure that there is no problem (damage, bend, etc.) with the components of the board.
Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

• Connect the cables and connectors properly.
Failure to observe this caution may result in fire or equipment failure.

• Make sure to properly perform the setting of the switches, etc.
Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

• Do not touch the solder surface of the board directly with a finger.
Failure to observe this caution may result in personal injury because of solder projection, etc.

NOTICE

• Do not touch the component-mounting surface of the board directly with a finger.
Failure to observe this caution may result in the failure of IC, etc. because of static electricity.

• Avoid shock on the board.
Failure to observe this caution may result in the failure of the board.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product. The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRC1000 controller</td>
<td>YRC1000</td>
</tr>
<tr>
<td>YRC1000 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>

Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td>Character Keys /Symbol Keys</td>
</tr>
</tbody>
</table>
| | The keys which have characters or its symbol printed on them are denoted with [.]
| | ex. [ENTER] |
| Axis Keys /Numeric Keys | [Axis Key] and [Numeric Key] are generic names for the keys for axis operation and number input. |
| Keys pressed simultaneously | When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them. |
| | ex. [SHIFT]+[COORD] |
| Displays | The menu displayed in the programming pendant is denoted with { }. |
| | ex. {JOB} |

Description of the Operation Procedure

In the explanation of the operation procedure, the expression "Select • • • " means that the cursor is moved to the object item and [SELECT] is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and ™ are omitted.
1 Outline .. 1-1
 1.1 System Configuration .. 1-1
 1.1.1 Slave Mode .. 1-1
 1.1.1.1 SST-DN4-PCIE Board .. 1-1
 1.1.1.2 SST-DN4-PCU-2 Board .. 1-2
 1.1.2 Master Mode .. 1-2
 1.1.2.1 SST-DN4-PCIE Board .. 1-2
 1.1.2.2 SST-DN4-PCU-2 Board .. 1-3
 2 Hardware Specifications ... 2-1
 2.1 Board External View .. 2-1
 2.1.1 SST-DN4-PCIE Board .. 2-1
 2.1.2 SST-DN4-PCU-2 Board ... 2-2
 2.2 Board Specifications ... 2-3
 2.3 Communication Specifications ... 2-4
 2.4 Connector .. 2-4
 3 Mounting the Board... 3-1
 3.1 Opening Front Door of the YRC1000 .. 3-3
 3.2 Mounting the Board on the YRC1000.. 3-4
 3.2.1 SST-DN4-PCIE Board ... 3-4
 3.2.2 SST-DN4-PCU-2 Board .. 3-5
 3.3 Cable Connection .. 3-6
 3.4 Closing Front Door of the YRC1000.. 3-7
 4 I/O Signal Allocation.. 4-1
 4.1 Setting of Option Board and I/O Module.. 4-1
 4.1.1 Setting of the SST-DN4-PCIE Board to Slave .. 4-2
 4.1.2 Setting of the SST-DN4-PCIE Board to Master .. 4-12
 4.1.3 Setting of the SST-DN4-PCU-2 Board to Slave ... 4-24
 4.1.4 Setting of the SST-DN4-PCU-2 Board to Master ... 4-35
 4.2 Transmission Data .. 4-49
 4.2.1 YRC1000 I/O Allocation Example (For Handling)... 4-50
 4.2.1.1 SST-DN4-PCIE Board .. 4-50
 4.2.1.2 SST-DN4-PCU-2 Board .. 4-52
 4.2.2 YRC1000 I/O Allocation Example (For Except Handling).................................... 4-55
 4.2.2.1 SST-DN4-PCIE Board .. 4-55
 4.2.2.2 SST-DN4-PCU-2 Board .. 4-57
Contents

4.2.3 The Alarm when Communications Error Occurs Using the Board Status4-60

4.3 Management of DeviceNet Slave Allocation (Only in Master Mode)4-64

4.3.1 Saving to External Memory Device..4-64

4.3.2 Loading from External Memory Device..4-66

4.4 Generation of EDS File (Only in Slave Mode) ..4-69

4.4.1 Generation Procedure of EDS File ...4-69

4.4.1.1 SST-DN4-PCIE Board...4-69

4.4.1.2 SST-DN4-PCU-2 Board...4-72

4.5 Terminal Output Function (Only in Master Mode)..4-76

4.6 Terminal Output Setting (Only in Master Mode) ...4-78

4.7 QuickConnect Function (Only in Master Mode)...4-80

4.8 Communications with the NADEX Timer (Only in Master Mode)......................4-82

4.8.1 Communication Setting with NADEX Timer...4-82

4.8.2 Settings for Connecting the Timer ..4-84

4.8.3 Operation for the Timer Data ...4-86

4.8.4 Management of the Timer Data ...4-87

4.8.4.1 Saving to External Memory ...4-87

4.8.4.2 Loading from External memory ..4-89

4.8.5 Information ..4-91

4.8.5.1 Errors and Alarms..4-91

4.8.5.2 Parameter..4-91

5 Network Specifications ...5-1

5.1 Network Configuration ...5-1

5.1.1 Network Connections ..5-1

5.1.1.1 Connection Form...5-1

5.1.1.2 Configuration Elements ..5-2

5.1.1.3 Branching from the Trunk Line ...5-3

5.1.1.4 Branching from Drop Lines ..5-3

5.1.2 Precautions for Wiring DeviceNet Cables..5-4

5.1.2.1 Maximum Network Length ..5-4

5.1.2.2 Drop Line Length ..5-5

5.1.2.3 Total Drop Line Length ..5-6

6 Connections for DeviceNet Communications ..6-1

6.1 Location of Communication Power Supply ...6-1

6.1.1 Basic Precautions ..6-1

6.1.2 Location of Power Supply ...6-2

6.1.3 How to Decide the Location of the Power Supply ...6-3
Contents

6.2 Grounding 6-8
 6.2.1 Grounding Method .. 6-8

7 Error Indication .. 7-1
 7.1 LED Indicators .. 7-1
 7.1.1 HLTH LED ... 7-2
 7.1.2 COMM LED ... 7-4
1 Outline

1.1 System Configuration

This manual describes the DeviceNet I/O board SST-DN4-PCIE and SST-DN4-PCU-2 (manufactured by Molex Inc.) to be used in the YRC1000.

The application of the SST-DN4-PCIE board allows the general-purpose I/O data exchange between a DeviceNet device and the YRC1000.

The SST-DN4-PCU-2 board is available to use two channels of DeviceNet. Therefore the contents of the settings are added, compared to the SST-DN4-PCIE board.

In order to use the SST-DN4-PCU-2 board in the YRC1000, the riser board JANCD-ABB03-E or JANCD-ABB04-E is needed.

1.1.1 Slave Mode

1.1.1.1 SST-DN4-PCIE Board

The following diagram shows an example of the configuration of a system with an SST-DN4-PCIE board used in slave mode.

![Diagram of SST-DN4-PCIE Board in Slave Mode]
1.1.1.2 SST-DN4-PCU-2 Board

The following diagram shows an example of the configuration of a system with an SST-DN4-PCU-2 board used in slave mode.

1.1.2 Master Mode

1.1.2.1 SST-DN4-PCIE Board

The following diagram shows an example of the configuration of a system with an SST-DN4-PCIE board used in master mode.
1.1.2.2 SST-DN4-PCU-2 Board

The following diagram shows an example of the configuration of a system with an SST-DN4-PCU-2 board used in master mode.

* The SST-DN4-PCIE board and the SST-DN4-PCU-2 board do not include a DeviceNet cable or an external terminator.

NOTE

When the board is connected at the end of the network, connect the external terminator to the board.

If the terminator is not correctly connected, communications may not be performed.

DeviceNet is a registered trademark of ODVA (Open DeviceNet Vendor Association, Inc.).
2 Hardware Specifications

2.1 Board External View

2.1.1 SST-DN4-PCIE Board

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Card HLTH LED (top)</td>
</tr>
<tr>
<td>B</td>
<td>Card CAN Connector</td>
</tr>
<tr>
<td>C</td>
<td>Card COMM LED (bottom)</td>
</tr>
</tbody>
</table>
2.1.2 SST-DN4-PCU-2 Board

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel 1 HLTH LED</td>
</tr>
<tr>
<td>2</td>
<td>Channel 1 CAN Connector</td>
</tr>
<tr>
<td>3</td>
<td>Channel 1 COMM LED</td>
</tr>
<tr>
<td>4</td>
<td>Channel 2 HLTH LED</td>
</tr>
<tr>
<td>5</td>
<td>Channel 2 CAN Connector</td>
</tr>
<tr>
<td>6</td>
<td>Channel 2 COMM LED</td>
</tr>
</tbody>
</table>
2.2 Board Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface to the external device</td>
<td>DeviceNet</td>
</tr>
<tr>
<td>Board mounting position</td>
<td>• SST-DN4-PCIE Option PCI Express slot of the CPU rack on the YRC1000 (the JANCD-ABB02-E for standard or the JANCD-ABB04-E for optional)</td>
</tr>
<tr>
<td></td>
<td>• SST-DN4-PCU-2 Option PCI slot of the CPU rack on the YRC1000 (the JANCD-ABB03-E for optional or the JANCD-ABB04-E for optional)</td>
</tr>
<tr>
<td>Error indicator</td>
<td>LED display</td>
</tr>
<tr>
<td>Number of transmission I/O points</td>
<td>Maximum number of I/O points for SST-DN4-PCIE:</td>
</tr>
<tr>
<td></td>
<td>Input: 4048 points; Output: 4048 points</td>
</tr>
<tr>
<td></td>
<td>Maximum number of I/O points for SST-DN4-PCU-2:</td>
</tr>
<tr>
<td></td>
<td>Input: 4040 points; Output: 4040 points</td>
</tr>
<tr>
<td>Riser board</td>
<td>• JANCD-ABB02-E (standard) Slot 1: PCI Express</td>
</tr>
<tr>
<td></td>
<td>Slot 2: PCI Express</td>
</tr>
<tr>
<td></td>
<td>• JANCD-ABB03-E (optional) Slot 1: PCI</td>
</tr>
<tr>
<td></td>
<td>Slot 2: PCI</td>
</tr>
<tr>
<td></td>
<td>• JANCD-ABB04-E (optional) Slot 1: PCI</td>
</tr>
<tr>
<td></td>
<td>Slot 2: PCI Express</td>
</tr>
<tr>
<td></td>
<td>The JANCD-ABB03-E board and the JANCD-ABB04-E board are optional and required separately to be purchased.</td>
</tr>
</tbody>
</table>

Note on Transmission I/O Points

1. Input points and output points cannot be configured individually.

2. YRC1000 has 4096 inputs and 4096 outputs prepared for the I/O board. Of these, 40 inputs and 40 outputs are pre-allocated. In addition, 8 I/O points per channel are required for SST-DN4-PCIE and SST-DN4-PCU-2 communication status. The remaining number of I/O points are available for transmission.

2.3 Communication Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting form</td>
<td>Multi-drop, T-branch (1:N communications)</td>
</tr>
<tr>
<td>Transmission speed</td>
<td>500/250/125 kbps</td>
</tr>
<tr>
<td>Transmission media</td>
<td>Dedicated 5-wire cable (2 wires for signals, 2 wires for power supply, 1 drain wire)</td>
</tr>
<tr>
<td></td>
<td>Use a DeviceNet cable such as DCA1-5C10 (manufactured by OMRON).</td>
</tr>
<tr>
<td>Communication distance</td>
<td>Transmission speed:</td>
</tr>
<tr>
<td></td>
<td>Network max. distance:</td>
</tr>
<tr>
<td></td>
<td>Branch line length:</td>
</tr>
<tr>
<td></td>
<td>Total length of branch lines:</td>
</tr>
<tr>
<td>500 kbps</td>
<td>100 m and less</td>
</tr>
<tr>
<td>250 kbps</td>
<td>250 m and less</td>
</tr>
<tr>
<td>125 kbps</td>
<td>500 m and less</td>
</tr>
<tr>
<td>24 VDC</td>
<td>39 m and less</td>
</tr>
<tr>
<td>39 m and less</td>
<td>78 m and less</td>
</tr>
<tr>
<td>78 m and less</td>
<td>156 m and less</td>
</tr>
<tr>
<td>Power supply voltage for</td>
<td>24 VDC (supplied through the connector for DeviceNet connection)</td>
</tr>
<tr>
<td>communication</td>
<td></td>
</tr>
<tr>
<td>Maximum current consumption</td>
<td>0.05 A (1 channel)</td>
</tr>
<tr>
<td>for communications</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1: DeviceNet (Connector for DeviceNet Connection)

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Signal Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (black)</td>
<td>V-</td>
<td>(0_{24})V power supply line-connecting terminal</td>
</tr>
<tr>
<td>2 (blue)</td>
<td>CAN_L</td>
<td>DeviceNet signal line-connecting terminal</td>
</tr>
<tr>
<td>3 (bare wire)</td>
<td>Drain</td>
<td>Drain wire-connecting terminal (shielded)</td>
</tr>
<tr>
<td>4 (white)</td>
<td>CAN_H</td>
<td>DeviceNet signal line-connecting terminal</td>
</tr>
<tr>
<td>5 (red)</td>
<td>V+</td>
<td>(+) 24V power supply line-connecting terminal</td>
</tr>
</tbody>
</table>

The color mentioned in () indicates the color of a DeviceNet cable to be connected.
3 Mounting the Board

WARNING

- Before wiring or installation, make sure to turn the primary power supply off, and put up a warning sign. (e.g. DO NOT TURN THE POWER ON.)

Failure to observe this warning may result in electric shock or personal injury.

- Do not touch the inside of the controller cabinet for at least 5 minutes after turning the power off.

Failure to observe this warning may result in electric shock or personal injury because of the residual voltage of the capacitors.

- During power on, make sure to close the door and mount the protective cover, and do not touch the board.

Failure to observe this warning may result in fire or electric shock.

- Wiring and installation must be performed by authorized or certified personnel.

Failure to observe this caution may result in fire or electric shock.

CAUTION

- Check to be sure that there is no foreign matter (metal piece, etc.) on the board.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

- Check to be sure that there is no problem (damage, bend, etc.) with the components of the board.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

- Connect the cables and connectors properly.

Failure to observe this caution may result in fire or equipment failure.

- Make sure to properly perform the setting of the switches, etc.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.

- Do not touch the solder surface of the board directly with a finger.

Failure to observe this caution may result in personal injury because of solder projection, etc.
3 Mounting the Board

NOTICE

- Do not touch the component-mounting surface of the board directly with a finger.
 Failure to observe this caution may result in the failure of IC, etc. because of static electricity.
- Avoid shock on the board.
 Failure to observe this caution may result in the failure of the board.
3 Mounting the Board
3.1 Opening Front Door of the YRC1000

3.1 Opening Front Door of the YRC1000

Mount the SST-DN4-PCIE board and the SST-DN4-PCU-2 board in the following manner.

1. Open the front door of YRC1000.
 (1) Turn the door lock on the front face of the YRC1000 clockwise for 90 ° with a coin or a flat tip screwdriver.

 Fig. 3-1: Door Unlock

 ![Door Unlock Diagram]

 (2) With the door locks turned clockwise for 90 °, turn the main switch handle to the “OFF” position, and slowly open the door.

 Fig. 3-2: Open the Door "OFF" Position (Horizontal)

 ![Open Door OFF Position Diagram]
3.2 Mounting the Board on the YRC1000

3.2.1 SST-DN4-PCIE Board

1. Remove the riser board (JANCD-ABB02-E for standard or JANCD-ABB04-E for optional) from the CPU rack.

2. Mount the SST-DN4-PCIE board to the riser board, then securely tighten the SST-DN4-PCIE board with the board fixing screws.

3. Mount the riser board in the CPU rack.

Fig. 3-3: (Mounting Example) When the SST-DN4-PCIE Board is Inserted into Option Slot 1: Slot1
3.2 Mounting the Board on the YRC1000

3.2.2 SST-DN4-PCU-2 Board

1. Remove the riser board (JANCD-ABB03-E for optional or JANCD-ABB04-E for optional) from the CPU rack.

2. Mount the SST-DN4-PCU-2 board to the riser board, then securely tighten the SST-DN4-PCU-2 board with the board fixing screws.

3. Mount the riser board in the CPU rack.

Fig. 3-4: (Mounting Example) When the SST-DN4-PCU-2 Board is Inserted into Option Slot 1: Slot1
3.3 Cable Connection

1. Connect the DeviceNet cable with the DeviceNet connector on the SST-DN4-PCIE board or the SST-DN4-PCU-2 board.

Fig. 3-5: (Mounting Example) When the SST-DN4-PCIE Board is Inserted into Option Slot 1: Slot1
3.4 Closing Front Door of the YRC1000

1. Close the front door of YRC1000.

 (1) Close the door gently.

 (2) Turn the door lock on the front face of the YRC1000 counterclockwise for 90°.

Fig. 3-6: Lock the Door

WARNING

Make sure to close the door and close all the door locks of the YRC1000 whenever it is used, except for maintenance.

Failure to observe this instruction may cause the ingress of dust, dirt, or water, which may result in electric shock and/or mechanical failure.
4 I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

In order to use the SST-DN4-PCIE board and the SST-DN4-PCU-2 board in the YRC1000, perform the setting of the option board and I/O module in the following manner.

• When the SST-DN4-PCU-2 board which is a two-channel type is installed, the channel can be set up to two channels at most. The channel 2 setting procedures are the same as the procedures of the channel 1.
 For details, refer to the following procedures.
 chapter 4.1.3 “Setting of the SST-DN4-PCU-2 Board to Slave”
 chapter 4.1.4 “Setting of the SST-DN4-PCU-2 Board to Master”

The channel is arbitrarily set; the slave setting is for channel 1 and channel 2, the master setting is for channel 1 and channel 2 or the slave setting is for channel 1 and the master setting is for channel 2, etc.

And also when both two channels are set, the upper limit of the I/O size is 505 byte in two channels total. (505 * 8=4040 points)

Set the option board and I/O module in the management mode.

In the operation mode and the editing mode, the settings are for reference only.
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

4.1.1 Setting of the SST-DN4-PCIE Board to Slave

1. Turn ON the power supply while pressing {MAIN MENU}.
 - The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select {SYSTEM} under the main menu.
 - The sub menu appears.

![Diagram of Maintenance mode](image1)

![Diagram of Security mode](image2)
4. Select {SETUP}.
 – The SETUP display appears.

5. Select “OPTION BOARD”.
 – The OPTION BOARD display appears.
6. Select "DN4-PCIE".

 - The DN4-PCIE setup display appears.
 - Set the following items:
 - "DN4-PCIE": whether to use the SST-DN4-PCIE board or not
 - "SLAVE OR MASTER": the board mode
 - "IO SIZE": the I/O size (byte)
 - "MAC ID"
 - "BAUD RATE"

 - Explanation of Setup Items
 1. DN4-PCIE
 Sets whether to use the SST-DN4-PCIE board or not. Set "USED".
 2. SLAVE OR MASTER
 Sets "slave" or "master". Set "SLAVE".
 3. IO SIZE (byte)
 Sets the I/O size (in bytes) reserved for I/O.
 The maximum setting value of the I/O size is 506 bytes (506 × 8 = 4048 points).
 4. MACID
 Sets the MACID. The MACID can be set by numbers from 0 to 63.
 5. BAUD RATE
 Sets the baud rate. Set the baud rate among 500/250/125 kbps.
 6. SCAN LIST
 "SCAN LIST" is not used for setting the SST-DN4-PCIE board to slave.
7. Press [ENTER].
 – The confirmation dialog box appears.

 ![Confirmation Dialog Box]

8. Select [YES].
 – The IO MODULE display appears.
 The message, "Select 'Safety Board FLASH Reset'." appears, however, do not perform 'Safety Board FLASH Reset' this time, but perform the settings continuously.

 ![IO Module Display]

4. I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

9. Press [ENTER].

– The rest of the IO MODULE display appears, and "DN4-PCIE (SLAVE)" is displayed.

– The I/O points is displayed under "DI/DO" according to the I/O size in bytes that is set on the "OPTION BOARD" display.

10. Press [ENTER].

– The confirmation dialog box appears.

The DI/DO points can be found using the following equation;

\[\text{DI/DO points} = (\text{IO size} \times 8) + 8 \]

"+ 8": the I/O points for status
4. I/O Signal Allocation
 4.1 Setting of Option Board and I/O Module

11. Select {YES}.
 - Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

12. The EXTERNAL IO SETUP window appears.

13. Select "AUTO" or "MANUAL" in the ALLOCATION MODE.
 - The selection menu appears after selecting "AUTO" or "MANUAL".

If the allocation mode is changed from "MANUAL" to "AUTO", the set allocation data is discarded. The data will be allocated by AUTO MODE again. Save the set allocation data to the external devices in advance, if needed.
14. Select the allocation mode to set up.
 - Select "AUTO" to allocate I/O signal allocation automatically.
 Select "MANUAL" to allocate I/O signal allocation manually.
 - The selected allocation mode is set up.

15. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 - When select "AUTO", the following procedures No.16 to 18 are not necessary. Operate the procedure from No.19.
 - When select "MANUAL", operate the following procedures No.16 to 18 accordant with the setting manually.
4 I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

16. Select the external I/O signal number (at the change source) to be changed. (In the setting example, select “#20070”.)

– The select menu appears.

17. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, enter “#20190”.)

– The external input signal number is changed.

18. Likewise, select/modify the number of the external input signal.

– Repeat select/modify until it becomes the desired allocation to set up.
19. Press [ENTER].

- The allocation window of the external output signal appears.

20. Select/modify the number of the external output signal same as the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.

21. Press [ENTER].

- Confirmation dialog appears.

22. Select {YES}.

- The settings are confirmed, and returns to the SETUP window.
23. Set the security mode to the "SAFETY MODE".

24. Select {FILE} - {INITIALIZE}.
 - The INITIALIZE window appears.

25. Select "Safety Board FLASH Reset".
 - The confirmation dialog box appears.

26. Select {YES}.
 - The setting is completed after beep sound.
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

4.1.2 Setting of the SST-DN4-PCIE Board to Master

1. Turn ON the power supply while pressing {MAIN MENU}.
 - The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select {SYSTEM} under the main menu.
 - The sub menu appears.
4. Select \{SETUP\}.
 – The SETUP display appears.

5. Select "OPTION BOARD".
 – The OPTION BOARD display appears.
6. Select "DN4-PCIE".

– The DN4-PCIE setup display appears.

– Set the following items without fail:

 • "DN4-PCIE": whether to use the DN4-PCIE board or not
 • "SLAVE OR MASTER": the board mode
 • "IO SIZE": the I/O size (byte)
 • "MAC ID"
 • "BAUD RATE"

 • As for SCAN LIST, refer to the following step 7 to step 11.

For the settings other than mentioned above, execute settings as the need arises.

- Explanation of Setup Items

 1. DN4-PCIE
 Sets whether to use the SST-DN4-PCIE board or not. Set "USED".

 2. SLAVE OR MASTER
 Sets "slave" or "master". Set "MASTER".

 3. IO SIZE (byte)
 Sets the I/O size (in bytes) reserved for I/O. The maximum setting value of the I/O size is 506 bytes (506 × 8 = 4048 points).

 4. MACID
 Sets the MACID. The MACID can be set by numbers from 0 to 63.

 5. BAUD RATE
 Sets the baud rate. Set the baud rate among 500/250/125 kbps.

 6. SCAN LIST
 "SCAN LIST" is used for setting the SST-DN4-PCIE board to master. Refer to the following step 7 to the step 11.

 7. INTERVAL
 Sets the DeviceNet scanning interval. Set to a value from 10 [msec] to 300 [msec] in units of 10 [msec]. The default setting is 30 [msec].
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

(8) TERMINAL OUTPUT FUNCTION
When this board is set as a master, the numbers of non communicating slave terminal can be output to M register. Set ENABLE / DISABLE of this function. Refer to chapter 4.5 “Terminal Output Function (Only in Master Mode)” for the details of this function.

(9) M REGISTER
This item appears when “ENABLE” is selected to the above mentioned ‘(8) TERMINAL OUTPUT FUNCTION’. Set the M register’s leading number as the destination of the terminal output function. Before setting the number, confirm that M register is not used for the different purposes.

(10) TERMINAL OUTPUT SETTING
This item appears when “ENABLE” is selected to the above mentioned ‘(8) TERMINAL OUTPUT FUNCTION’. Set “ENABLE” or “DISABLE”. Refer to chapter 4.6 “Terminal Output Setting (Only in Master Mode)” for the details of this function.

(11) M REGISTER
This item appears when “ENABLE” is selected to the above mentioned ‘(10) TERMINAL OUTPUT SETTING’. Set the M register’s leading number as the destination of the terminal output setting. Before setting the number, confirm that M register is not used for the different purposes.

7. Select “DETAIL”.
 – The SCAN LIST setup display appears.

8. Move the cursor to each item on the SCAN LIST display, and select the desired item for setting.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

9. Enter a desired value.

- Set each parameter according to the actual status of the mounted slave device.

![Diagram](image)

- Each item in the display indicates as follows:

 - **MAC ID**: Node address of the DeviceNet device
 - **SIZE (IN)**: Number of bytes input from the slave device (1 byte = 8 points)
 - **SIZE (OUT)**: Number of bytes output to the slave device (1 byte = 8 points)
 - **TYPE**: I/O message type of the slave device. The message type "POLL", "BITSTROBE", "COS", and "CYCLIC" are supported. Especially "POLL" is supported by most of the slave devices. For details of "POLL", "BITSTROBE", "COS", and "CYCLIC", refer to the DeviceNet specifications.

10. Press [ENTER].

- The confirmation dialog box appears.

![Diagram](image)
11. Select {YES}

- The IO MODULE display appears. The message, "Select 'Safety Board FLASH Reset'." appears, however, do not perform 'Safety Board FLASH Reset' this time, but perform the settings continuously.

12. Press [ENTER].

- The rest of the IO MODULE display appears, and "DN4-PCIE (MASTER)" is displayed.

- The I/O points is displayed under "DI/DO" according to the I/O size in bytes that is set on the "OPTION BOARD" display.

The DI/DO points can be found using the following equation:

\[\text{DI/DO points} = (\text{I/O size } \times 8) + 8 \]

"+ 8": the I/O points for status
13. Press [ENTER].

 – The confirmation dialog box appears.

14. Select {YES}.

 – Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

15. The EXTERNAL IO SETUP window appears.
16. Select "AUTO" or "MANUAL" in the ALLOCATION MODE.
 - The selection menu appears after selecting "AUTO" or "MANUAL".

17. Select the allocation mode to set up.
 - Select "AUTO" to allocate I/O signal allocation automatically.
 Select "MANUAL" to allocate I/O signal allocation manually.
 - The selected allocation mode is set up.
18. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.

- When select “AUTO”, the following procedures No.19 to 21 are not necessary. Operate the procedure from No.22.
- When select “MANUAL”, operate the following procedures No.19 to 21 accordant with the setting manually.

19. Select the external I/O signal number (at the change source) to be changed. (In the setting example, select “#20210”.)

- The select menu appears.
20. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, enter “#20290”.)

- The external input signal number is changed.

21. Likewise, select/modify the number of the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.

22. Press [ENTER].

- The allocation window of the external output signal appears.

23. Select/modify the number of the external output signal same as the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

24. Press [ENTER].
 – Confirmation dialog appears.

25. Select {YES}.
 – The settings are confirmed, and returns to the SETUP window.
26. Set the security mode to the "SAFETY MODE".

27. Select {FILE} - {INITIALIZE}.

 - The INITIALIZE window appears.

28. Select "Safety Board FLASH Reset".

 - The confirmation dialog box appears.

29. Select (YES).

 - The setting is completed after beep sound.
4.1.3 Setting of the SST-DN4-PCU-2 Board to Slave

1. Turn ON the power supply while pressing [MAIN MENU].
 - The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select [SYSTEM] under the main menu.
 - The sub menu appears.

4. Select [SETUP].
 - The SETUP window appears.
4. I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

5. Select “OPTION BOARD”.
 – The OPTION BOARD window appears.

6. Select “DN4-PCU-2”.
 – The DN4-PCU-2 (CH1) or the DN4-PCU-2 (CH2) setup selection window appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

7-1. (When setting channel 1 is performed.) Select “DETAIL” of the DN4-PCU-2 (CH1).

- The channel 1 of the SST-DN4-PCU-2 (CH1) setup window appears.

- Set the following items:
 - "DN4-PCU-2": whether to use the SST-DN4-PCU-2 board or not
 - "SLAVE OR MASTER": the board mode
 - "IO SIZE": the I/O size (byte)
 - "MAC ID"
 - "BAUD RATE"

![Setup Window](image)

(1) DN4-PCU-2(CH1)
Sets whether to use the channel 1 of the SST-DN4-PCU-2 board or not. Set "USED".

(2) SLAVE OR MASTER
Sets "slave" or "master". Set “SLAVE”.

(3) IO SIZE (byte)
Sets the I/O size (in bytes) reserved for I/O.
The maximum setting value of the I/O size is 506 bytes (506*8 = 4048 points).

(4) MAC ID
Sets the MAC ID. The MAC ID can be set by numbers from 0 to 63.

(5) BAUD RATE
Sets the baud rate. Set the baud rate among 500/250/125 kbps.

(6) SCAN LIST
“SCAN LIST” is not used for setting the SST-DN4-PCU-2 board to slave.
4. I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

7-2. (When setting channel 2 is performed.) Select “DETAIL” of the DN4-PCU-2 (CH2).

- The channel 2 of the SST-DN4-PCU-2 (CH2) setup window appears.

- Set the following items:
 - "DN4-PCU-2": whether to use the SST-DN4-PCU-2 board or not
 - "SLAVE OR MASTER": the board mode
 - "IO SIZE": the I/O size (byte)
 - "MAC ID"
 - "BAUD RATE"

(1) DN4-PCU-2(CH2)
Sets whether to use the channel 2 of the SST-DN4-PCU-2 board or not. Set "USED".

(2) SLAVE OR MASTER
Sets "slave" or "master". Set “SLAVE”.

(3) IO SIZE (byte)
Sets the I/O size (in bytes) reserved for I/O.
The maximum setting value of the I/O size is 506 bytes (506*8 =4048 points).

(4) MAC ID
Sets the MAC ID. The MAC ID can be set by numbers from 0 to 63.

(5) BAUD RATE
Sets the baud rate. Set the baud rate among 500/250/125 kbps.

(6) SCAN LIST
"SCAN LIST" is not used for setting the SST-DN4-PCU-2 board to slave.
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

8. Press [ENTER].
 – The confirmation dialog box appears.

9. Select {YES}.
 – The IO MODULE window appears.
 The message, “Select ‘Safety Board FLASH Reset’. ” appears, however, do not perform ‘Safety Board FLASH Reset’ this time, but perform the settings continuously.
4. I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

10. Press [ENTER].

 - The rest of the IO MODULE window appears, and DN4-PCU-2 is displayed.
 - The I/O points is displayed under “DI/DO” according to the I/O size in bytes that is set on the “OPTION BOARD” display.

![IO MODULE Window]

11. Press [ENTER].

 - The confirmation dialog box appears.

![Confirmation Dialog Box]

12. Select {YES}.

 - Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.
13. The EXTERNAL IO SETUP window appears.

14. Select “AUTO” or “MANUAL” in the ALLOCATION MODE.
 - The selection menu appears after selecting “AUTO” or “MANUAL”.

NOTE
If the allocation mode is changed from “MANUAL” to “AUTO”, the set allocation data is discarded. The data will be allocated by AUTO mode again. Save the set allocation data to the external devices in advance if needed.
15. Select the allocation mode to set up.
 - Select “AUTO” to allocate I/O allocation automatically. Select “MANUAL” to allocate I/O allocation manually.
 - The selected allocation mode is set up.

16. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 - When select “AUTO”, the following procedures from No.21 to 23 are not necessary. Operate the procedure from No.24.
 - When select “MANUAL”, operate the following procedures No.21 to 23 accordant with the setting manually.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

17. Select the external input signal number (at the change source) to be changed. (In the setting example, “#20070” is selected.)
 - The select menu appears.

18. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, “#20190” is selected.)
 - The external input signal number is changed.

19. Likewise, select/modify the number of the external input signal.
 - Repeat select/modify until it becomes the desired allocation to set up.
20. Press [ENTER].

– The allocation window of the external output signal appears.

21. Select/modify the number of the external output signal same as the external input signal.

– Repeat select/modify until it becomes the desired allocation to set up.

22. Press [ENTER].

– The confirmation dialog box appears.

23. Select {YES}.

– The settings are confirmed, and return to the SETUP window.
24. Set the security mode to the "SAFETY MODE".

25. Select {FILE} - {INITIALIZE} under the main menu.
 – The INITIALIZE window appears.

26. Select “Safety Board FLASH Reset”.
 – The confirmation dialog box appears.

27. Select {YES}.
 – The setting is completed after beep sound.
4.1.4 Setting of the SST-DN4-PCU-2 Board to Master

1. Turn ON the power supply while pressing {MAIN MENU}.
 – The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select {SYSTEM} under the main menu.
 – The sub menu appears.

4. Select {SETUP}.
 – The SETUP window appears.
5. Select “OPTION BOARD”.
 – The OPTION BOARD window appears.

6. Select “DN4-PCU-2”.
 – The DN4-PCU-2 (CH1) or the DN4-PCU-2 (CH2) setup selection window appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

7-1. (When setting channel 1 is performed.) Select “DETAIL” of the DN4-PCU-2 (CH1).

- The channel 1 of the SST-DN4-PCU-2 (CH1) setup window appears.

- Set the following items without fail:
 - "DN4-PCU-2": whether to use the DN4-PCU-2 board or not
 - "SLAVE OR MASTER": the board mode
 - "IO SIZE": the I/O size (byte)
 - "MAC ID"
 - "BAUD RATE"
 - As for SCAN LIST, refer to the following step 7 to the step 11. For the settings other than mentioned above, execute settings as the need arise.

![DN4-PCU-2(CH1) setup window]

1. DN4-PCU-2(CH1)
 Sets whether to use the channel 1 of the SST-DN4-PCU-2 board or not. Set "USED".

2. SLAVE OR MASTER
 Sets "slave" or "master". Set “MASTER”.

3. IO SIZE (byte)
 Sets the I/O size (in bytes) reserved for I/O. The maximum setting value of the I/O size is 506 bytes (506*8 = 4048 points).

4. MAC ID
 Sets the MAC ID. The MAC ID can be set by numbers from 0 to 63.

5. BAUD RATE
 Sets the baud rate. Set the baud rate among 500/250/125 kbps.

6. SCAN LIST
 When the board is set as a master, a slave is allocated. Refer to the following steps 7 to 11.

7. INTERVAL
 Sets DeviceNet scanning interval. Set to a value range between 10 [msec] and 300 [msec], and for a resolution, set a value in units of 10 [msec]. The default setting is 30 [msec].
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

(8) TERMINAL OUTPUT FUNCTION
When the board is set as a master, the numbers of non-communicating slave terminal can be output to M register. Set ENABLE/DISABLE of this function. Refer to chapter 4.5 “Terminal Output Function (Only in Master Mode)” for the details of this function.

(9) M REGISTER
This item appears when "ENABLE" is selected to the above mentioned '(8) TERMINAL OUTPUT FUNCTION'. Set the M register’s leading number as the destination of the terminal output function. Before setting the number, confirm that M register is not used for the different purposes.

(10) TERMINAL OUTPUT SETTING
This item appears when "ENABLE" is selected to the above mentioned '(8) TERMINAL OUTPUT FUNCTION'. Set ENABLE/DISABLE of this function. Refer to chapter 4.6 “Terminal Output Setting (Only in Master Mode)” for the details of this function.

(11) M REGISTER
This item appears when "ENABLE" is selected to the above mentioned '(10) TERMINAL OUTPUT SETTING’. Set the M register’s leading number as the destination of the terminal output setting. Before setting the number, confirm that M register is not used for the different purposes.
7-2. (When setting channel 2 is performed.) Select “DETAIL” of the DN4-PCU-2 (CH2).

- The channel 2 of the SST-DN4-PCU-2 (CH2) setup window appears.

- Set the following items without fail:
 - "DN4-PCU-2": whether to use the DN4-PCU-2 board or not
 - "SLAVE OR MASTER": the board mode
 - "IO SIZE": the I/O size (byte)
 - "MAC ID"
 - "BAUD RATE"

As for SCAN LIST, refer to the following step 7 to the step 11. For the settings other than mentioned above, execute settings as the need arise.

(1) DN4-PCU-2(CH2)
 Sets whether to use the channel 2 of the SST-DN4-PCU-2 board or not. Set "USED".

(2) SLAVE OR MASTER
 Sets "slave" or "master". Set "MASTER".

(3) IO SIZE (byte)
 Sets the I/O size (in bytes) reserved for I/O.
 The maximum setting value of the I/O size is 506 bytes (506*8 =4048 points).

(4) MAC ID
 Sets the MAC ID. The MAC ID can be set by numbers from 0 to 63.

(5) BAUD RATE
 Sets the baud rate. Set the baud rate among 500/250/125 kbps.

(6) SCAN LIST
 "SCAN LIST" is used for setting the SST-DN4-PCU-2 board to master. Refer to the following step 7 to the step 11.

(7) INTERVAL
 Sets DeviceNet scanning interval.
 Set to a value range between 10 [msec] and 300 [msec], and for a resolution, set a value in units of 10 [msec].
 The default setting is 30 [msec].
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

(8) TERMINAL OUTPUT FUNCTION
When the board is set as a master, the numbers of non-communi-
cating slave terminal can be output to M register. Set ENABLE/ DISABLE of this function. Refer to chapter 4.5 “Terminal Output Function (Only in Master Mode)” for the details of this function.

(9) M REGISTER
This item appears when “ENABLE” is selected to the above men-
tioned ‘(8) TERMINAL OUTPUT FUNCTION’. Set the M register’s leading number as the destination of the terminal output function. Before setting the number, confirm that M register is not used for the different purposes.

(10) TERMINAL OUTPUT SETTING
This item appears when “ENABLE” is selected to the above men-
tioned ‘(8) TERMINAL OUTPUT FUNCTION’. Set ENABLE/DIS-
ABLE of this function. Refer to chapter 4.6 “Terminal Output Setting (Only in Master Mode)” for the details of this function.

(11) M REGISTER
This item appears when “ENABLE” is selected to the above men-
tioned ‘(10) TERMINAL OUTPUT SETTING’. Set the M register’s leading number as the destination of the terminal output setting. Before setting the number, confirm that M register is not used for the different purposes.

8. Select “DETAIL”.

– The SCAN LIST setup window appears.

9. Move the cursor to each item on the SCAN LIST window, and select the desired item for setting.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

10. Select a desired value.

- Set the parameter according to each actual status of the mounted slave device.

- Each item in the window indicates as follows:
 MAC ID: Node address of the DeviceNet device.
 SIZE (IN): Number of bytes input from the slave device
 (1 byte = 8 points)
 SIZE (OUT): Number of bytes output to the slave device
 (1 byte = 8 points)
 TYPE: I/O message type of the slave devices.
 The message type “POLL”, “BISTROBE”, “COS”, and “CYCLIC” are supported. Especially “POLL” is supported by most of the slave devices.
 For details of “POLL”, “BISTROBE”, “COS”, and “CYCLIC”, refer to the DeviceNet specifications.

11. Press [ENTER].

- The confirmation dialog box appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

12. Select {YES}.

– The IO MODULE window appears. The message, “Select ‘Safety Board FLASH Reset’.” appears, however, do not perform ‘Safety Board FLASH Reset’ this time, but perform the setting continuously.

13. Press [ENTER].

– The rest of the IO MODULE window appears, and “DN4-PCU-2” is displayed.

– The I/O points is displayed under “DI/DO” according to the I/O size in bytes that is set on the “OPTION BOARD” display.

The DI/DO points can be found using the following equation;

\[
\text{DI/DO points} = (\text{IO size} \times 8) + 8
\]

“+8”: the I/O points for status
14. Press [ENTER].
 - The confirmation dialog box appears.

15. Select {YES}.
 - Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

16. The EXTERNAL IO SETUP window appears.
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

17. Select “AUTO” or “MANUAL” in the ALLOCATION MODE.
 – The selection menu appears after selecting “AUTO” or “MANUAL”.

18. Select the allocation mode to set up.
 – Select “AUTO” to allocate I/O allocation automatically.
 Select “MANUAL” to allocate I/O allocation manually.
 – The selected allocation mode is set up.

NOTE
If the allocation mode is changed from “MANUAL” to “AUTO”, the set allocation data is discarded. The data will be allocated by AUTO mode again. Save the set allocation data to the external devices in advance if needed.
19. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 - When select “AUTO”, the following procedures No.24 to 26 are not necessary. Operate the procedure from No.27.
 - When select “MANUAL”, operate the following procedures No.24 to 26 accordant with the setting manually.

20. Select the external input signal number (at the change source) to be changed. (In the setting example, “#20210” is selected.)
 - The select menu appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

21. Select “MODIFY” and input the external input signal number (at the change destination) to be changed. (In the setting example, “#20290” is selected.)

– The external input signal number is changed.

22. Likewise, select/modify the number of the external input signal.

– Repeat select/modify until it becomes the desired allocation to set up.

23. Press [ENTER].

– The allocation window of the external output signal appears.

24. Select/modify the number of the external output signal same as the external input signal.

– Repeat select/modify until it becomes the desired allocation to set up.
25. Press [ENTER].
 - A confirmation dialog box appears.

26. Select {YES}.
 - The settings are confirmed, and return to the SETUP window.

27. Set the security mode to the "SAFETY MODE".

28. Select {FILE} - {INITIALIZE} under the main menu.
 - The INITIALIZE window appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

29. Select “Safety Board FLASH Reset”.
 – The confirmation dialog box appears.

30. Select {YES}.
 – The setting is completed after beep sound.
4.2 Transmission Data

The data to be transferred from the SST-DN4-PCIE board and the SST-DN4-PCU-2 board to the inside of the YRC1000 is not only the I/O data from the external device connected to the DeviceNet, but also the status of the SST-DN4-PCIE board and the SST-DN4-PCU-2 board. Therefore, inside the YRC1000, 8 points (1 byte) each for input and output are reserved for the SST-DN4-PCIE board and the SST-DN4-PCU-2 board status, beside the area for the digital data. The output area, however, cannot be used.

The transmission data from the SST-DN4-PCIE board and the SST-DN4-PCU-2 board are allocated to the external I/O signals of concurrent I/O.

Where an SST-DN4-PCIE board or an SST-DN4-PCU-2 board is mounted as an optional I/O board, the concurrent I/O allocation of the board is shown in the following table.

Furthermore, the following table shows the concurrent I/O allocation of the board when the I/O size is set to 16 bytes (input: 128 points, output: 128 points) per one channel.

The I/O area: 20010 to 20057 and 30010 to 30057 is reserved for the standard I/O board of the YRC1000.
4.2 Transmission Data

4.2.1 YRC1000 I/O Allocation Example (For Handling)

4.2.1.1 SST-DN4-PCIE Board

Note 1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note 2) As for the input data/output data of JANCD-AIO01-E (standard I/O board), refer to "YRC1000 INSTRUCTIONS (RE-CTO-A221)" for more details.

Note 3) JANCD-AIO01-E (standard I/O board) is displayed as ASF01 (base board of AIO01) in the IO module setup display.

<table>
<thead>
<tr>
<th>JANCD-AIO01-E</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Standard I/O)</td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20020 to 20027</td>
<td>None (allocated on the system)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20030 to 20037</td>
<td>00010 to 00017 (IN0001 to IN0008)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20040 to 20047</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20050 to 20057</td>
<td>None (allocated on the system)</td>
<td>Input data (5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST-DN4-PCIE</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DeviceNet)</td>
<td>20060 to 20067</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Board status¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20070 to 20077</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20080 to 20087</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20090 to 20097</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20100 to 20107</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20110 to 20117</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>Input data (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20120 to 20127</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>Input data (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20130 to 20137</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>Input data (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20140 to 20147</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>Input data (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20150 to 20157</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>Input data (9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20160 to 20167</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>Input data (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20170 to 20177</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>Input data (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20180 to 20187</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>Input data (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20190 to 20197</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>Input data (13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20200 to 20207</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>Input data (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20210 to 20217</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>Input data (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20220 to 20227</td>
<td>00190 to 00197 (IN0145 to IN0152)</td>
<td>Input data (16)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30060 to 30067</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>System Reservation¹</td>
<td></td>
</tr>
<tr>
<td>30070 to 30077</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>Output data (1)</td>
<td></td>
</tr>
<tr>
<td>30080 to 30087</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>Output data (2)</td>
<td></td>
</tr>
<tr>
<td>30090 to 30097</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>Output data (3)</td>
<td></td>
</tr>
<tr>
<td>30100 to 30107</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>Output data (4)</td>
<td></td>
</tr>
<tr>
<td>30110 to 30117</td>
<td>10080 to 10087 (OT0057 to OT0064)</td>
<td>Output data (5)</td>
<td></td>
</tr>
<tr>
<td>30120 to 30127</td>
<td>10090 to 10097 (OT0065 to OT0072)</td>
<td>Output data (6)</td>
<td></td>
</tr>
</tbody>
</table>
4 I/O Signal Allocation
4.2 Transmission Data

<table>
<thead>
<tr>
<th>SST-DN4-PCIE (DeviceNet)</th>
<th>I/O Output</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>30130 to 30137</td>
<td>10100 to 10107 (OT0073 to OT0080)</td>
<td>Output data (7)</td>
</tr>
<tr>
<td>30140 to 30147</td>
<td>10110 to 10117 (OT0081 to OT0088)</td>
<td>Output data (8)</td>
</tr>
<tr>
<td>30150 to 30157</td>
<td>10120 to 10127 (OT0089 to OT0096)</td>
<td>Output data (9)</td>
</tr>
<tr>
<td>30160 to 30167</td>
<td>10130 to 10137 (OT0097 to OT0104)</td>
<td>Output data (10)</td>
</tr>
<tr>
<td>30170 to 30177</td>
<td>10140 to 10147 (OT0105 to OT0112)</td>
<td>Output data (11)</td>
</tr>
<tr>
<td>30180 to 30187</td>
<td>10150 to 10157 (OT0113 to OT0120)</td>
<td>Output data (12)</td>
</tr>
<tr>
<td>30190 to 30197</td>
<td>10160 to 10167 (OT0121 to OT0128)</td>
<td>Output data (13)</td>
</tr>
<tr>
<td>30200 to 30207</td>
<td>10170 to 10177 (OT0129 to OT0136)</td>
<td>Output data (14)</td>
</tr>
<tr>
<td>30210 to 30217</td>
<td>10180 to 10187 (OT0137 to OT0144)</td>
<td>Output data (15)</td>
</tr>
<tr>
<td>30220 to 30227</td>
<td>10190 to 10197 (OT0145 to OT0152)</td>
<td>Output data (16)</td>
</tr>
</tbody>
</table>

1 Board status and system reservation cannot be allocated as IO signal. Also, this data is not able to transmit by DeviceNet. (Unable to communicate with the main PLC.)

[SST-DN4-PCIE Board Status]
The status of the SST-DN4-PCIE board (the first 8 points of the allocation area) is indicated as follows. The value “xxx” of the allocated input signals in the table indicates the first number of the SST-DN4-PCIE board allocated number. In the table above, where the allocation numbers are 20060 to 20067, “xxx” would be “006”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx3</td>
<td>Reserved for the manufacturer. The user cannot use these signals.</td>
</tr>
<tr>
<td>2xxx4</td>
<td>Not used. Always set to 0.</td>
</tr>
<tr>
<td>2xxx5</td>
<td>In SLAVE mode. Not used. Always set to 0.</td>
</tr>
<tr>
<td></td>
<td>In MASTER mode. Indicates if communicating with all the slaves or not through DeviceNet.</td>
</tr>
<tr>
<td></td>
<td>Communicating with all slaves: 0</td>
</tr>
<tr>
<td></td>
<td>Communicating with some slaves: 1</td>
</tr>
<tr>
<td>2xxx6</td>
<td>Indicates the DeviceNet communication status. Normal: 0 Error: 1</td>
</tr>
<tr>
<td>2xxx7</td>
<td>Indicates the operation status of the SST-DN4-PCIE board. Normal: 0 Error: 1</td>
</tr>
</tbody>
</table>
4.2.1.2 SST-DN4-PCU-2 Board

Note 1)
The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note 2)
As for the input data/output data of JANCD-AIO01-E (standard I/O board), refer to "YRC1000 INSTRUCTIONS (RE-CTO-A221)" for more details.

Note 3)
JANCD-AIO01-E (standard I/O board) is displayed as ASF01 (base board of AIO01) in the IO module setup display.

<table>
<thead>
<tr>
<th>JANCD-AIO01-E (Standard I/O)</th>
<th>I/O</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20020 to 20027</td>
<td>None (allocated on the system)</td>
<td>Input data (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20030 to 20037</td>
<td>00010 to 00017 (IN0001 to IN0008)</td>
<td>Input data (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20040 to 20047</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Input data (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20050 to 20057</td>
<td>None (allocated on the system)</td>
<td>Input data (5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST-DN4-PCU-2 (DeviceNet)</th>
<th>I/O</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td>20060 to 20067</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>CH1 Board status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20070 to 20077</td>
<td>00040 to 00047 (IN0035 to IN0032)</td>
<td>CH1 Input data (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20080 to 20087</td>
<td>00050 to 00057 (IN0035 to IN0040)</td>
<td>CH1 Input data (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20090 to 20097</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>CH1 Input data (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20100 to 20107</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>CH1 Input data (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20110 to 20117</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>CH1 Input data (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20120 to 20127</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>CH1 Input data (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20130 to 20137</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>CH1 Input data (7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20140 to 20147</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>CH1 Input data (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20150 to 20157</td>
<td>00120 to 00127 (IN0098 to IN0096)</td>
<td>CH1 Input data (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20160 to 20167</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>CH1 Input data (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20170 to 20177</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>CH1 Input data (11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20180 to 20187</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>CH1 Input data (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20190 to 20197</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>CH1 Input data (13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20200 to 20207</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>CH1 Input data (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20210 to 20217</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>CH1 Input data (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20220 to 20227</td>
<td>00190 to 00197 (IN0145 to IN0152)</td>
<td>CH1 Input data (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20230 to 20237</td>
<td>00200 to 00207 (IN0153 to IN0160)</td>
<td>CH2 Board status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20240 to 20247</td>
<td>00210 to 00217 (IN0161 to IN0168)</td>
<td>CH2 Input data (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20250 to 20257</td>
<td>00220 to 00227 (IN0169 to IN0176)</td>
<td>CH2 Input data (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20260 to 20267</td>
<td>00230 to 00237 (IN0177 to IN0184)</td>
<td>CH2 Input data (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20270 to 20277</td>
<td>00240 to 00247 (IN0185 to IN0192)</td>
<td>CH2 Input data (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20280 to 20287</td>
<td>00250 to 00257 (IN0193 to IN0200)</td>
<td>CH2 Input data (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20290 to 20297</td>
<td>00260 to 00267 (IN0201 to IN0208)</td>
<td>CH2 Input data (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20300 to 20307</td>
<td>00270 to 00277 (IN0209 to IN0216)</td>
<td>CH2 Input data (7)</td>
</tr>
</tbody>
</table>
4. I/O Signal Allocation
4.2 Transmission Data

- **SST-DN4-PCU-2 (DeviceNet)**
 - **Input**
 - 20310 to 20317: 00280 to 00287 (IN0217 to IN0224) CH2 Input data (8)
 - 20320 to 20327: 00290 to 00297 (IN0225 to IN0232) CH2 Input data (9)
 - 20330 to 20337: 00300 to 00307 (IN0233 to IN0240) CH2 Input data (10)
 - 20340 to 20347: 00310 to 00317 (IN0241 to IN0248) CH2 Input data (11)
 - 20350 to 20357: 00320 to 00327 (IN0249 to IN0256) CH2 Input data (12)
 - 20360 to 20367: 00330 to 00337 (IN0257 to IN0264) CH2 Input data (13)
 - 20370 to 20377: 00340 to 00347 (IN0265 to IN0272) CH2 Input data (14)
 - 20380 to 20387: 00350 to 00357 (IN0273 to IN0280) CH2 Input data (15)
 - 20390 to 20397: 00360 to 00367 (IN0281 to IN0288) CH2 Input data (16)
 - **Output**
 - 30060 to 30067: 10030 to 10037 (OT0017 to OT0024) System reservation
 - 30070 to 30077: 10040 to 10047 (OT0025 to OT0032) CH1 Output data (1)
 - 30080 to 30087: 10050 to 10057 (OT0033 to OT0040) CH1 Output data (2)
 - 30090 to 30097: 10060 to 10067 (OT0041 to OT0048) CH1 Output data (3)
 - 30100 to 30107: 10070 to 10077 (OT0049 to OT0056) CH1 Output data (4)
 - 30110 to 30117: 10080 to 10087 (OT0057 to OT0064) CH1 Output data (5)
 - 30120 to 30127: 10090 to 10097 (OT0065 to OT0072) CH1 Output data (6)
 - 30130 to 30137: 10100 to 10107 (OT0073 to OT0080) CH1 Output data (7)
 - 30140 to 30147: 10110 to 10117 (OT0081 to OT0088) CH1 Output data (8)
 - 30150 to 30157: 10120 to 10127 (OT0089 to OT0096) CH1 Output data (9)
 - 30160 to 30167: 10130 to 10137 (OT0097 to OT0104) CH1 Output data (10)
 - 30170 to 30177: 10140 to 10147 (OT0105 to OT0112) CH1 Output data (11)
 - 30180 to 30187: 10150 to 10157 (OT0113 to OT0120) CH1 Output data (12)
 - 30190 to 30197: 10160 to 10167 (OT0121 to OT0128) CH1 Output data (13)
 - 30200 to 30207: 10170 to 10177 (OT0129 to OT0136) CH1 Output data (14)
 - 30210 to 30217: 10180 to 10187 (OT0137 to OT0144) CH1 Output data (15)
 - 30220 to 30227: 10190 to 10197 (OT0145 to OT0152) CH1 Output data (16)
 - 30230 to 30237: 10200 to 10207 (OT0153 to OT0160) System reservation
 - 30240 to 30247: 10210 to 10217 (OT0161 to OT0168) CH2 Output data (1)
 - 30250 to 30257: 10220 to 10227 (OT0169 to OT0176) CH2 Output data (2)
 - 30260 to 30267: 10230 to 10237 (OT0177 to OT0184) CH2 Output data (3)
 - 30270 to 30277: 10240 to 10247 (OT0185 to OT0192) CH2 Output data (4)
 - 30280 to 30287: 10250 to 10257 (OT0193 to OT0200) CH2 Output data (5)
 - 30290 to 30297: 10260 to 10267 (OT0201 to OT0208) CH2 Output data (6)
 - 30300 to 30307: 10270 to 10277 (OT0209 to OT0216) CH2 Output data (7)
 - 30310 to 30317: 10280 to 10287 (OT0217 to OT0224) CH2 Output data (8)
 - 30320 to 30327: 10290 to 10297 (OT0225 to OT0232) CH2 Output data (9)
 - 30330 to 30337: 10300 to 10307 (OT0233 to OT0240) CH2 Output data (10)
 - 30340 to 30347: 10310 to 10317 (OT0241 to OT0248) CH2 Output data (11)
 - 30350 to 30357: 10320 to 10327 (OT0249 to OT0256) CH2 Output data (12)
 - 30360 to 30367: 10330 to 10337 (OT0257 to OT0264) CH2 Output data (13)
 - 30370 to 30377: 10340 to 10347 (OT0265 to OT0272) CH2 Output data (14)
 - 30380 to 30387: 10350 to 10357 (OT0273 to OT0280) CH2 Output data (15)
 - 30390 to 30397: 10360 to 10367 (OT0281 to OT0288) CH2 Output data (16)

1 Board status and system reservation cannot be allocated as IO signal.
Also, this data is not able to transmit by DeviceNet.
(Unable to communicate with the main PLC.)
[SST-DN4-PCU-2 Board Status]

The status of the SST-DN4-PCU-2 board (the first 8 points of the allocation area) is indicated as follows.

The value “xxx” of the allocated input signals in the table indicates the first number of the SST-DN4-PCU-2 board allocated number. In the table above, where the allocation numbers are 20060 to 20067 and 20230 to 20237, “xxx” would be “006” and “023”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx3</td>
<td>Reserved for the manufacturer. The user cannot use these signals.</td>
</tr>
<tr>
<td>2xxx4</td>
<td>Not used. Always set to 0.</td>
</tr>
</tbody>
</table>
| 2xxx5 | In SLAVE mode
| | Not used. Always set to 0. |
| | In MASTER mode
| | Indicates if communicating with all the slaves or not through DeviceNet. |
| | Communicating with all slaves: 0 |
| | Communicating with some slaves: 1 |
| 2xxx6 | Indicates the DeviceNet communication status. |
| | Normal: 0 Error: 1 |
| 2xxx7 | Indicates the operation status of the SST-DN4-PCU-2 board. |
| | Normal: 0 Error: 1 |
4.2 Transmission Data

4.2.2 YRC1000 I/O Allocation Example (For Except Handling)

4.2.2.1 SST-DN4-PCIE Board

Note1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note2) As for the input data/output data of JANCD-AIO01-E (standard I/O board), refer to "YRC1000 INSTRUCTIONS (RE-CTO-A221)" for more details.

Note3) JANCD-AIO01-E (standard I/O board) is displayed as ASF01(base board of AIO01) in the IO module setup display.

<table>
<thead>
<tr>
<th>JANCD-AIO01-E</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Standard I/O)</td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20020 to 20027</td>
<td>None (allocated on the system)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20030 to 20037</td>
<td>00010 to 00017 (IN0001 to IN0008)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20040 to 20047</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20050 to 20057</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Input data (5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30010 to 30017</td>
<td>None (allocated on the system)</td>
<td>Output data (1)</td>
<td></td>
</tr>
<tr>
<td>30020 to 30027</td>
<td>None (allocated on the system)</td>
<td>Output data (2)</td>
<td></td>
</tr>
<tr>
<td>30030 to 30037</td>
<td>10010 to 10017 (OT0001 to OT0008)</td>
<td>Output data (3)</td>
<td></td>
</tr>
<tr>
<td>30040 to 30047</td>
<td>10020 to 10027 (OT0009 to OT0016)</td>
<td>Output data (4)</td>
<td></td>
</tr>
<tr>
<td>30050 to 30057</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>Output data (5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST-DN4-PCIE</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DeviceNet)</td>
<td>20060 to 20067</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>Board status (^1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20070 to 20077</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20080 to 20087</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20090 to 20097</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20100 to 20107</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20110 to 20117</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>Input data (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20120 to 20127</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>Input data (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20130 to 20137</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>Input data (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20140 to 20147</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>Input data (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20150 to 20157</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>Input data (9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20160 to 20167</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>Input data (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20170 to 20177</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>Input data (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20180 to 20187</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>Input data (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20190 to 20197</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>Input data (13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20200 to 20207</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>Input data (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20210 to 20217</td>
<td>00190 to 00197 (IN0145 to IN0152)</td>
<td>Input data (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20220 to 20227</td>
<td>00200 to 00207 (IN0153 to IN0160)</td>
<td>Input data (16)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30060 to 30067</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>System reservation (^1)</td>
<td></td>
</tr>
<tr>
<td>30070 to 30077</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>Output data (1)</td>
<td></td>
</tr>
<tr>
<td>30080 to 30087</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>Output data (2)</td>
<td></td>
</tr>
<tr>
<td>30090 to 30097</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>Output data (3)</td>
<td></td>
</tr>
<tr>
<td>30100 to 30107</td>
<td>10080 to 10087 (OT0057 to OT0064)</td>
<td>Output data (4)</td>
<td></td>
</tr>
<tr>
<td>30110 to 30117</td>
<td>10090 to 10097 (OT0065 to OT0072)</td>
<td>Output data (5)</td>
<td></td>
</tr>
<tr>
<td>30120 to 30127</td>
<td>10100 to 10107 (OT0073 to OT0080)</td>
<td>Output data (6)</td>
<td></td>
</tr>
</tbody>
</table>
I/O Signal Allocation

4.2 Transmission Data

<table>
<thead>
<tr>
<th>SST-DN4-PCIE (DeviceNet)</th>
<th>I/O Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30130 to 30137</td>
<td>10110 to 10117 (OT0081 to OT0088)</td>
<td>Output data (7)</td>
</tr>
<tr>
<td>30140 to 30147</td>
<td>10120 to 10127 (OT0089 to OT0096)</td>
<td>Output data (8)</td>
</tr>
<tr>
<td>30150 to 30157</td>
<td>10130 to 10137 (OT0097 to OT0104)</td>
<td>Output data (9)</td>
</tr>
<tr>
<td>30160 to 30167</td>
<td>10140 to 10147 (OT0105 to OT0112)</td>
<td>Output data (10)</td>
</tr>
<tr>
<td>30170 to 30177</td>
<td>10150 to 10157 (OT0113 to OT0120)</td>
<td>Output data (11)</td>
</tr>
<tr>
<td>30180 to 30187</td>
<td>10160 to 10167 (OT0121 to OT0128)</td>
<td>Output data (12)</td>
</tr>
<tr>
<td>30190 to 30197</td>
<td>10170 to 10177 (OT0129 to OT0136)</td>
<td>Output data (13)</td>
</tr>
<tr>
<td>30200 to 30207</td>
<td>10180 to 10187 (OT0137 to OT0144)</td>
<td>Output data (14)</td>
</tr>
<tr>
<td>30210 to 30217</td>
<td>10190 to 10197 (OT0145 to OT0152)</td>
<td>Output data (15)</td>
</tr>
<tr>
<td>30220 to 30227</td>
<td>10200 to 10207 (OT0153 to OT0160)</td>
<td>Output data (16)</td>
</tr>
</tbody>
</table>

1 Board status and system reservation cannot be allocated as IO signal. Also, this data is not able to transmit by DeviceNet. (Unable to communicate with the main PLC.)

[SST-DN4-PCIE Board Status]
The status of the SST-DN4-PCIE board (the first 8 points of the allocation area) is indicated as follows. The value “xxx” of the allocated input signals in the table indicates the first number of the SST-DN4-PCIE board allocated number. In the table above, where the allocation numbers are 20060 to 20067, “xxx” would be “006”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx3</td>
<td>Reserved for the manufacturer. The user cannot use these signals.</td>
</tr>
</tbody>
</table>
| 2xxx4 | Not used
 | Always set to 0. |
| 2xxx5 | In SLAVE mode
 | Not used
 | Always set to 0.
 | In MASTER mode
 | Indicates if communicating with all the slaves or not through DeviceNet.
 | Communicating with all slaves: 0
 | Communicating with some slaves: 1 |
| 2xxx6 | Indicates the DeviceNet communication status.
 | Normal: 0 Error: 1 |
| 2xxx7 | Indicates the operation status of the SST-DN4-PCIE board.
 | Normal: 0 Error: 1 |
4.2 Transmission Data

4.2.2 SST-DN4-PCU-2 Board

Note1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note2) As for the input data/output data of JANCD-AIO01-E (standard I/O board), refer to "YRC1000 INSTRUCTIONS (RE-CTO-A221)" for more details.

Note3) JANCD-AIO01-E (standard I/O board) is displayed as ASF01 (base board of AI001) in the I/O module setup display.

<table>
<thead>
<tr>
<th>JANCD-AIO01-E</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Standard I/O)</td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20020 to 20027</td>
<td>None (allocated on the system)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20030 to 20037</td>
<td>00010 to 00017 (IN0001 to IN0008)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20040 to 20047</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20050 to 20057</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Input data (5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30010 to 30017</td>
<td>None (allocated on the system)</td>
<td>Output data (1)</td>
<td></td>
</tr>
<tr>
<td>30020 to 30027</td>
<td>None (allocated on the system)</td>
<td>Output data (2)</td>
<td></td>
</tr>
<tr>
<td>30030 to 30037</td>
<td>10010 to 10017 (OT0001 to OT0008)</td>
<td>Output data (3)</td>
<td></td>
</tr>
<tr>
<td>30040 to 30047</td>
<td>10020 to 10027 (OT0009 to OT0016)</td>
<td>Output data (4)</td>
<td></td>
</tr>
<tr>
<td>30050 to 30057</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>Output data (5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SST-DN4-PCU-2</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>(DeviceNet)</td>
<td>20060 to 20067</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>CH1 Board status1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20070 to 20077</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>CH1 Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20080 to 20087</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>CH1 Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20090 to 20097</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>CH1 Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20100 to 20107</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>CH1 Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20110 to 20117</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>CH1 Input data (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20120 to 20127</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>CH1 Input data (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20130 to 20137</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>CH1 Input data (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20140 to 20147</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>CH1 Input data (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20150 to 20157</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>CH1 Input data (9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20160 to 20167</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>CH1 Input data (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20170 to 20177</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>CH1 Input data (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20180 to 20187</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>CH1 Input data (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20190 to 20197</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>CH1 Input data (13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20200 to 20207</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>CH1 Input data (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20210 to 20217</td>
<td>00190 to 00197 (IN0145 to IN0152)</td>
<td>CH1 Input data (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20220 to 20227</td>
<td>00200 to 00207 (IN0153 to IN0160)</td>
<td>CH1 Input data (16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20230 to 20237</td>
<td>00210 to 00217 (IN0161 to IN0168)</td>
<td>CH2 Board status1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20240 to 20247</td>
<td>00220 to 00227 (IN0169 to IN0176)</td>
<td>CH2 Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20250 to 20257</td>
<td>00230 to 00237 (IN0177 to IN0184)</td>
<td>CH2 Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20260 to 20267</td>
<td>00240 to 00247 (IN0185 to IN0192)</td>
<td>CH2 Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20270 to 20277</td>
<td>00250 to 00257 (IN0193 to IN0200)</td>
<td>CH2 Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20280 to 20287</td>
<td>00260 to 00267 (IN0201 to IN0208)</td>
<td>CH2 Input data (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20290 to 20297</td>
<td>00270 to 00277 (IN0209 to IN0216)</td>
<td>CH2 Input data (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20300 to 20307</td>
<td>00280 to 00287 (IN0217 to IN0224)</td>
<td>CH2 Input data (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20310 to 20317</td>
<td>00290 to 00297 (IN0225 to IN0232)</td>
<td>CH2 Input data (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20320 to 20327</td>
<td>00300 to 00307 (IN0233 to IN0240)</td>
<td>CH2 Input data (9)</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Transmission Data

<table>
<thead>
<tr>
<th>I/O Signal Allocation</th>
<th>CH2 Input data (10)</th>
<th>DeviceNet Input 20300 to 20307</th>
<th>DeviceNet Input 20310 to 20317</th>
<th>DeviceNet Input 20320 to 20327</th>
<th>DeviceNet Input 20330 to 20337</th>
</tr>
</thead>
<tbody>
<tr>
<td>20310 to 20317</td>
<td>0310 to 0317 (IN0241 to IN0248)</td>
<td>CH2 Input data (11)</td>
<td>DeviceNet Input 20400 to 20407</td>
<td>DeviceNet Input 20410 to 20417</td>
<td>DeviceNet Input 20420 to 20427</td>
</tr>
<tr>
<td>20320 to 20327</td>
<td>0320 to 0327 (IN0249 to IN0256)</td>
<td>CH2 Input data (12)</td>
<td>DeviceNet Input 20500 to 20507</td>
<td>DeviceNet Input 20510 to 20517</td>
<td>DeviceNet Input 20520 to 20527</td>
</tr>
<tr>
<td>20330 to 20337</td>
<td>0330 to 0337 (IN0257 to IN0264)</td>
<td>CH2 Input data (13)</td>
<td>DeviceNet Input 20600 to 20607</td>
<td>DeviceNet Input 20610 to 20617</td>
<td>DeviceNet Input 20620 to 20627</td>
</tr>
<tr>
<td>20340 to 20347</td>
<td>0340 to 0347 (IN0265 to IN0272)</td>
<td>CH2 Input data (14)</td>
<td>DeviceNet Input 20700 to 20707</td>
<td>DeviceNet Input 20710 to 20717</td>
<td>DeviceNet Input 20720 to 20727</td>
</tr>
<tr>
<td>20350 to 20357</td>
<td>0350 to 0357 (IN0273 to IN0280)</td>
<td>CH2 Input data (15)</td>
<td>DeviceNet Input 20800 to 20807</td>
<td>DeviceNet Input 20810 to 20817</td>
<td>DeviceNet Input 20820 to 20827</td>
</tr>
<tr>
<td>20360 to 20367</td>
<td>0360 to 0367 (IN0281 to IN0288)</td>
<td>CH2 Input data (16)</td>
<td>DeviceNet Input 20900 to 20907</td>
<td>DeviceNet Input 20910 to 20917</td>
<td>DeviceNet Input 20920 to 20927</td>
</tr>
</tbody>
</table>

I/O EXternal output signal

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30060 to 30067</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>System reservation<sup>1</sup></td>
</tr>
<tr>
<td>30070 to 30077</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>CH1 Output data (1)</td>
</tr>
<tr>
<td>30080 to 30087</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>CH1 Output data (2)</td>
</tr>
<tr>
<td>30090 to 30097</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>CH1 Output data (3)</td>
</tr>
<tr>
<td>30100 to 30107</td>
<td>10080 to 10087 (OT0057 to OT0064)</td>
<td>CH1 Output data (4)</td>
</tr>
<tr>
<td>30110 to 30117</td>
<td>10090 to 10097 (OT0065 to OT0072)</td>
<td>CH1 Output data (5)</td>
</tr>
<tr>
<td>30120 to 30127</td>
<td>10100 to 10107 (OT0073 to OT0080)</td>
<td>CH1 Output data (6)</td>
</tr>
<tr>
<td>30130 to 30137</td>
<td>10110 to 10117 (OT0081 to OT0088)</td>
<td>CH1 Output data (7)</td>
</tr>
<tr>
<td>30140 to 30147</td>
<td>10120 to 10127 (OT0089 to OT0096)</td>
<td>CH1 Output data (8)</td>
</tr>
<tr>
<td>30150 to 30157</td>
<td>10130 to 10137 (OT0097 to OT0104)</td>
<td>CH1 Output data (9)</td>
</tr>
<tr>
<td>30160 to 30167</td>
<td>10140 to 10147 (OT0105 to OT0112)</td>
<td>CH1 Output data (10)</td>
</tr>
<tr>
<td>30170 to 30177</td>
<td>10150 to 10157 (OT0113 to OT0120)</td>
<td>CH1 Output data (11)</td>
</tr>
<tr>
<td>30180 to 30187</td>
<td>10160 to 10167 (OT0121 to OT0128)</td>
<td>CH1 Output data (12)</td>
</tr>
<tr>
<td>30190 to 30197</td>
<td>10170 to 10177 (OT0129 to OT0136)</td>
<td>CH1 Output data (13)</td>
</tr>
<tr>
<td>30200 to 30207</td>
<td>10180 to 10187 (OT0137 to OT0144)</td>
<td>CH1 Output data (14)</td>
</tr>
<tr>
<td>30210 to 30217</td>
<td>10190 to 10197 (OT0145 to OT0152)</td>
<td>CH1 Output data (15)</td>
</tr>
<tr>
<td>30220 to 30227</td>
<td>10200 to 10207 (OT0153 to OT0160)</td>
<td>CH1 Output data (16)</td>
</tr>
<tr>
<td>30230 to 30237</td>
<td>10210 to 10217 (OT0161 to OT0168)</td>
<td>System reservation<sup>1</sup></td>
</tr>
<tr>
<td>30240 to 30247</td>
<td>10220 to 10227 (OT0169 to OT0176)</td>
<td>CH2 Output data (1)</td>
</tr>
<tr>
<td>30250 to 30257</td>
<td>10230 to 10237 (OT0177 to OT0184)</td>
<td>CH2 Output data (2)</td>
</tr>
<tr>
<td>30260 to 30267</td>
<td>10240 to 10247 (OT0185 to OT0192)</td>
<td>CH2 Output data (3)</td>
</tr>
<tr>
<td>30270 to 30277</td>
<td>10250 to 10257 (OT0193 to OT0200)</td>
<td>CH2 Output data (4)</td>
</tr>
<tr>
<td>30280 to 30287</td>
<td>10260 to 10267 (OT0201 to OT0208)</td>
<td>CH2 Output data (5)</td>
</tr>
<tr>
<td>30290 to 30297</td>
<td>10270 to 10277 (OT0209 to OT0216)</td>
<td>CH2 Output data (6)</td>
</tr>
<tr>
<td>30300 to 30307</td>
<td>10280 to 10287 (OT0217 to OT0224)</td>
<td>CH2 Output data (7)</td>
</tr>
<tr>
<td>30310 to 30317</td>
<td>10290 to 10297 (OT0225 to OT0232)</td>
<td>CH2 Output data (8)</td>
</tr>
<tr>
<td>30320 to 30327</td>
<td>10300 to 10307 (OT0233 to OT0240)</td>
<td>CH2 Output data (9)</td>
</tr>
<tr>
<td>30330 to 30337</td>
<td>10310 to 10317 (OT0241 to OT0248)</td>
<td>CH2 Output data (10)</td>
</tr>
<tr>
<td>30340 to 30347</td>
<td>10320 to 10327 (OT0249 to OT0256)</td>
<td>CH2 Output data (11)</td>
</tr>
<tr>
<td>30350 to 30357</td>
<td>10330 to 10337 (OT0257 to OT0264)</td>
<td>CH2 Output data (12)</td>
</tr>
<tr>
<td>30360 to 30367</td>
<td>10340 to 10347 (OT0265 to OT0272)</td>
<td>CH2 Output data (13)</td>
</tr>
<tr>
<td>30370 to 30377</td>
<td>10350 to 10357 (OT0273 to OT0280)</td>
<td>CH2 Output data (14)</td>
</tr>
<tr>
<td>30380 to 30387</td>
<td>10360 to 10367 (OT0281 to OT0288)</td>
<td>CH2 Output data (15)</td>
</tr>
<tr>
<td>30390 to 30397</td>
<td>10370 to 10377 (OT0289 to OT0296)</td>
<td>CH2 Output data (16)</td>
</tr>
</tbody>
</table>

1 Board status and system reservation cannot be allocated as I/O signal.
Also, this data is not able to transmit by DeviceNet.
(Unable to communicate with the main PLC.)
4 I/O Signal Allocation
4.2 Transmission Data

[SST-DN4-PCU-2 Board Status]

The status of the SST-DN4-PCU-2 board (the first 8 points of the allocation area) is indicated as follows. The value “xxx” of the allocated input signals in the table indicates the first number of the SST-DN4-PCU-2 board allocated number. In the table above, where the allocation numbers are 20060 to 20067 and 20230 to 20237, “xxx” would be “006” and “023”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx3</td>
<td>Reserved for the manufacturer. The user cannot use these signals.</td>
</tr>
<tr>
<td>2xxx4</td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Always set to 0.</td>
</tr>
<tr>
<td>2xxx5</td>
<td>In SLAVE mode</td>
</tr>
<tr>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td></td>
<td>Always set to 0.</td>
</tr>
<tr>
<td> </td>
<td>In MASTERS mode</td>
</tr>
<tr>
<td> </td>
<td>Indicates if communicating with all the slaves or not through DeviceNet.</td>
</tr>
<tr>
<td> </td>
<td>Communicating with all slaves: 0,</td>
</tr>
<tr>
<td> </td>
<td>Communicating with some slaves: 1</td>
</tr>
<tr>
<td>2xxx6</td>
<td>Indicates the DeviceNet communication status.</td>
</tr>
<tr>
<td></td>
<td>Normal: 0 Error: 1</td>
</tr>
<tr>
<td>2xxx7</td>
<td>Indicates the operation status of the SST-DN4-PCU-2 board.</td>
</tr>
<tr>
<td></td>
<td>Normal: 0 Error: 1</td>
</tr>
</tbody>
</table>
4.2.3 The Alarm when Communications Error Occurs Using the Board Status

When the SST-DN4-PCIE or the SST-DN4-PCU-2 board detects an error of the DeviceNet communications, by using the CIO ladder program allows to occur the alarm.

The examples of the method are described below.

There are three alarms of the occurrence alarms.

- SST-DN4-PCIE BOARD ERROR
- DeviceNet COMMUNICATION ERROR
- UNSENT SLAVES in DeviceNet

As for the user alarm registration, refer to Chapter 13.7 I/O Messages and I/O Alarms on "YRC1000 OPTIONS INSTRUCTIONS FOR Concurrent I/O (RE-CKI-A467)" for more details.

Register the User Alarm
1. Change the security mode to the Management Mode.
2. Select the {I/O ALARM} from the {IN/OUT} in the main menu.
3. The I/O alarm (user) window appears.
4. Move the cursor over the desired No. to register, and press [SELECT].
 - The window changes to the character string entry window.
4 I/O Signal Allocation
4.2 Transmission Data

5. Enter the I/O alarm name.

6. Press [ENTER].
 - The entered alarm is registered.

7. Register the other alarms.
 - Repeat the same procedures to register the alarm to use.
4 I/O Signal Allocation
4.2 Transmission Data

IO Allocation and the Ladder Program

External input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20065</td>
<td>The unsent slave (slave unit) exists on the DeviceNet network.</td>
</tr>
<tr>
<td>20066</td>
<td>DeviceNet communication error</td>
</tr>
<tr>
<td>20067</td>
<td>SST-DN4-PCIE board operation error</td>
</tr>
</tbody>
</table>

System input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40012</td>
<td>User alarm request</td>
</tr>
<tr>
<td>40220</td>
<td>User alarm code d0</td>
</tr>
<tr>
<td>40221</td>
<td>User alarm code d1</td>
</tr>
<tr>
<td>40222</td>
<td>User alarm code d2</td>
</tr>
<tr>
<td>40223</td>
<td>User alarm code d3</td>
</tr>
<tr>
<td>40224</td>
<td>User alarm code d4</td>
</tr>
<tr>
<td>40225</td>
<td>User alarm code d5</td>
</tr>
</tbody>
</table>

Assistant relay

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70017</td>
<td>Control power ON completed (Normality ON)</td>
</tr>
</tbody>
</table>
The figure of the ladder
4.3 Management of DeviceNet Slave Allocation (Only in Master Mode)

The use of an external memory device allows a user to save or load the DeviceNet allocation that was set with "SCAN LIST" in the "SST-DN4-PCIE" or "SST-DN4-PCU-2" (DeviceNet) setup display.

The following show operational procedures.

For the overall operation using an external memory device, refer to "Chap. 7. Controlling Peripheral Devices" in "YRC1000 GENERAL OPERATOR’S MANUAL(RE-CSO-A051)".

4.3.1 Saving to External Memory Device

1. Turn ON the YRC1000 power.
2. Select {EX. MEMORY} under the main menu.
3. Select {SAVE}.
 - The following display appears.

4. Select "SYSTEM DATA".
 - The system data selection display appears.
5. Select "SST DEVICENET ALLOC DATA".
 – The selected system data are marked with "★".

6. Press [ENTER].
 – The confirmation dialog box appears.

7. Select {YES}.
 – Saving the file starts. The transfer display appears.
 – Once the saving is completed, the system data selection display appears.
4.3.2 Loading from External Memory Device

1. Turn ON the YRC1000 power.
2. Set the security mode to the “Management Mode”.
3. Select {EX. MEMORY} under the main menu.
 - The sub menu appears.
4. Select {LOAD}.
 - The load window appears.
5. Select “SYSTEM DATA”.
- The system data window appears.

6. Select “SST DEVICENET ALLOC DATA”.
- "★" is displayed to the selected system data.

7. Press [ENTER].
- A confirmation dialog box appears.
4. I/O Signal Allocation
4.3 Management of DeviceNet Slave Allocation (Only in Master Mode)

8. Select {YES}.
 - The loading file is started. The transfer window appears.
 - When the loading is completed, the file selection window appears.
 - Turn OFF the YRC1000 power supply and turn it ON again.

NOTE

The data cannot be loaded if any inconsistency was found between the setting status (node address: MAC ID, station, I/O size) of the SST-DN4-PCIE board or the SST-DN4-PCU-2 board and the file data to be loaded from the external memory.

Set the SST-DN4-PCIE board or the SST-DN4-PCU-2 board as in the same manner as the setting when the file has been saved, then load the file.

Even if no inconsistency is found, when the different contents of the IO allocation file is loaded, the external IO allocation data requires to be updated. To update the external IO allocation data, perform either operation described below.

- Load "EIOALLC.DAT", the external IO allocation data which is correctly IO allocated.
- Perform the setting for the external IO allocation in the maintenance mode again.
4.4 Generation of EDS File (Only in Slave Mode)

For setting the communication setting of a DeviceNet, an electronic data sheet (EDS) file is sometimes needed depending on a communication master (or a configuration). In this case, please use the EDS file generated in the following procedure.

Please refer to the DeviceNet specification for the details of the configuration and the EDS file. For the use method of the communication master and the generated EDS file, please refer to the operating manual of the communication master.

4.4.1 Generation Procedure of EDS File

4.4.1.1 SST-DN4-PCIE Board

1. Turn ON the power supply while pressing {MAIN MENU} simultaneously.
 - The maintenance mode window appears.

2. Select {EX. MEMORY} under the Main Menu.
 - A sub menu appears.
4 I/O Signal Allocation

4.4 Generation of EDS File (Only in Slave Mode)

3. Select {SAVE}.
 - The following window appears.

4. Select "EDS/GSD FILE SAVE".
 - The EDS/GSD FILE LIST window appears.
 - Among of the DeviceNet boards, a list of the boards, which have been set as slaves, is displayed as the following examples of the screens.

5. Select "DN4-PCIE" to save an EDS file.
 - The selected system data is marked with "★".
4 I/O Signal Allocation
4.4 Generation of EDS File (Only in Slave Mode)

6. Press [ENTER].
 - A confirmation dialog box appears.

7. Select {YES}.
 - An EDS file is generated in an effective device (SD card or USB memory).

6. Press [ENTER].
 - A confirmation dialog box appears.

7. Select {YES}.
 - An EDS file is generated in an effective device (SD card or USB memory).

- The name of the file generated is as follows.

SST-DN4-PCIE: Node_Classification_Board_Points.eds

Node: The number of 'ST#' displayed on IO module window.
Classification: Network classification (DevNet)
Board: Board name (DN4-PCIE)
Channel: CH1
Points: Input-and-output Points

<Example>
ST16_DevNet_DN4-PCIE_IO16.eds
4.4.1.2 SST-DN4-PCU-2 Board

1. Turn ON the power supply while pressing {MAIN MENU} simultaneously.
 - The maintenance mode window appears.

2. Select {EX. MEMORY} under the Main Menu.
 - A sub menu appears.
3. Select {SAVE}.
 - The following window appears.

4. Select "EDS/GSD FILE SAVE".
 - The EDS/GSD FILE LIST window appears.
 Among of the DeviceNet boards, a list of the boards, which have been set as slaves, is displayed as the following examples of the screens.

5-1. (For CH1) Select “DN4-PCU-2(CH1)” to save an EDS file.
 - “★” is displayed to the selected board.
5-2. (For CH2) Select “DN4-PCU-2(CH1)” to save an EDS file.
 - “★” is displayed to the selected board.

6. Press [ENTER].
 - A confirmation dialog box appears.

7. Select {YES}.
 - An EDS file is generated in an effective device (SD card or USB memory).
4. I/O Signal Allocation

4.4 Generation of EDS File (Only in Slave Mode)

- The name of the file generated is as follows.

 SST-DN4-PCU-2: *Node_Classification.Board_Channel_Points.eds*

 Node: The number of 'ST#' displayed on IO module window.
 Classification: Network classification (DevNet)
 Board: Board name (DN4-PCU-2)
 Channel: CH1, CH2
 Points: Input-and-output Points

 <Example>
 ST16_DevNet_DN4-PCU-2_CH1_IO16.eds
 ST16_DevNet_DN4-PCU-2_CH2_IO26.eds
4.5 Terminal Output Function (Only in Master Mode)

This function enables to output the number of non communicating slave terminals to M register when the SST-DN4-PCIE board or the SST-DN4-PCU-2 board is used in the DeviceNet master mode.

To utilize this function, set “TERMINAL OUTPUT FUNCTION” enable on the SST-DN4-PCIE or the SST-DN4-PCU-2 setting window, then, to “M register”, set the M register’s leading number as the destination of the terminal output function.

The communication status is output to 4 registers (64 bits) from the designated M register.

The bit equivalent to the non communicating slave terminal (ID) is “1” and that of master, communicating or non allocated terminals are “0”.

Following is an example of setting.
4. I/O Signal Allocation

4.5 Terminal Output Function (Only in Master Mode)

Leading number of the register
(MAC ID 0 to 15 error information: register 850 when setting as well as the window above)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 15</td>
<td>ID 14</td>
<td>ID 13</td>
<td>ID 12</td>
<td>ID 11</td>
<td>ID 10</td>
<td>ID 9</td>
<td>ID 8</td>
<td>ID 7</td>
<td>ID 6</td>
<td>ID 5</td>
<td>ID 4</td>
<td>ID 3</td>
<td>ID 2</td>
<td>ID 1</td>
<td>ID 0</td>
</tr>
</tbody>
</table>

Leading number of the register +1
(MAC ID 16 to 31 error information: register 851 when setting as well as the window above)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 31</td>
<td>ID 30</td>
<td>ID 29</td>
<td>ID 28</td>
<td>ID 27</td>
<td>ID 26</td>
<td>ID 25</td>
<td>ID 24</td>
<td>ID 23</td>
<td>ID 22</td>
<td>ID 21</td>
<td>ID 20</td>
<td>ID 19</td>
<td>ID 18</td>
<td>ID 17</td>
<td>ID 16</td>
</tr>
</tbody>
</table>

Leading number of the register +2
(MAC ID 32 to 47 error information: register 852 when setting as well as the window above)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 47</td>
<td>ID 46</td>
<td>ID 45</td>
<td>ID 44</td>
<td>ID 43</td>
<td>ID 42</td>
<td>ID 41</td>
<td>ID 40</td>
<td>ID 39</td>
<td>ID 38</td>
<td>ID 37</td>
<td>ID 36</td>
<td>ID 35</td>
<td>ID 34</td>
<td>ID 33</td>
<td>ID 32</td>
</tr>
</tbody>
</table>

Leading number of the register +3
(MAC ID 48 to 63 error information: register 853 when setting as well as the window above)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 63</td>
<td>ID 62</td>
<td>ID 61</td>
<td>ID 60</td>
<td>ID 59</td>
<td>ID 58</td>
<td>ID 57</td>
<td>ID 56</td>
<td>ID 55</td>
<td>ID 54</td>
<td>ID 53</td>
<td>ID 52</td>
<td>ID 51</td>
<td>ID 50</td>
<td>ID 49</td>
<td>ID 48</td>
</tr>
</tbody>
</table>
4.6 Terminal Output Setting (Only in Master Mode)

This function enables to specify the number of non communicating slave terminals to M register when TERMINAL OUTPUT FUNCTION is used.

To utilize this function, set “ENABLE” to “TERMINAL OUTPUT FUNCTION” on the SST-DN4-PCIE or the SST-DN4-PCU-2 setting window, then, to “M register” which is directly under “TERMINAL OUTPUT FUNCTION” column, set the M register’s leading number as the destination of the terminal output setting.

Then, set “ENABLE” to “TERMINAL OUTPUT SETTING”, then, to “M register” which is directly under “TERMINAL OUTPUT SETTING” column, set the M register’s leading number as its destination.

From the designated M register, the communication status is designated to output to 4 registers (64 bits).

Communication error is output when the bit equivalent to the non communicating slave terminal (ID) is set to “1”, and the error will not be output when the bit is set to “0”.

Following is an example of setting.
4 I/O Signal Allocation

4.6 Terminal Output Setting (Only in Master Mode)

Leading number of the register
(MAC ID 0 to 15: designation of output terminal: register 854 when setting as well as the window above)

<table>
<thead>
<tr>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Leading number of the register +1
(MAC ID 16 to 31: designation of output terminal: register 855 when setting as well as the window above)

<table>
<thead>
<tr>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Leading number of the register +2
(MAC ID 32 to 47: designation of output terminal: register 856 when setting as well as the window above)

<table>
<thead>
<tr>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Leading number of the register +3
(MAC ID 48 to 63: designation of output terminal: register 857 when setting as well as the window above)

<table>
<thead>
<tr>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
4.7 QuickConnect Function (Only in Master Mode)

It is able to use the QuickConnect (hereafter abbreviated as QC) or QuickConnectReconnect (hereafter abbreviated as QCR) function when the SST-DN4-PCIE board or the SST-DN4-PCU-2 board is set as the DeviceNet master.

In order to activate the QC function, set the parameter “S2C259” to “0”.

The following is a setting example of the QC or QCR function.

1. QC RECONNECT TIME
 - Specify the reconnect time. Usually, use by the 100msec.

 ![Diagram](image)

 2. Setup the QC/QCR
 - Set “○” in “QC” of the slave terminals (ID) using at the allocation screen of the SST-DN4-PCIE board or the SST-DN4-PCU-2 board. Also to activate the QCR function, set “○” in “QCR” while “○” is set to “QC”.

 - Activating the QC function enables the DeviceNet to communicate fast. Also, activating the QCR function enables to reconnect again after passing the reconnecting time.

 ![Diagram](image)
To use of the QC function, the slave side also should be corresponding with the QC function. If connect with the slave, which is not corresponding with the QC function, the communication start timing will not be fast. However, the DeviceNet is still able to communicate.

When the QC function is valid, after establishing the communication, keep the communication with at least one station. If stopping the communication with all stations, it will not reconnect again. In that case, turn the YRC1000 control power supply OFF and ON again.

NOTE

NADEX timer is not corresponding to the Quick Connect function.

Thus, by using the slave (NADEX timer), to which the 'EM' is set valid in accordance with the following procedures, the Quick Connect setting (both QC and QRC) cannot be set to valid.
4.8 Communications with the NADEX Timer (Only in Master Mode)

When the spot welding (NADEX) function is valid, using this circuit board enables to transmit the data between the universal I/O data and the timer corresponding to the DeviceNet “made by NADEX Co., LTD.”, and the parameter for the timer can be set. The spot welding (NADEX) function needs to be set by the operator of YASKAWA. Please contact your YASKAWA sales representative to activate this function.

The multiple timers can be used with the spot welding (NADEX) function using by this circuit board. When using the multiple timers, the setting for the second and following NADEX timers needs to be changed to the MACID. Refer to NADEX timer INSTRUCTIONS for changing the settings.

4.8.1 Communication Setting with NADEX Timer

Set up to communicate with the NADEX timer.

As for the setting procedures, refer to chapter 4.1.2 “Setting of the SST-DN4-PCIE Board to Master” or chapter 4.1.4 “Setting of the SST-DN4-PCU-2 Board to Master”.

The following is an example to connect the one NADEX timer.

1. Communication setting in the “DN4-PCIE” setting window.
 Input the following items.
 • DN4-PCIE “USED”
 • SLAVE OR MASTER “MASTER”
 • IO SIZE “2 byte”
 • MAC ID “0”
 • BAUD RATE “500Kbps”
 • INTERNAL “10 msec”
4.8 Communications with the NADEX Timer (Only in Master Mode)

2. Select the items in the SCAN LIST.
 The SCAN LIST window appears. Input the following values to the line of the MACID corresponding to the NADEX timer.

 - **BYTES (IN/OUT)** : 2
 - **SIZE (IN/OUT)** : 2
 - **TYPE** : POLL
 - **EM** : ☑ (VALID)

 NOTE
 NADEX timer has the type which communicates IO points other than IN: 2 byte and OUT: 2 byte. In this case, in accordance with the NADEX timer specifications, use the timer by changing the above setting value if necessary.
4.8 Communications with the NADEX Timer (Only in Master Mode)

4.8.2 Settings for Connecting the Timer

When the timer is connected to the SST-DN4-PCIE board or the SST-DN4-PCU-2 board for the first time, the timer information data must be uploaded to the internal memory of the YRC1000. This section describes how to upload the timer information.

Once it is uploaded, the uploading is not necessary when the power of the YRC1000 is turned ON.

1. Turn ON the power to the welding timer and then the YRC1000.
2. Set the security mode to management mode.
3. Select {SETUP} under the main menu.
4. Select {WELD TIMER SETUP}.
 – The WELD TIMER SETUP display appears.
5. Select “DATA from TIMER” and press [ENTER].
 – The confirmation dialog box appears.
6. Select {YES}.
 - The timer information starts to be uploaded to the YRC1000 and the current execution status appears.

7. Wait until the state changes to "SELECTING."
 - When the status returns to "SELECTING," the uploading to the YRC1000 has been completed. After the completion of the uploading, other items will appear on the display, however, they are usually not used.

① DATA from TIMER:
Uploads all the information data of the timer to the internal memory of the YRC1000.
Execute this uploading for the first time when the timer is connected to the YRC1000.

② DATA to TIMER:
Usually not used.
After initializing the timer, downloads the internal data of the YRC1000 to the timer.
4.8 Communications with the NADEX Timer (Only in Master Mode)

4.8.3 Operation for the Timer Data

For the timer connected to the SST-DN4-PCIE board or the SST-DN4-PCU-2 board, the data can be set and displayed by using the programming pendant of the YRC1000. The following describes the operation procedure.

Make the timer settings in the management mode.
In the operation mode and the editing mode, the settings are for reference only.

1. Select {NADEX} under the main menu.
 - The sub menu display related to the timer data settings appears.
 (Other settings are also displayed.)

```
<Diagram of Main Menu and Sub Menu>
```

2. Select the sub menu of desired timer data setting.
 (In this example, {COMMON PROGRAM} is selected.)
 - The setting display for the timer data appears. (The following display is an example.)

```
<Diagram of Setting Display for Timer Data>
```

For details on the items of the timer data, refer to the instruction manual of the timer.

3. Enter the desired number and press [ENTER].
4.8.4 Management of the Timer Data

The settings that were made for the SST-DN4-PCIE board or the SST-DN4-PCU-2 board and the connected timer using the YRC1000 can be saved to and loaded from an external memory. This section explains the saving and loading procedures. For information on operations using an external memory, refer to “Chap. 7 External Memory Devices” of “YRC1000 GENERAL OPERATOR’S MANUAL(RE-CSO-A051)”.

Make sure that the timer information has been uploaded as described in chapter 4.8.2 “Settings for Connecting the Timer” before saving or loading the timer data.

4.8.4.1 Saving to External Memory

1. Select {EX. MEMORY} under the main menu.
2. Select {SAVE}.
 – The EXTERNAL MEMORY DEVICE display appears.

3. Select “FILE/GENERAL DATA”.
 – A list for selecting files appears.
4. Select “WELDER TIMER CONDITION”.
 – The selected file is marked with “★.”

5. Press [ENTER].
 – The confirmation dialog box appears.

6. Select {YES}.
 – Saving of the selected file starts and its progress is displayed.
 – Once the saving is completed, the system data selection display appears.
4.8.4.2 Loading from External memory

1. Set the mode to management mode.
2. Select (EX. MEMORY) under the main menu.
3. Select (LOAD)
 - The EXTERNAL MEMORY DEVICE display appears.

 ![EXTERNAL MEMORY DEVICE Display](image)

 Main Menu | Sub-menu

4. Select “FILE/GENERAL DATA.”
 - A list for selecting files appears.

 ![FILE/GENERAL DATA List](image)
5. Select “WELDER TIMER CONDITION.”
 – The selected file is marked with “★.”

6. Press [ENTER].
 – The confirmation dialog box appears.

7. Select {YES}.
 – Loading of the selected file starts and its progress is displayed.
 – When the file is successfully loaded, the list for selecting files reappears.
4.8.5 Information

4.8.5.1 Errors and Alarms

When an error occurs at the timer, the error information is sent to the YRC1000 by I/O signals. The error information appears on the programming pendant as “Alarm 93□□.” The “□□” indicates the error code of the timer, which is from 01 to 99. For details on the error codes and the contents, refer to the timer’s instruction manual.

When the alarm number is 9300, the DeviceNet communications may not be established. Check the wirings and settings for DeviceNet.

4.8.5.2 Parameter

The command-response waiting time for the timer can be set in units of 10 ms with the parameter S3C1215. Normally, this parameter need not be changed.

(The initial value is set to 0. However, “0,” in this case, means 1 s of command-response waiting time.)
5 Network Specifications

5.1 Network Configuration

5.1.1 Network Connections

5.1.1.1 Connection Form

The following diagram shows the network connections.

Fig. 5-1: Network Connections
5.1.2 Configuration Elements

The network is configured from the following elements.

- **Node**
 A node is either a slave that connects to an external I/O unit, or the master that manages the I/O of the slaves. There are no restrictions on the location of the master or slaves. Any node in the figure above can be the master or a slave.

- **Trunk line and drop lines**
 A cable with a terminator on each end is a trunk line. Any cable branching from the trunk line is a drop line.

- **Connection methods**
 A node is connected using the T-branch method or multi-drop method. A T-Branch Adapter is used to connect a node with the T-branch method. A node is directly connected to the trunk line or a drop line with the multi-drop method. Both T-branch and multi-drop methods can be used together in the same network, as shown in the figure above.

- **Terminator**
 Both ends of the trunk line must connect to terminator to decrease signal reflection and ensure stable network communications.

- **Communications power supply**
 The communications connector of each node must be provided with a communications power supply through the communications cable for DeviceNet communications. Provide the communications power supply, the internal circuit power supply, and the I/O power supply separately.

 1. The communications cable must be a DeviceNet cable.
 2. Both ends of the trunk line must connect to a terminator.
 The following is the specification for the terminator.

Resistance Value	121Ω
Allowable Difference of Resistance Value	±1%
Rating Power	1/4W
Type	Metal Film Resistor

 3. Only DeviceNet devices can be connected to the network. Do not connect any other devices, such as a lightning arrester.
5.1.1.3 Branching from the Trunk Line

There are three methods that can be used to branch from the trunk line.

Fig. 5-2: Branching from the Trunk Line

(1) Single Branching (2) Branching to Three Drop Lines (3) Direct Node Connection

5.1.1.4 Branching from Drop Lines

There are three methods that can be used to branch from drop lines.

Fig. 5-3: Branching from Drop Lines
5.1.2 Precautions for Wiring DeviceNet Cables

5.1.2.1 Maximum Network Length

The maximum network length is either the line length between two nodes located farthest from each other or the line length between the terminators on the ends of the trunk line, whichever is longer.

DeviceNet cables can be either thick cables or thin cables. The thick cables can be used for relatively long distance communication with less signal attenuation distortion, however, they are rigid and difficult to bend.

The thin cables are pliable and easy to bend, however, they are not applicable for the long distance communication since the amount of signal attenuation distortion is considerably big.

The maximum network length is determined by the type of cable, as shown in the following table.

<table>
<thead>
<tr>
<th>Baud Rate (kbps)</th>
<th>Maximum Network Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thick Cable</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>125</td>
<td>500</td>
</tr>
</tbody>
</table>
5.1.2.2 Drop Line Length

The drop line length is the line length between a branch point on the trunk line to the farthest node that is located on the drop line.

The maximum drop line length is 6 m. A drop line can be branched out into other drop lines.

<table>
<thead>
<tr>
<th>Baud Rate (kbps)</th>
<th>Maximum Network Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>$L_{\text{TTHICK}} + L_{\text{THIN}} \leq 100$</td>
</tr>
<tr>
<td>250</td>
<td>$L_{\text{TTHICK}} + 2.5 \times L_{\text{THIN}} \leq 250$</td>
</tr>
<tr>
<td>125</td>
<td>$L_{\text{TTHICK}} + 5.0 \times L_{\text{THIN}} \leq 500$</td>
</tr>
</tbody>
</table>

L_{TTHICK}: thick cable length, L_{THIN}: thin cable length
5.1.2.3 Total Drop Line Length

The total drop line length is a total of all drop line lengths. The total drop line length must be within the allowable range and even then, each drop line must be 6 m or less.

The allowable range of total drop line length varies with the baud rate as shown in the following table.

<table>
<thead>
<tr>
<th>Baud Rate (kbps)</th>
<th>Total Drop Line Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>39 max.</td>
</tr>
<tr>
<td>250</td>
<td>78 max.</td>
</tr>
<tr>
<td>125</td>
<td>156 max.</td>
</tr>
</tbody>
</table>

Fig. 5-4: Configuration example (for 500 kbps transmission speed)

The above example must satisfy the following conditions.

\[a \leq 6 \text{ m}, \quad b \leq 6 \text{ m}, \quad c \leq 6 \text{ m}, \quad d \leq 6 \text{ m}, \quad d + f \leq 6 \text{ m}, \]
\[d + e + g \leq 6 \text{ m}, \quad d + e + h \leq 6 \text{ m} \]

The total drop line length must satisfy the following condition.

Total drop line length = \(a + b + c + d + e + f + g + h \leq 39 \text{ m} \)
6 Connections for DeviceNet Communications

6.1 Location of Communication Power Supply

6.1.1 Basic Precautions

1. The communications power supply to the network must be 24 VDC.
2. The communications power supply must have a sufficient margin in the capacity.
3. Connect the communications power supply to the trunk line.
4. If many nodes are provided with power from a single power supply, locate the power supply as close as possible to the middle of the trunk line.
5. The allowable current flow in a thick cable is 8 A and that in a thin cable is 3 A.
6. The power supply capacity for a drop line varies with the drop line length.
 The longer a drop line is, the lower the maximum current capacity of the drop line will be regardless of the thickness of the drop line. Obtain the allowable current (I) of the drop line (i.e., the allowable current consumption of the drop line and devices connected to it) from the following equation.
 \[I = \frac{4.57}{L} \]
 I: Allowable current (A)
 L: Drop line length (m)
7. If only the communications power supply is turned OFF while the network is operating, errors may occur in the nodes that are communicating at that time.
6.1.2 Location of Power Supply

The following two types of configuration are possible for the location of the power supply.

- **Nodes on Both Sides of the Power Supply**

- **Nodes on One Side of the Power Supply**

Note: The “Nodes on Both Sides of the Power Supply” method is recommended if a single power supply is connected to many nodes.
6 Connections for DeviceNet Communications

6.1 Location of Communication Power Supply

6.1.3 How to Decide the Location of the Power Supply

1. To provide a sufficient flow of current to each node, the power supply capacity required for each node and the voltage drop caused by the cable length must be taken into consideration. Calculate the following values:
 - The power supply capacity required for each node
 - The distance from the power supply

2. There are two methods to calculate the power supply capacity for the trunk line.
 (1) Simplified calculation with the estimated values from the graph
 (2) Calculation with the actual values (the voltage drop calculated according to the resistance value and the current consumption of the communications cable.)

 - Each drop line must satisfy the equation between the drop line’s length and the dropline’s power supply capacity described in 6 of chapter 6.1.1 “Basic Precautions”.
 - The values shown in the graph are obtained under unfavorable conditions, such as the configuration which results in the maximum voltage drop. Therefore, the network operates correctly if the result of the simplified calculation based on the graph satisfies the condition for the required power supply capacity.

 ![Diagram]

 • Even if the result of the simplified calculation based on the graph does not satisfy the condition for the required power supply capacity, the result of the calculation with the actual values may satisfy the condition. The network operates correctly as long as either of the results by simplified calculation based on the graph or by the calculation with the actual values satisfies the condition.

 NOTE
 1. It is recommended to use separate power supplies for communications and for the internal circuit.
 2. If the communications power supply is also used as the internal circuit power supply, the simplified calculation based on the graph is not applicable. Calculate the power supply capacity with the actual values.
6 Connections for DeviceNet Communications
6.1 Location of Communication Power Supply

3. Simplified Calculation with the Estimated Values from the Graph

The voltage of the communications power supply to each node must be 11 VDC or more.
If not, the communications will be unstable.
A current flowing to the communications cable causes a voltage drop.
The longer the communications cable is or the greater the current is, the bigger the voltage drop will be.
The following tables show the maximum allowable current that can supply sufficient voltage to the communications power supply regardless of a voltage drop for a thick cable and a thin cable.

a) For a thick cable

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. current (A)</td>
<td>8.00</td>
<td>8.00</td>
<td>5.42</td>
<td>2.93</td>
<td>2.01</td>
<td>1.53</td>
<td>1.23</td>
<td>1.03</td>
<td>0.89</td>
<td>0.78</td>
<td>0.69</td>
<td>0.63</td>
</tr>
</tbody>
</table>

b) For a thin cable

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. current (A)</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>2.06</td>
<td>1.57</td>
<td>1.26</td>
<td>1.06</td>
<td>0.91</td>
<td>0.80</td>
<td>0.71</td>
<td>0.64</td>
</tr>
</tbody>
</table>
How to confirm sufficient power supply capacity
Check the following for each node.
When nodes are located on both sides of the power supply, check for the nodes on each side.
The graph to be referred to differs depending on the cable type (thick or thin cable) of the trunk line.

I) Calculate the total current consumption, “A,” of all the nodes located for each side.
II) From the graph, obtain the maximum current, “B,” that may flow to the cable according to the cable type and the distance from the power supply to the end of trunk line.
III) If $A \leq B$:
the total current consumption “A” calculated in step 1 is equal to or less than the allowable maximum current “B” obtained in step 2, and the power supply capacity is sufficient for all the nodes.
IV) When the nodes are located on both sides of the power supply, repeat steps I) to III) for the nodes on the other side.

Corrective actions
If $A > B$,
the total current consumption “A” calculated in step I) is more than the maximum current “B” obtained in step II), so consider the following corrective actions to satisfy the conditions for the required power supply capacity.

- Move the power supply to the middle of the trunk line, so that the nodes are located on both sides of the power supply.
- When the nodes are located on both sides of the power supply, move the power supply to the side where the bigger power supply capacity is required.
- When a thin cable is used, replace it with a thick cable.

If $A > B$ after having taken these corrective actions, recalculate the power supply capacity taking the actual arrangement of nodes into consideration.

Example 1: Where the power supply is at the end of the trunk line
The following diagram shows an example where the thick cable with the total length of 210 m is used and the power supply is connected at the end of the trunk line.

Total length of the power supply cable = 210 m
Total current consumption of nodes = 0.2 A + 0.1 A + 0.05 A + 0.2 A + 0.15 A
= 0.7 A

Max. current obtained from the graph = 1.5 A

As A (total current consumption) < B (max. current), sufficient communications power can be supplied to all nodes.

Example 2: Where the power supply is in the middle of the trunk line

The following diagram shows an example where the thick cable with the total length of 240 m is used and the power supply is connected in the middle of the trunk line.

![Diagram showing power supply and nodes]

Total length of the power supply cable on the left of the power supply = 120 m

Total current consumption of the nodes on the left of the power supply = 0.2 A + 0.3 A + 0.1 A = 0.6 A

Total current consumption of the nodes on the right of the power supply = 0.25 A + 0.15 A + 0.1 A = 0.5 A

The maximum current on the left obtained from the graph = approx. 2.5 A

The maximum current on the right obtained from the graph = approx. 2.5 A

As A (total current consumption on the left) < B (maximum current on the left) and A (total current consumption on the right) < B (maximum current on the right), sufficient power can be supplied to all nodes.

4. Calculation with Actual Values

If the result of the simplified calculation based on the graph still does not satisfy the conditions, check by detailed calculations using the following equation.

(1) Equation

I) When a communications power supply and an internal circuit power supply are separate

Check the distance between the power supply and each node in addition to the current consumption for the communications unit of each node.

If these values satisfy the following equation, sufficient power can be supplied to the node.

However, the current must not exceed the maximum allowable current to the cable, 8 A for a thick cable and 3 A for a thin cable.
6 Connections for DeviceNet Communications

6.1 Location of Communication Power Supply

Equation \[\sum [(Ln \times Rc + Nt \times 0.005) \times In] \leq 4.65 \text{ V} \]

- \(Ln \) : Distance between the power supply and a node (excluding the length of the drop line)
- \(Rc \) : Maximum resistance of the cable (0.015 \(\Omega \)/m for a thick cable, 0.069 \(\Omega \)/m for a thin cable)
- \(Nt \) : Number of adapters between the power supply and a node
- \(In \) : Current consumption required for the communications unit of node

- 0.005 \(\Omega \) = Contact resistance value of an adapter

II) When the communications power supply is also used as the internal circuit power supply

Because the allowable voltage range of the communications power supply is different from that of the internal circuit power supply as shown below, avoid using the power supply for both communications and the internal circuit.

- Allowable voltage range for the communications power supply: 11VDC to 25 VDC
- Allowable voltage range for the internal circuit power supply: 24 VDC - 15% to +10%

Check the distance between the power supply and each node in addition to the total current consumption for the communications unit and the internal circuit of each node.

If these values satisfy the following equation, sufficient power can be supplied to the node.

However, the current must not exceed the maximum allowable current to the cable, 8 A for a thick cable and 3 A for a thin cable.

Equation \[\sum [(Ln \times Rc + Nt \times 0.005) \times In] \leq 0.65 \text{ V} \]

- \(Ln \) : Distance between the power supply and a node (excluding the length of the drop line)
- \(Rc \) : Maximum resistance of the cable (0.015 \(\Omega \)/m for a thick cable, 0.069 \(\Omega \)/m for a thin cable)
- \(Nt \) : Number of adapters between the power supply and a node
- \(In \) : Current consumption required for the communications unit and the internal circuit of a node

- 0.005 \(\Omega \) = Contact resistance value of an adapter

(2) Corrective actions

If the obtained values do not satisfy the equation, consider the following corrective actions.

- Place a node with a large current consumption close to the power supply.
- Move the power supply to the middle of the trunk line so...
that the nodes are located on both sides of the power supply.

- When nodes are located on both sides of the power supply, move the power supply to the side where the bigger power supply capacity is required.
- When a thin cable is used, replace it with a thick cable.

6.2 Grounding

6.2.1 Grounding Method

1. The DeviceNet cable system must be grounded at only one location in the network in order to avoid a ground loop. Ground the DeviceNet cable system closest to the center of the network.

 As shown below, connect the drain wire of the communication cable to the FG terminal of the communication power supply and ground the power supply connected to the drain wire to a resistance of 100 Ω or less.

 ![Diagram of T-Branch Tap or Power Supply Tap]

 ![Diagram of Power Supply Tap]

 Grounding resistance 100 Ω or less

2. If more than one power supply is used, connect the drain wire of the cable only to the power supply closest to the center of the network. Ground the power supply to a resistance of 100 Ω or less. Do not connect the drain wire to the other power supplies other than that. For connecting multiple power supplies to the network, use a power supply tap for each power supply. (Power supplies are not counted as nodes.)

 - Grounding resistance must be 100 Ω or less.
 - Grounding location must be reserved only for the DeviceNet cable system. The same location cannot be used for grounding of servo drivers or grounding of inverters.
 - Ground the drain wire at only one place. Do not ground the drain wire at several locations in the network.

 ![NOTE]

 • Grounding resistance must be 100 Ω or less.
 • Grounding location must be reserved only for the DeviceNet cable system. The same location cannot be used for grounding of servo drivers or grounding of inverters.
 • Ground the drain wire at only one place. Do not ground the drain wire at several locations in the network.
7 Error Indication

7.1 LED Indicators

On the SST-DN4-PCIE board and the SST-DN4-PCU-2 board, the board status display LED: HLTH LED and the DeviceNet status display LED: COMM LED are provided.

In startup after the power is turned ON, HLTH LED and COMM LED light up in green and red alternately for LED test and then in green.

If HLTH LED and COMM LED do not light up in green after a specified time with the power ON, the communication is not being performed correctly.

Even though the SST-DN4-PCIE board or the SST-DN4-PCU-2 board is inserted into the PCI Express slot on the YRC1000, HLTH LED lights up in orange if the channel has been set to “NOT USED” in the option board setup. HLTH LED also lights up in orange until the application software is activated after the power to the YRC1000 is turned ON, even though the option board and the I/O module are normally configured so that the SST-DN4-PCIE board or the SST-DN4-PCU-2 board can be used in the YRC1000.
7.1.1 HLTH LED

HLTH LED indicates the status of the SST-DN4-PCIE board or the SST-DN4-PCU-2 board.

<table>
<thead>
<tr>
<th>HLTH LED</th>
<th>Status</th>
<th>Indications and Corrective Actions</th>
</tr>
</thead>
</table>
| HLTH unlit | Power loss | ■ When the SST-DN4-PCIE board is used
Check the connection of the SST-DN4-PCIE board and the YRC1000 PCI Express slot.
■ When the SST-DN4-PCU-2 board is used
Check the connection of the SST-DN4-PCU-2 board and the YRC1000 PCI slot. |
| HLTH lit in green | SST-DN4-PCIE board in normal state | ■ When the SST-DN4-PCIE board is used
The SST-DN4-PCIE board operates normally.
■ When the SST-DN4-PCU-2 board is used
The SST-DN4-PCU-2 board operates normally. |
| HLTH lit in red | Error state | ■ When the SST-DN4-PCIE board is used
The SST-DN4-PCIE board does not operate correctly.
• Turn OFF and ON the YRC1000 main power to start the system again.
• Check the connection of the SST-DN4-PCIE board and the YRC1000 PCI Express slot.
• Replace the SST-DN4-PCIE board.
■ When the SST-DN4-PCU-2 board is used
The SST-DN4-PCU-2 board does not operate correctly.
• Turn OFF and ON the YRC1000 main power to start the system again.
• Check the connection of the SST-DN4-PCU-2 board and the YRC1000 PCI slot.
• Replace the SST-DN4-PCU-2 board. |
Error Indication
7.1 LED Indicators

<table>
<thead>
<tr>
<th>HLTH LED</th>
<th>Status</th>
<th>Indications and Corrective Actions</th>
</tr>
</thead>
</table>
| HLTH lit in orange Pre-operation state | Although the self-diagnosis at the start-up has finished successfully, the following processes have not been performed.
• Check the DeviceNet communication settings.
• Check the wiring and connection of the DeviceNet cable and connector.
• Check the voltage and connection of the communication power supply.
• Check the transmission speed of each device.
• Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
• Check the operation status of the DeviceNet master device.
• Check if the number of I/O points for the connected master or slave corresponds to the number of I/O allocated points.
 ■ When the SST-DN4-PCIE board is used
 • Replace the SST-DN4-PCIE board.
 ■ When the SST-DN4-PCU-2 board is used
 • Replace the SST-DN4-PCU-2 board. |
7.1 LED Indicators

7.1.2 COMM LED

The COMM LED indicates the status of DeviceNet.

<table>
<thead>
<tr>
<th>COMM LED Status</th>
<th>Indications and Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMM unlit</td>
<td>In offline status</td>
</tr>
</tbody>
</table>

- When the SST-DN4-PCIE board is used
 - The connection failure between the SST-DN4-PCIE board and the YRC1000 PCI Express slot, communication power supply failure, or DeviceNet line failure occurs.
 - Check the connection of the SST-DN4-PCIE board and the YRC1000 PCI Express slot.
 - Check the wiring and connection of the DeviceNet cable and connector.
 - Check the voltage and connection of the communication power supply.
 - Check the transmission speed of each device.
 - Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
 - Check the operation status of the DeviceNet master device.

- When the SST-DN4-PCU-2 board is used
 - The connection failure between the SST-DN4-PCU-2 board and the YRC1000 PCI slot, communication power supply failure, or DeviceNet line failure occurs.
 - Check the connection of the SST-DN4-PCU-2 board and the YRC1000 PCI slot.
 - Check the wiring and connection of the DeviceNet cable and connector.
 - Check the voltage and connection of the communication power supply.
 - Check the transmission speed of each device.
 - Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
 - Check the operation status of the DeviceNet master device.
7 Error Indication
7.1 LED Indicators

<table>
<thead>
<tr>
<th>COMM LED</th>
<th>Status</th>
<th>Indications and Corrective Actions</th>
</tr>
</thead>
</table>
| COMM blinks in green | Communication is not established. | - Check the wiring and connection of the DeviceNet cable and connector.
- Check the voltage and connection of the communication power supply.
- Check the transmission speed of each device.
- Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
- Check the operation status of the DeviceNet master device.
- Check if the number of I/O points for the connected master or slave corresponds to the number of I/O allocated points.
- Extend the scanning interval for the communications cycle of the master device, and recheck communications. |
| COMM lit in green | Communication in normal status | Communication is established in online. |
| COMM blinks in red | Time-out error | A time-out error occurs between the YRC1000 and the connected device.
- Turn OFF and ON the YRC1000 main power to start the system again.
- Check the wiring and connection of the DeviceNet cable and connector.
- Check the voltage and connection of the communication power supply.
- Check the transmission speed of each device.
- Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
- Check the operation status of the DeviceNet master device.
- Check if the number of I/O points for the connected master or slave corresponds to the number of I/O allocated points.
- Extend the scanning interval for the communications cycle of the master device, and recheck communications. |
Error Indication

7.1 LED Indicators

<table>
<thead>
<tr>
<th>COMM LED</th>
<th>Status</th>
<th>Indications and Corrective Actions</th>
</tr>
</thead>
</table>
| COMM lit in red | Communication fatal error | A node address is overlapped, or a Bus-off is detected on the network.
 - Turn OFF and ON the YRC1000 main power to start the system again.
 - Reset the node address so that the node address is not overlapped.
 - Check the wiring and connection of the DeviceNet cable and connector.
 - Check the voltage and connection of the communication power supply.
 - Check the transmission speed of each device.
 - Check the terminator value (121 Ω) of the mounted terminator and its mounted status.
 - Check the transmission distance.
 - Check if there is no noise generating factor.
 - When the SST-DN4-PCIE board is used
 - Replace the SST-DN4-PCIE board.
 - When the SST-DN4-PCU-2 board is used
 - Replace the SST-DN4-PCU-2 board. |
YRC1000 OPTIONS
DeviceNet COMMUNICATIONS FUNCTION INSTRUCTIONS
FOR SST-DN4-PCIE/SST-DN4-PCU-2 MADE BY Molex, Inc.

HEAD OFFICE
2-1 Kurosaikishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
Phone +81-93-645-7703 Fax +81-93-645-7802

YASKAWA America Inc. (Motoman Robotics Division)
100 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA Europe GmbH (Robotics Division)
Yaskawastrasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Nordic AB
Verkstadsgatan 2, Box 504, SE-385 25 Torsas, Sweden
Phone +46-480-417-800 Fax +46-486-414-10

YASKAWA Electric (China) Co., Ltd.
22F, One Corporate Avenue, No.222, Hubin Road, Huangpu District, Shanghai 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299

YASKAWA SHOUGANG ROBOT Co. Ltd.
No7 Yongchang North Road, Beijing E&T Development Area, China 100176
Phone +86-10-6788-2858 Fax +86-10-6788-2878

YASKAWA India Private Ltd. (Robotics Division)
#426, Udyog Vihar, Phase- IV, Gurgaon, Haryana, India
Phone +91-124-475-8500 Fax +91-124-475-8542

YASKAWA Electric Korea Corporation
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, Korea 07326
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric Taiwan Corporation
12F, No.207, Sec. 3, Beishin Rd., Shindian District, New Taipei City 23143, Taiwan
Phone +886-6-8913-1333 Fax +886-6-8913-1513

YASKAWA Electric (Singapore) PTE Ltd.
151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6282-3000 Fax +65-6289-3000

YASKAWA Electric (Thailand) Co., Ltd.
59,1st-5th Floor, Flourish Building, Soi Ratchadapisek 18,Ratchadapisek Road, Huaykwang, Bangkok 10310, THAILAND
Phone +66-2-017-0099 Fax +66-2-017-0199

PT. YASKAWA Electric Indonesia
Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma,
Jakarta 13610, Indonesia
Phone +62-21-2982-6470 Fax +62-21-2982-6741

Specifications are subject to change without notice for ongoing product modifications and improvements.

YASKAWA
YASKAWA ELECTRIC CORPORATION

© Printed in Japan June 2018 16-09

MANUAL NO.
HW1483856

137/137