COMPLETE OUR ONLINE SURVEY

Motoman is committed to total customer satisfaction! Please give us your feedback on the technical manuals you received with your Motoman robotic solution.

To participate, go to the following website:

http://www.motoman.com/forms/techpubs.asp
Chapter 1
Introduction

1.1 About This Document

This manual provides information for the EPH130 manipulator and contains the following sections:

CHAPTER 1 - INTRODUCTION
Provides general information about the structure of this manual, a list of reference documents, and customer service information.

CHAPTER 2 - SAFETY
This section provides information regarding the safe use and operation of Motoman products.

CHAPTER 3 - EPH130 INSTRUCTIONS
Provides detailed information for the EPH130 manipulator.

1.2 Reference to Other Documentation

For additional information refer to the following:

- NX100 Controller Manual (P/N 149201-1)
- Concurrent I/O Manual (P/N 149230-1)
- Operator's Manual for your application
- Vendor manuals for system components not manufactured by Motoman

1.3 Customer Service Information

If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:

- Robot Type (EPH130)
- Application Type (welding, handling, etc.)
- Robot Serial Number (located on back side of robot arm)
- Robot Sales Order Number (located on back of controller)
Notes
Chapter 2
Safety

2.1 Introduction

It is the purchaser’s responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06-1999. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338
INTERNET: www.roboticsonline.com

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. **The robot must not be operated by personnel who have not been trained!**

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety section addresses the following:

• Standard Conventions (Section 2.2)
• General Safeguarding Tips (Section 2.3)
• Mechanical Safety Devices (Section 2.4)
• Installation Safety (Section 2.5)
• Programming, Operation, and Maintenance Safety (Section 2.6)

2.2 Standard Conventions

This manual includes the following alerts – in descending order of severity – that are essential to the safety of personnel and equipment. As you read this manual, pay close attention to these alerts to insure safety when installing, operating, programming, and maintaining this equipment.

DANGER!

Information appearing in a DANGER concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

WARNING!

Information appearing in a WARNING concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

CAUTION!

Information appearing in a CAUTION concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

Note: Information appearing in a Note provides additional information which is helpful in understanding the item being explained.
2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06-1999, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-1999 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety equipment is provided as standard:

- Safety fences and barriers
- Light curtains and/or safety mats
- Door interlocks
- Emergency stop palm buttons located on operator station, robot controller, and programming pendant

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06-1999 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 Programming, Operation, and Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to program, operate, and maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Do not enter the robot cell while it is in automatic operation. Be sure that only the person holding the programming pendant enters the workcell.
- Check the E-STOP button on the programming pendant for proper operation before programming. The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
• Any modifications to PART 1, System Section, of the robot controller concurrent I/O program can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1, System Section. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!

• Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.

• The robot controller allows modifications of PART 2, User Section, of the concurrent I/O program and modifications to controller parameters for maximum robot performance. Great care must be taken when making these modifications. All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot and other parts of the system. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations.

• Check and test any new or modified program at low speed for at least one full cycle.

• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

• Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.

• Use proper replacement parts.

• Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Notes
MOTOMAN-EPH130
INSTRUCTIONS

TYPE: YR-EPH130-A00 (STANDARD SPECIFICATION)
YR-EPH130-A03 (WITH LIMIT SWITCHES FOR SLU-AXES)

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS
MOTOMAN-EPH130 INSTRUCTIONS
NX100 INSTRUCTIONS
NX100 OPERATOR’S MANUAL
NX100 MAINTENANCE MANUAL

The NX100 operator’s manuals above correspond to specific usage. Be sure to use the appropriate manual.
This instruction manual explains operating instructions and maintenance procedures primarily for the MOTOMAN-EPH130.

General items related to safety are listed in Section 1: Safety of the NX100 Instructions. To ensure correct and safe operation, carefully read the NX100 instructions before reading this manual.

Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product's warranty.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the NX100.

In this manual, the notes for safe operation are classified as “WARNING”, “CAUTION”, “MANDATORY”, or “PROHIBITED”.

⚠ WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

⚠ CAUTION
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

⚠ MANDATORY
Always be sure to follow explicitly the items listed under this heading.

⚠ PROHIBITED
Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “CAUTION” and “WARNING”.
Before operating the manipulator, check that servo power is turned OFF when the emergency stop buttons on the front door of the NX100 and programming pendant are pressed. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn ON the servo power.

Injury may result from unintentional or unexpected manipulator motion.

Observe the following precautions when performing teaching operations within the working envelope of the manipulator:
- View the manipulator from the front whenever possible.
- Always follow the predetermined operating procedure.
- Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

Confirm that no persons are present in the manipulator's work envelope and that you are in a safe location before:
- Turning on the NX100 power.
- Moving the manipulator with the programming pendant.
- Running check operations.
- Performing automatic operations.

Injury may result if anyone enters the working envelope of the manipulator during operation. Always press an emergency stop button immediately if there is a problem. The emergency stop buttons are located on the right of the front door of the NX100 and the programming pendant.
CAUTION

- Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 - Check for problems in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.

- Always return the programming pendant to the hook on the NX100 cabinet after use.

 The programming pendant can be damaged if it is left in the manipulator’s work area, on the floor, or near fixtures.

- Read and understand the Explanation of the Warning Labels in the NX100 instructions before operating the manipulator.

Definition of Terms Used Often in This Manual

The MOTOMAN manipulator is the YASKAWA industrial robot product.

The manipulator usually consists of the controller, the programming pendant, and manipulator cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX100 controller</td>
<td>NX100</td>
</tr>
<tr>
<td>NX100 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>
Explanation of Warning Labels

The following warning labels are attached to the manipulator. Always follow the warnings on the labels. Also, an identification label with important information is placed on the body of the manipulator. Prior to operating the manipulator, confirm the contents.
1 Product Confirmation
 1.1 Contents Confirmation ... 1-1
 1.2 Order Number Confirmation 1-2

2 Transporting
 2.1 Transporting Method .. 2-1
 2.1.1 Using a Crane .. 2-1
 2.2 Shipping Bolts and Brackets 2-3

3 Installation
 3.1 Safeguarding Installation 3-2
 3.2 Mounting Procedures for Manipulator Base 3-2
 3.2.1 Mounting Example 3-3
 3.3 Location ... 3-3

4 Wiring
 4.1 Grounding ... 4-2
 4.2 Manipulator Cable Connection 4-2
 4.2.1 Connection to the Manipulator 4-2
 4.2.2 Connection to the NX100 4-3

5 Basic Specifications
 5.1 Basic Specifications ... 5-1
 5.2 Part Names and Working Axes 5-2
 5.3 Manipulator Base Dimensions 5-2
 5.4 Dimensions and P-point Maximum Envelope 5-3
 5.5 Alterable Operating Range 5-4
 5.5.1 Components for Altering Operating Range 5-5
 5.5.2 Installation of the S-Axis Mechanical Stopper . 5-6
 5.5.3 Modifying the Soft Limit of the S-axis Pulse . 5-7
6 Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load ... 6-1
6.2 Wrist Flange .. 6-2

7 System Application

7.1 Peripheral Equipment Mounts 7-1
7.2 Internal User I/O Wiring Harness and Air Line 7-2

8 Electrical Equipment Specifications

8.1 Location of Limit Switches 8-1
8.2 Internal Connections 8-2

9 Maintenance and Inspection

9.1 Inspection Schedule ... 9-1
9.2 Notes on Maintenance Procedures 9-6
9.2.1 Battery Pack Replacement 9-6
9.2.2 Grease Exchange for the S-Axis Speed Reducer and Gear ... 9-8
9.2.3 Grease Exchange for the L-Axis Speed Reducer 9-9
9.2.4 Grease Exchange for the U-Axis Speed Reducer 9-10
9.2.5 Grease Exchange for the U-Arm 9-11
 ■ Grease Exchange for the RBT-Axis Gears in the Casing (Refer to "Fig. 28 U-arm"). 9-12
 ■ Grease Exchange for the R-Axis Speed Reducer (Refer to "Fig. 28 U-arm"). 9-12
 ■ Grease Exchange for the B-Axis Speed Reducer (Refer to "Fig. 28 U-arm"). 9-13
 ■ Grease Exchange for the T-Axis Speed Reducer (Refer to "Fig. 28 U-arm"). 9-13
9.2.6 Grease Replenishment for the Balancer Links 9-14
9.2.7 Notes for Maintenance 9-15
 ■ Battery Pack Connection for Motors 9-15

10 Recommended Spare Parts
1 Product Confirmation

1.1 Contents Confirmation

Confirm the contents of the delivery when the product arrives. Standard delivery includes the following four items (Information for the content of optional goods is given separately):

- Manipulator
- NX100
- Programming pendant
- Manipulator cables (three cables, between manipulator and NX100)

CAUTION

- Confirm that the manipulator and the NX100 have the same order number. Special care must be taken when more than one manipulator is to be installed.

If the numbers do not match, manipulators may not perform as expected and cause injury or damage.
1.2 Order Number Confirmation

Check that the order number of the manipulator corresponds to the NX100. The order number is located on a label as shown below.

Fig. 1 Location of Order Number Labels
2 Transporting

2.1 Transporting Method

CAUTION

- **Sling applications and crane or forklift operations must be performed by authorized personnel only.**
 Failure to observe this caution may result in injury or damage.

- **Avoid excessive vibration or shock during transporting.**
 Failure to observe this caution may adversely affect the performance as the system consists of precision components.

NOTE

- Check that the eyebolts are securely fastened.
- The weight of the manipulator is approximately 1495 kg including the shipping bolts and brackets. Use a wire rope strong enough to withstand the weight.
- Attached eyebolts are designed to support the manipulator weight. Do not use them for anything other than transporting the manipulator.
- Make sure to mount the shipping bolts and brackets when transporting the manipulator.
- When transporting the manipulator with other transportation equipment, make sure to avoid external force on the arm or motor unit as in the case of transportation with a crane or forklift.

2.1.1 Using a Crane

As a rule, when removing the manipulator from the package and moving it, a crane should be used. The manipulator should be lifted using wire ropes threaded through shipping bolts and brackets. Be sure the manipulator is fixed with the shipping bolts and brackets before transportation, and lift it in the posture as shown in "Fig. 2 Transporting Position".
2.1 Transporting Method

Fig. 2 Transporting Position
2.2 Shipping Bolts and Brackets

The manipulator is equipped with shipping bolts and brackets as shown below at points A and B indicated in "Fig. 2 Transporting Position".

- The shipping brackets are painted yellow.
- The shipping bolt (hexagon socket head cap screw) is taped with yellow vinyl tape.

<table>
<thead>
<tr>
<th>Installation Position</th>
<th>Bolt Type</th>
<th>Pcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hexagon head screw M20 (length: 70 mm)</td>
<td>3 x 4 places</td>
</tr>
<tr>
<td></td>
<td>(Tensile strength: 1200 N/mm² or more)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Hexagon socket head cap screw M16 (length: 20 mm)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Tensile strength: 1200 N/mm² or more)</td>
<td></td>
</tr>
</tbody>
</table>

Before turning ON the power, check to be sure that the shipping bolts and brackets have been removed. The shipping bolts and brackets then must be stored for future use, in the event that the robot must be moved again.
3 Installation

WARNING

- **Install the safeguarding.**

 Failure to observe this warning may result in injury or damage.

- **Install the manipulator in a location where the manipulator’s tool or the workpiece held by the manipulator will not reach the wall, safeguarding, or NX100 when the arm is fully extended.**

 Failure to observe this warning may result in injury or damage.

- **Do not start the manipulator or even turn on the power before it is firmly anchored.**

 The manipulator may overturn and cause injury or damage.

CAUTION

- **Do not install or operate the manipulator which is damaged or lacks parts.**

 Failure to observe this caution may cause injury or damage.

- **Before turning on the power, check to be sure that the shipping bolts and brackets explained in "2.2 Shipping Bolts and Brackets" are removed.**

 Failure to observe this caution may result in damage to the driving parts.
3.1 Safeguarding Installation

To insure safety, be sure to install safeguarding. They prevent unforeseen accidents with personnel and damage to equipment. The following term is quoted for your information and guidance.

Responsibility for Safeguarding [ISO 10218]

The user of a manipulator or robot system shall ensure that safeguards are provided and used in accordance with Sections 6, 7, and 8 of this standard. The means and degree of safeguarding, including any redundancies, shall correspond directly to the type and level of hazard presented by the robot system consistent with the robot application. Safeguarding may include but not be limited to safeguarding devices, barriers, interlock barriers, perimeter guarding, awareness barriers, and awareness signals.

3.2 Mounting Procedures for Manipulator Base

The manipulator should be firmly mounted on a manipulator base mount strong enough to support the robot and withstand repulsion forces during acceleration and deceleration. Construct a solid foundation with the appropriate thickness to withstand maximum repulsion forces of the manipulator, referring to "Table 1 Maximum Repulsion Forces of the Manipulator at Emergency Stop" and "Table 2 Endurance Torque in Operation". A base mount flatness must be kept at 0.5 mm or less: insufficient flatness of installation surface may deform the manipulator shape and affect its functional abilities.

| Table 1 Maximum Repulsion Forces of the Manipulator at Emergency Stop |
|---|-----------------|
| Maximum torque in horizontal rotation (S-axis moving direction) | 32000 N·m (3265 kgf·m) |
| Maximum torque in vertical rotation (L-,U-axis moving direction) | 78500 N·m (8000 kgf·m) |

| Table 2 Endurance Torque in Operation |
|---|-----------------|
| Endurance torque in horizontal operation | 9400 N·m (960 kgf·m) |
| Endurance torque in vertical operation | 23900 N·m (2434 kgf·m) |
3.2.1 Mounting Example

Fix the baseplate firmly to the floor. The baseplate should be durable enough to prevent shifting of the manipulator and mounting fixture. It is recommended to prepare a baseplate of 50 mm or more in thickness, and the anchor bolts of size M20 or more for the baseplate fixation. There are eight mounting holes on the manipulator base. Securely fix the manipulator to the baseplate with hexagon socket head cap screws M20 (80 mm long is recommended). Tighten the hexagon socket head cap screws and anchor bolts firmly so that they will not be loosened during the operation. See “Fig. 4 Mounting the Manipulator on Baseplate”.

![Fig. 4 Mounting the Manipulator on Baseplate](image)

3.3 Location

When the manipulator is installed, it is necessary to satisfy the following environmental conditions:

- Ambient temperature: 0 to 45°C.
- Humidity: 20 to 80%RH at constant temperature.
- Free from exposure to water, oil, or dust.
- Free from corrosive gas or liquid, or explosive gas.
- Free from excessive shock or vibration (vibration acceleration: 4.9 m/s² (0.5G) or less).
- Free from large electrical noise (plasma).
- Flatness for installation is 0.5 mm or less.
4 Wiring

WARNING

- **Ground resistance must be 100 Ω or less.**

 Failure to observe this warning may result in fire or electric shock.

- **Before wiring, make sure to turn OFF the primary power supply, and put up a warning sign such as: “DO NOT TURN ON THE POWER.”**

 Failure to observe this warning may result in fire or electric shock.

CAUTION

- **Wiring must be performed by authorized or certified personnel.**

 Failure to observe this caution may result in fire or electric shock.

- **Do not cover the cable with heat insulating material, and avoid multiple cabling when laying manipulator cables from the manipulator to the NX100.**

 Failure to observe this caution may result in burn caused by cable heat emission failure.
4.1 Grounding

Follow local regulations for grounding line size. A line of 5.5 mm² or more is recommended. Refer to "Fig. 5 Grounding Method" to connect the ground line directly to the manipulator.

NOTE
- Never use this line sharing with other ground lines or grounding electrodes for other electric power, motor power, welding devices, etc.
- Where metal ducts, metallic conduits, or distributing racks are used for cable laying, ground in accordance with Electric Equipment Technical Standards.

![Enlarged View A](image)

Fig. 5 Grounding Method

4.2 Manipulator Cable Connection

As shown in "Fig. 6 Manipulator Cables", three manipulator cables are provided: one encoder cable (1BC) and two power cables (2BC, 3BC). Connect these cables to the connectors on the manipulator connector base and the NX100 by referring to "Fig. 7 (a) Manipulator Cable Connectors (Manipulator Side)" and "Fig. 7 (b) Manipulator Cable Connectors (NX100 Side)".

4.2.1 Connection to the Manipulator

Before connecting the manipulator cables to the manipulator, confirm the numbers on both the manipulator cables and the connectors on the manipulator connector base. Then, connect the cables in the order of 2BC, 3BC, 1BC. Insert the connectors adjusting the cable connector positions to the main key positions of the manipulator, and then set the lever until it clicks. Refer to "Fig. 7 (a) Manipulator Cable Connectors (Manipulator Side)".
4.2.2 Connection to the NX100

Before connecting the manipulator cables to the NX100, confirm the numbers on both the manipulator cables and the NX100 board connectors. Then, connect the cables in order of X21, X22, X11. Insert the connectors adjusting the cable connector positions to the main key positions of the NX100, and set the lever until it clicks. Refer to "Fig. 7 (b) Manipulator Cable Connectors (NX100 Side)".

![Fig. 6 Manipulator Cables](image-url)
4.2 Manipulator Cable Connection

Fig. 7 (a) Manipulator Cable Connectors (Manipulator Side)

Fig. 7 (b) Manipulator Cable Connectors (NX100 Side)
5 Basic Specifications

5.1 Basic Specifications

Table 3 Basic Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>MOTOMAN-EPH130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Model</td>
<td>MOTOMAN-EPH130</td>
</tr>
<tr>
<td>Configuration</td>
<td>Vertically Articulated</td>
<td></td>
</tr>
<tr>
<td>Degree of Freedom</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td>130 kg</td>
<td></td>
</tr>
<tr>
<td>Repeatability*₂</td>
<td>±0.2 mm</td>
<td></td>
</tr>
<tr>
<td>Motion Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Axis (turning)</td>
<td>±180°</td>
<td></td>
</tr>
<tr>
<td>L-Axis (lower arm)</td>
<td>+76°, -60°</td>
<td></td>
</tr>
<tr>
<td>U-Axis (upper arm)</td>
<td>+230°, -137.5°</td>
<td></td>
</tr>
<tr>
<td>R-Axis (wrist roll)</td>
<td>±360°</td>
<td></td>
</tr>
<tr>
<td>B-Axis (wrist pitch/yaw)</td>
<td>±130°</td>
<td></td>
</tr>
<tr>
<td>T-Axis (wrist twist)</td>
<td>±360°</td>
<td></td>
</tr>
<tr>
<td>Maximum Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Axis</td>
<td>2.27 rad/s, 130°/s</td>
<td></td>
</tr>
<tr>
<td>L-Axis</td>
<td>2.27 rad/s, 130°/s</td>
<td></td>
</tr>
<tr>
<td>U-Axis</td>
<td>2.27 rad/s, 130°/s</td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>3.75 rad/s, 215°/s</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>3.14 rad/s, 180°/s</td>
<td></td>
</tr>
<tr>
<td>T-Axis</td>
<td>5.24 rad/s, 300°/s</td>
<td></td>
</tr>
<tr>
<td>Allowable Moment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>735 N·m (75 kgf·m)</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>735 N·m (75 kgf·m)</td>
<td></td>
</tr>
<tr>
<td>T-Axis</td>
<td>421 N·m (43 kgf·m)</td>
<td></td>
</tr>
<tr>
<td>Allowable Inertia (GD²/4)*₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Axis</td>
<td>45 kg·m²</td>
<td></td>
</tr>
<tr>
<td>B-Axis</td>
<td>45 kg·m²</td>
<td></td>
</tr>
<tr>
<td>T-Axis</td>
<td>15 kg·m²</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>1495 kg</td>
<td></td>
</tr>
<tr>
<td>Ambient Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0 to 45°C</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 80% RH (non-condensing)</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>4.9 m/s² (0.5 G) or less</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>• Free from corrosive gasses or liquids, or explosive gasses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Free from exposure to water, oil, or dust.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Free from excessive electrical noise (plasma).</td>
<td></td>
</tr>
<tr>
<td>Power Requirements</td>
<td>10 kVA</td>
<td></td>
</tr>
</tbody>
</table>

*₁ SI units are used in this table. However, gravitational unit is used in ().

*₂ Conformed to ISO9283.

*₃ Refer to * 6.1 Allowable Wrist Load * for details on the permissible moment of inertia.
5.2 Part Names and Working Axes

Fig. 8 Part Names and Working Axes

5.3 Manipulator Base Dimensions

Fig. 9 Baseplate Dimensions (mm)
5.4 Dimensions and P-point Maximum Envelope

Fig. 10 Dimensions and P-Point Maximum Envelope
5.5 Alterable Operating Range

The operating range of the S-axis can be altered according to the operating conditions as shown in "Table 4 S-Axis Operating Range". If alteration is necessary, contact your Yaskawa representative in advance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Axis Operating</td>
<td>±180° (standard)</td>
</tr>
<tr>
<td>Range</td>
<td>±165°</td>
</tr>
<tr>
<td></td>
<td>±150°</td>
</tr>
<tr>
<td></td>
<td>±135°</td>
</tr>
<tr>
<td></td>
<td>±120°</td>
</tr>
<tr>
<td></td>
<td>±105°</td>
</tr>
<tr>
<td></td>
<td>±90°</td>
</tr>
<tr>
<td></td>
<td>±70°</td>
</tr>
<tr>
<td></td>
<td>±60°</td>
</tr>
<tr>
<td></td>
<td>±45°</td>
</tr>
<tr>
<td></td>
<td>±30° (±15°)</td>
</tr>
</tbody>
</table>

NOTE: The stoppers must be installed with more than 60° of interval.
5.5.1 Components for Altering Operating Range

Arrange the components listed in "Fig. 11 Components of the S-axis Stopper", when modifying the angle of S-axis.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Pin (Drawing No. HW0402104-1)</td>
<td>1</td>
</tr>
<tr>
<td>②</td>
<td>Stopper (Drawing No. HW0308765-1)</td>
<td>1</td>
</tr>
<tr>
<td>③</td>
<td>Hexagon head screw M20 (length: 60 mm) (tensile strength: 1200 N/mm² or more)</td>
<td>3</td>
</tr>
<tr>
<td>④</td>
<td>Flat washer M20</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 11 Components of the S-axis Stopper
5.5 Alterable Operating Range

5.5.2 Installation of the S-Axis Mechanical Stopper

1. Apply the LOCTITE 242 to the thread part of the pin HW0402104-1, and install the pin bottom up into the S-axis mechanical stopper HW0308765-1 as shown in "Fig. 11 Components of the S-axis Stopper".
2. Mount the stopper to the S-head with three hexagon head screws M20 (length: 60 mm) and tighten the screws to the tightening torque of 402 N·m (tensile strength: 1200 N/ mm² or more). The stopper is to be installed as shown in the Fig. 11 when the operating range is ±180°.

Notes on S-Axis Mechanical Stopper Installation

- The S-axis mechanical stopper can be installed every 15 degrees. However, to avoid the mechanical troubles caused by interference between stoppers, install the stopper referring to "Table 5 Configurable Angles for S-axis Stopper Installation" to avoid mechanical troubles.
- To ensure the stopper strength, make sure to fix both sides of the protrusion with screws as shown in properly mounted example in "Fig. 12 Properly-Installed Image". Do not fix only one side of the stopper as shown in the Fig. 12 on account of the limitation of the stopper strength.

As in the figures Fig. 13 (a) to Fig. 13 (g), the S-axis mechanical stopper is reversible that either side of the stopper can be used and installed to the S-axis driving unit except for the installation at the angles: ±30, ±60, ±120, ±150 degrees. If the stopper cannot be installed in the range as shown in "Table 10 Dimensions and P-Point Maximum Envelope", flip the stopper and retry installing the stopper.

Fig. 12 Properly-Installed Image

- Be sure to use the specified components when installing the S-axis mechanical stopper.
- Be sure to turn OFF the power supply before the installation.
5.5.3 Modifying the Soft Limit of the S-axis Pulse

When confining the operating range of the S-axis, refer to "NX100 Concurrent I/O (manual No. RE-CKI-A442)" and modify the following parameters with the programming pendant.

Pulse limit (positive (+) direction of the S-axis): SICxG200
Pulse limit (negative (-) direction of the S-axis): SICxG208

<table>
<thead>
<tr>
<th>Angle</th>
<th>Number of Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
</tr>
<tr>
<td>± 15°</td>
<td>± 30496</td>
</tr>
<tr>
<td>± 30°</td>
<td>± 60991</td>
</tr>
<tr>
<td>± 45°</td>
<td>± 91487</td>
</tr>
<tr>
<td>± 60°</td>
<td>± 121983</td>
</tr>
<tr>
<td>± 75°</td>
<td>± 152479</td>
</tr>
<tr>
<td>± 90°</td>
<td>± 182974</td>
</tr>
<tr>
<td>± 105°</td>
<td>± 213470</td>
</tr>
<tr>
<td>± 120°</td>
<td>± 243966</td>
</tr>
<tr>
<td>± 135°</td>
<td>± 274462</td>
</tr>
<tr>
<td>± 150°</td>
<td>± 304957</td>
</tr>
<tr>
<td>± 165°</td>
<td>± 335453</td>
</tr>
<tr>
<td>± 180° (standard)</td>
<td>± 365949</td>
</tr>
</tbody>
</table>

Adjust both of the pulse limitation and the angle of the S-axis mechanical stopper as modifying the range of motion for the manipulator.
5.5 Alterable Operating Range

Table 5: Configurable Angles for S-axis Stopper Installation

<table>
<thead>
<tr>
<th>- Direction Angles</th>
<th>+ Direction Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-15</td>
<td>-15</td>
</tr>
<tr>
<td>-30</td>
<td>-30</td>
</tr>
<tr>
<td>-45</td>
<td>-45</td>
</tr>
<tr>
<td>-60</td>
<td>-60</td>
</tr>
<tr>
<td>-75</td>
<td>-75</td>
</tr>
<tr>
<td>-90</td>
<td>-90</td>
</tr>
<tr>
<td>-105</td>
<td>-105</td>
</tr>
<tr>
<td>-120</td>
<td>-120</td>
</tr>
<tr>
<td>-135</td>
<td>-135</td>
</tr>
<tr>
<td>-150</td>
<td>-150</td>
</tr>
<tr>
<td>-165</td>
<td>-165</td>
</tr>
<tr>
<td>-180</td>
<td>-180</td>
</tr>
</tbody>
</table>

This table can be used when installing two mechanical stoppers on the S-axis. The vertical axis of the table shows the angles in the positive direction, and the horizontal axis of the table shows the angles in the negative direction. For example, if one stopper is to be installed at a 180 degree angle in the positive direction, the other one can be installed within the range of +/-105 degree angles: since more than 60 degrees of interval is required to mount two stoppers, the chart indicates that the other angles are inappropriate for the installation.

Exception: The top left cell indicates the mountability of one stopper.
The stopper is reversible. Either side of the stopper can be used.

Installation at + 180°

Installation at + 165°

Fig. 13 (a) Stopper Installation at Configurable Angles
The stopper is irreversible. Only this side of the stopper can be used at this angle.

The stopper is reversible. Either side of the stopper can be used.

Fig. 13 (b) Stopper Installation at Configurable Angles
5.5 Alterable Operating Range

The stopper is irreversible. Only this side of the stopper can be used at this angle.

The stopper is reversible. Either side of the stopper can be used.

Fig. 13 (c) Stopper Installation at Configurable Angles
The stopper is reversible. Either side of the stopper can be used.

Fig. 13 (d) Stopper Installation at Configurable Angles
The stopper is irreversible. Only this side of the stopper can be used at this angle.

Installation at +60°

The stopper is reversible. Either side of the stopper can be used.

Installation at +45°

Fig. 13 (e) Stopper Installation at Configurable Angles

5-13
5.5 Alterable Operating Range

The stopper is irreversible.
Only this side of the stopper can be used at this angle.

Installation at + 30°

The stopper is reversible.
Either side of the stopper can be used.

Installation at + 15°

Fig. 13 (f) Stopper Installation at Configurable Angles
The stopper is reversible. Either side of the stopper can be used.

Hexagon head screws

Installation at + 0

Fig. 13 (g) Stopper Installation at Configurable Angles
6 Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load

The allowable wrist load including the mass of the gripper is 130 kg. This section explains the allowable values and conditions.

As shown in "Table 6 Allowable Inertia and Moment of Inertia" below, there are limitations in moment and moment of inertia: consider these limitations before operating the manipulator.

Table 6 Allowable Inertia and Moment of Inertia

<table>
<thead>
<tr>
<th>Axis</th>
<th>Allowable Moment N·m (kgf·m)</th>
<th>Allowable Moment of Inertia (GD²/4) kg·m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-axis</td>
<td>735 (75)</td>
<td>45</td>
</tr>
<tr>
<td>B-axis</td>
<td>735 (75)</td>
<td>45</td>
</tr>
<tr>
<td>T-axis</td>
<td>421 (43)</td>
<td>15</td>
</tr>
</tbody>
</table>

*1 () : Gravitational unit

When the volume load is small, refer to the moment arm rating shown in FIG14.

The allowable total inertia is calculated when the moment is at its maximum. Contact your Yaskawa representative in advance when only inertia moment, or load moment is small while inertia moment is large, and when the load mass is combined with an external force.

Fig. 14 Moment Arm Rating
6.2 Wrist Flange

It is recommended that the attachment be mounted inside the fitting to identify the alignment marks. Fitting depth of inside and outside fittings must be 8 mm or less.

![Diagram of Wrist Flange]

Fig. 15 Wrist Flange

NOTE
Wash off anti-corrosive paint (yellow) on the wrist flange surface with thinner or light oil before mounting the tools.
7 System Application

7.1 Peripheral Equipment Mounts

The manipulator is equipped with peripheral equipment mounts and tapped holes on its upper arm for easier installation of the user’s system application as shown in "Fig. 16 Tapped Holes for Peripheral Equipment Mounts". Make efficient use of these mounts following the conditions in "Table 7 Condition for Attachment".

![Fig. 16 Tapped Holes for Peripheral Equipment Mounts](image-url)

<table>
<thead>
<tr>
<th>Tapped Hole</th>
<th>Application</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Cabling</td>
<td>Up to 30 kg.</td>
</tr>
<tr>
<td>A2</td>
<td>Valve mounting</td>
<td>Up to 49 N·m (5 kgf·m) for increased moment amount of upper arm</td>
</tr>
<tr>
<td>B</td>
<td>Transformer mounting</td>
<td>Up to 250 kg.</td>
</tr>
</tbody>
</table>
7.2 Internal User I/O Wiring Harness and Air Line

An internal user I/O wiring harness (0.75 mm² x 23 wires) and two air lines are used in the manipulator for the drives of the peripheral devices mounted on the upper arm as described in "Fig. 17 Internal User I/O Wiring Harness and Air Line". The connector pins and the terminals are assigned as shown in "Fig. 18 Connector for Internal User I/O Wiring Harness (Pin Details)". Wiring must be performed by user.

- The allowable current for wires: 6.6 A or less for each wire. (The total current value for pins 1 to 23 must be 60 A or less.)
- The maximum pressure for the air lines: 490 kPa (5 kgf/cm²) or less for each line. (The inside diameter: 8 mm.)

Fig. 17 Internal User I/O Wiring Harness and Air Line
7.2 Internal User I/O Wiring Harness and Air Line

Fig. 18 Connector for Internal User I/O Wiring Harness (Pin Details)

Pins Used

Internal user I/O wiring harness:
23 wires, size 0.75 mm²
8 Electrical Equipment Specifications

8.1 Location of Limit Switches

The limit switches are optional. For the S, L, and U-Axes with limit switch specifications, the limit switches are located on the S-axis, L-axis, and U-axis respectively. For the location of each limit switch, refer to the following figure.

![Location of Limit Switches](image-url)

Fig. 19 Location of Limit Switches
8.2 Internal Connections

Highly reliable connectors are equipped on each connection part of the manipulator to enable easy removal and installation for maintenance and inspection. For the numbers, types, and locations of the connectors, see "Fig. 20 Location and Numbers of Connectors" and "Table 8 List of Connector Types". As to the internal connections between the manipulator and the NX100, see the connection diagrams in the following pages.

Fig. 20 Location and Numbers of Connectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Type of Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector base:</td>
<td>Connector for internal user I/O</td>
</tr>
<tr>
<td></td>
<td>wiring harness</td>
</tr>
<tr>
<td></td>
<td>JL05-2A24-28PC</td>
</tr>
<tr>
<td></td>
<td>(JL05-6A24-28S: Optional)</td>
</tr>
<tr>
<td>U-arm:</td>
<td>Connector for internal user I/O</td>
</tr>
<tr>
<td></td>
<td>wiring harness</td>
</tr>
<tr>
<td></td>
<td>JL05-2A24-28SC</td>
</tr>
<tr>
<td></td>
<td>(JL05-6A24-28P: Optional)</td>
</tr>
</tbody>
</table>
8.2 Internal Connections

Fig. 21 (a) Internal Connection Diagram
8.2 Internal Connections

Note:
For the limit switch specification, the connection of the section (shown on the previous page) is changed as follows:

S-Axis Limit Switch Specification

L-Axis Limit Switch Specification

LU-Axis Limit Switch Specification

Fig. 21 (b) Internal Connection Diagram
9 Maintenance and Inspection

9.1 Inspection Schedule

Proper inspections are essential not only to assure that the mechanism will be able to function for a long period, but also to prevent malfunctions and assure safe operation. Inspection intervals are classified into six levels as shown in "Table 9 Inspection Items". Conduct periodical inspections according to the inspection schedule in this table. In the table, the inspection items are categorized by three types of operations: operations which can be performed by personnel authorized by the user, operations which can be performed by personnel being trained, and operations which can be performed by service company personnel. Only specified personnel are to do the inspection work.

WARNING

- Before maintenance or inspection, be sure to turn OFF the main power supply, and put up a warning sign. (ex. DO NOT TURN ON THE POWER.)

Failure to observe this warning may result in electric shock or injury.

CAUTION

- Maintenance and inspection must be performed by specified personnel.

Failure to observe this caution may result in electric shock or injury.

- For disassembly or repair, contact your Yaskawa representative.

- Do not remove the motor, and do not release the brake.

Failure to observe this caution may result in injury from unexpected turning of the manipulator's arm.

- The battery pack must be connected before removing encoder connector when maintenance and inspection.

Failure to observe this caution may result in the loss of home position data.
9.1 Inspection Schedule

- The inspection interval depends on the total servo operation time.
- For axes which are used very frequently (in handling applications, etc.), it is recommended that inspections be conducted at shorter intervals. Contact your Yaskawa representative.

Table 9 Inspection Items

<table>
<thead>
<tr>
<th>Items*4</th>
<th>Schedule</th>
<th>Method</th>
<th>Operation</th>
<th>Inspection Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
<td>1000H Cycle</td>
<td>3000H Cycle</td>
<td>6000H Cycle</td>
</tr>
<tr>
<td>1</td>
<td>Alignment mark</td>
<td></td>
<td>Visual</td>
<td>Check alignment mark accordance and damage at the home position.</td>
</tr>
<tr>
<td>2</td>
<td>External leads</td>
<td></td>
<td>Visual</td>
<td>Check for damage and deterioration of leads.</td>
</tr>
<tr>
<td>3</td>
<td>Manipulator (whole exterior)</td>
<td></td>
<td>Visual</td>
<td>Clean the work area if dust or spatter is present. Check for damage and outside cracks.</td>
</tr>
<tr>
<td>4</td>
<td>L, U-axis motors</td>
<td></td>
<td>Visual</td>
<td>Check for grease leakage.*5</td>
</tr>
<tr>
<td>5</td>
<td>Manipulator base mounting screws</td>
<td></td>
<td>Spanner</td>
<td>Tighten loose screws. Replace if necessary.</td>
</tr>
<tr>
<td>6</td>
<td>Cover mounting screws</td>
<td></td>
<td>Screw-driver, Wrench</td>
<td>Tighten loose screws. Replace if necessary.</td>
</tr>
<tr>
<td>7</td>
<td>S, L, U-axis motor connectors</td>
<td></td>
<td>Manual</td>
<td>Check for loose connectors and tighten if necessary.</td>
</tr>
<tr>
<td>8</td>
<td>Connector base</td>
<td></td>
<td>Manual</td>
<td>Check for loose connectors.</td>
</tr>
<tr>
<td>9</td>
<td>Balancer</td>
<td></td>
<td>Grease Gun</td>
<td>Replenish grease. See section 9.2.6.</td>
</tr>
<tr>
<td>10</td>
<td>Internal wiring harness</td>
<td></td>
<td>Multimeter, Visual</td>
<td>Check for conduction between the main connector of base and each connector with manually shaking the wiring harness. Check for wear of protective spring.*1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Replace the harness.*2</td>
</tr>
<tr>
<td>11</td>
<td>Battery pack in manipulator</td>
<td></td>
<td>Screw-driver, Wrench</td>
<td>Replace the battery pack when the battery alarm occurs or the manipulator is driven for 36000 H.*1</td>
</tr>
</tbody>
</table>
When checking for conduction with a multimeter, remove connectors on encoder side for each axis from the motor to secure the home position data. See "9.2.7 Notes for Maintenance".

The internal wiring harness (for SLURBT-axes) is to be replaced at 24000H inspection.

For the grease, refer to "Table 10 Inspection Parts and Grease Used".

Inspection numbers correspond to the numbers in "Fig. 22 Dimensions and P-Point Maximum Envelope".

The occurrence of a grease leakage indicates the possibility that grease has seeped into the motor. This can cause a motor breakdown. Contact your Yaskawa representative.

The initial grease exchange should be performed at 3000 H inspection.

 ihror

Table 9 Inspection Items

<table>
<thead>
<tr>
<th>Items</th>
<th>Schedule</th>
<th>Method</th>
<th>Operation</th>
<th>Inspection Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>1000H Cycle</td>
<td>3000H Cycle</td>
<td>6000H Cycle</td>
<td>12000H Cycle</td>
</tr>
<tr>
<td>S-axis speed reducer, S-axis gear</td>
<td>O*6</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-axis speed reducer</td>
<td>O*6</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-axis speed reducer</td>
<td>O*6</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-axis speed reducer</td>
<td>O*6</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BT-axis speed reducers, BT-axis gears</td>
<td>O*6</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhaul</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 When checking for conduction with a multimeter, remove connectors on encoder side for each axis from the motor to secure the home position data. See "9.2.7 Notes for Maintenance".

*2 The internal wiring harness (for SLURBT-axes) is to be replaced at 24000H inspection.

*3 For the grease, refer to "Table 10 Inspection Parts and Grease Used".

*4 Inspection numbers correspond to the numbers in "Fig. 22 Dimensions and P-Point Maximum Envelope".

*5 The occurrence of a grease leakage indicates the possibility that grease has seeped into the motor. This can cause a motor breakdown. Contact your Yaskawa representative.

*6 The initial grease exchange should be performed at 3000 H inspection.
Table 10 Inspection Parts and Grease Used

<table>
<thead>
<tr>
<th>No.</th>
<th>Grease Used</th>
<th>Inspected Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>12, 13, 14, 15, 16</td>
<td>VIGO Grease RE No. 0</td>
<td>Speed reducers for all axes RBT-axis gears</td>
</tr>
<tr>
<td>9</td>
<td>Alvania EP Grease 2</td>
<td>L-axis balancer</td>
</tr>
</tbody>
</table>

The numbers in the above table correspond to the numbers in "Table 9 Inspection Items".
Note: The manipulator is in the home position.

Fig. 22 Dimensions and P-Point Maximum Envelope
9.2 Notes on Maintenance Procedures

9.2.1 Battery Pack Replacement

Two battery packs are installed in the position described in "Fig. 23 (a) Battery Location (Back View)" and "Fig. 23 (b) Battery Location (Top View)". If a battery alarm shows up on the NX100, replace the battery according to the following procedure:

Fig. 23 (a) Battery Location (Back View)

Fig. 23 (b) Battery Location (Top View)
1. Turn OFF the NX100 main power supply.
2. Unscrew the plate mounting screws M4 to remove the plate on the connector base and pull out the battery pack for replacement.
3. Remove the battery pack from the battery holder.
4. Connect the new battery pack to the unoccupied connectors on the board.
5. Remove the old battery pack from the board.
6. Mount the new battery pack on the battery holder.
7. Reinstall the plate.

NOTE Remove the old battery pack after connecting the new one so that the encoder absolute data does not disappear.

NOTE Make sure not to pinch the cable when putting the plate back into place.
9.2.2 Grease Exchange for the S-Axis Speed Reducer and Gear

Exchange the grease as follows referring to "Fig. 25 S-Axis Speed Reducer and Gear".

1. Remove the plug from the grease exhaust port.

 NOTE If grease is added with the plug on, the grease will go inside the motor and may cause a damage. Make sure to remove the plug before the grease injection.

2. Remove the hexagon socket head plug from the grease inlet and install the grease zerk A-PT1/4. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

 Grease type: VIGO Grease RE No. 0
 Amount of grease: Approx. 12000 cc

3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

4. Move the S-axis for a few minutes to discharge excess grease.

5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 24.5 N·m (2.5 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

 NOTE If the plug is installed while the grease is being exhausted, the grease will go inside the motor and may cause a damage. Make sure to install the plug when the grease exhaust is complete.

6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
9.2.3 Grease Exchange for the L-Axis Speed Reducer

Exchange the grease as follows referring to "Fig. 26 L-Axis Speed Reducer".

1. Make the L-arm vertical to the ground as shown in "Fig. 26 L-Axis Speed Reducer".
2. Unscrew the hexagon socket head cap screws M5 (four screws), and remove the cover.
3. Remove the plug from the grease exhaust port.
4. Remove the hexagon socket head plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

NOTE

If grease is added with the plug on, the grease will go inside the motor and may cause a damage. Make sure to remove the plug before the grease injection.

5. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.
6. Move the L-axis for a few minutes to discharge excess grease.
7. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

NOTE

If the plug is installed while the grease is being exhausted, the grease will go inside the motor and may cause a damage. Make sure to install the plug when the grease exhaust is complete.

8. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

Grease type: VIgo Grease RE No. 0
Amount of grease: Approx. 2300 cc

9.2.4 Grease Exchange for the U-Axis Speed Reducer

Exchange the grease as follows referring to "Fig. 27 U-Axis Speed Reducer".

1. Make the U-arm horizontal to the ground as shown in "Fig. 27 U-Axis Speed Reducer".
2. Remove the plug from the grease exhaust port.

NOTE

If grease is added with the plug on, the grease will go inside the motor and may cause a damage. Make sure to remove the plug before the grease injection.

3. Remove the hexagon socket head plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

<table>
<thead>
<tr>
<th>Grease type: VIGO Grease RE No. 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of grease: Approx. 1900 cc</td>
</tr>
</tbody>
</table>

4. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.
5. Move the U-axis for a few minutes to discharge excess grease.
6. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

NOTE

If the plug is installed while the grease is being exhausted, the grease will go inside the motor and may cause a damage. Make sure to install the plug when the grease exhaust is complete.

7. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
9.2.5 Grease Exchange for the U-Arm

Fig. 28 U-arm
9.2 Notes on Maintenance Procedures

- **Grease Exchange for the RBT-Axis Gears in the Casing (Refer to "Fig. 28 U-arm").**

1. Remove the plug from the grease exhaust port.

 NOTE If grease is added with the plug on, the grease will go outside the grease box and may cause a damage. Make sure to remove the plug before the grease injection.

2. Remove the plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

 | Grease type: VIGO Grease RE No. 0
 | Amount of grease: Approx. 2000 cc

3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

4. Move the R-, B-, T-axes for a few minutes to discharge excess grease.

5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

- **Grease Exchange for the R-Axis Speed Reducer (Refer to "Fig. 28 U-arm").**

1. Remove the plug from the grease exhaust port.

 NOTE If grease is added with the plug on, the grease will go outside the grease box and may cause a damage. Make sure to remove the plug before the grease injection.

2. Remove the plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

 | Grease type: VIGO Grease RE No. 0
 | Amount of grease: Approx. 1550 cc

3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

4. Move the R-axis for a few minutes to discharge excess grease.

5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
Grease Exchange for the B-Axis Speed Reducer (Refer to "Fig. 28 U-arm").

1. Remove the plug from the grease exhaust port.

2. Remove the plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

4. Move the B-axis for a few minutes to discharge excess grease.

5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

Grease Exchange for the T-Axis Speed Reducer (Refer to "Fig. 28 U-arm").

1. Remove the plug from the grease exhaust port.

2. Remove the plug from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

4. Move the T-axis for a few minutes to discharge excess grease.

5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

NOTE: If grease is added with the plug on, the grease will go outside the grease box and may cause a damage. Make sure to remove the plug before the grease injection.

Grease type: VIGO Grease RE No. 0
Amount of grease: Approx. 850 cc

NOTE: If grease is added with the plug on, the grease will go outside the grease box and may cause a damage. Make sure to remove the plug before the grease injection.

Grease type: VIGO Grease RE No. 0
Amount of grease: Approx. 800 cc
9.2.6 Grease Replenishment for the Balancer Links

Replenish the grease as follows referring to "Fig. 29 Balancer Links".

1. Remove the plug from the exhaust port of each link.

 Grease type: Alvania EP Grease 2
 Amount of grease: 5 cc (10 cc for the initial supply)

2. Inject grease into each grease inlet using a grease gun.

 NOTE
 The exhaust port is for AIR exhaust: the grease is not exhausted from the exhaust port.
 Do not inject excessive grease into the grease inlet.

3. Reinstall the plug on each exhaust port. Tighten the plug to a tightening torque of
 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
9.2.7 Notes for Maintenance

When performing maintenance such as replacement of a wire harness in the manipulator, the encoder connector may be necessary to be removed. In this case, be sure to connect the battery pack to the battery backup connector before removing the encoder connector. Removing the encoder connector without connecting the battery pack leads to disappearance of the encoder absolute data. For the battery pack connection, refer to "Fig. 30 Battery Pack Connection for Motor".

Battery Pack Connection for Motors

A motor is equipped with connectors (crimped contact-pins; each marked with "BAT", "OBT") for battery backup. Connect the battery pack and connectors with the same marks respectively by following the procedure below.

1. Remove the cap attached to the battery backup connector of the motor.
2. Connect the battery pack (HW9470932-A) with the battery backup connector. With the battery pack connected to the battery backup connectors, disconnect the encoder connector and perform the maintenance work.
3. After the maintenance work, verify that all connectors are connected, then disconnect the battery pack from the battery backup connector.
4. Install the cap to the battery backup connector.

Do not remove the battery pack in the connector base.

Motor
Connector for motor power
Connector for motor encoder

Battery pack HW9470932-A

Connector for battery backup

a: Crimped contact-pin (pin)
b: Crimped contact-pin (socket)

Fig. 30 Battery Pack Connection for Motor
10 Recommended Spare Parts

It is recommended to keep the parts and components in the following table in stock as spare parts for the MOTOMAN-EPH130. Product performance can not be guaranteed in case of using the spare parts other than the recommended parts listed below.

The spare parts are ranked as follows:
- Rank A: Expendable and frequently replaced parts
- Rank B: Parts for which replacement may be necessary as a result of frequent operation
- Rank C: Drive Unit

NOTE To replace parts in Rank B or Rank C, contact your Yaskawa representative.

Table. 11 Spare Parts for the Motoman-EPH130

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>Grease</td>
<td>VIGO Grease RE No. 0</td>
<td>Yaskawa Electric Corporation</td>
<td>16kg</td>
<td>-</td>
<td>For all axes’ speed reducers and wrist unit</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>Grease</td>
<td>Alvania EP Grease 2</td>
<td>Showa Shell Sekiyu K.K.</td>
<td>16kg</td>
<td>-</td>
<td>For balancer links</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>Liquid Gasket</td>
<td>Three Bond 1206C</td>
<td>Three Bond Co., Ltd.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>Battery Pack</td>
<td>HW0470360-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>Battery Pack</td>
<td>HW09470932-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>Replacement Part for S-Axis Speed Reducer</td>
<td>HW0385489-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>S-Axis Input Gear</td>
<td>HW0307565-3</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>Replacement Part for L-Axis Speed Reducer</td>
<td>HW0385490-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>L-Axis Input Gear</td>
<td>HW0308757-1</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table. 11 Spare Parts for the Motoman-EPH130

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10</td>
<td>Replacement Part for U-Axis Speed Reducer</td>
<td>HW0385491-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>U-Axis Input Gear</td>
<td>HW0308758-1</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>R-Axis Speed Reducer</td>
<td>HW0384822-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>B-axis Speed Reducer</td>
<td>HW9380961-G</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>T-axis Speed Reducer</td>
<td>HW9381400-E</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>Wrist Unit</td>
<td>HW0172555-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>16</td>
<td>AC Servomotors for S-, L-Axes</td>
<td>HW0383523-A SGMRS-44A2A-YR2* Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>AC Servomotor for U-Axis</td>
<td>HW0382157-A SGMRS-37A2A-YR1* Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>AC Servomotors for R-, B-, T-Axes</td>
<td>HW0382156-A SGMRS-13A2A-YR1* Yaskawa Electric Corporation</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>19</td>
<td>Wire Harness in Manipulator</td>
<td>HW0172560-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>Wire Harness in Manipulator</td>
<td>HW0372174-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td>Assembled with connector base</td>
</tr>
<tr>
<td>C</td>
<td>21</td>
<td>Cooling Fan</td>
<td>HW0471083-B</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>