Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS
- MOTOMAN-□□□ INSTRUCTIONS
- DX100 INSTRUCTIONS
- DX100 OPERATOR’S MANUAL
- DX100 MAINTENANCE MANUAL

The DX100 operator’s manuals above correspond to specific usage. Be sure to use the appropriate manual.
MANDATORY

• This manual explains the various components of the DX100 system and general operations. Read this manual carefully and be sure to understand its contents before handling the DX100.

• General items related to safety are listed in Section 1: Safety of the DX100 Instructions. To ensure correct and safe operation, carefully read the DX100 Instruction before reading this manual.

CAUTION

• Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

• The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

• YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

• If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

• YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product’s warranty.
We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06-2012). You can obtain this document from the Robotic Industries Association (RIA) at the following address:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338
www.roboticsonline.com

Ultimately, well-trained personnel are the best safeguard against accidents and damage that can result from improper operation of the equipment. The customer is responsible for providing adequately trained personnel to operate, program, and maintain the equipment. NEVER ALLOW UNTRAINED PERSONNEL TO OPERATE, PROGRAM, OR REPAIR THE EQUIPMENT!

We recommend approved Yaskawa training courses for all personnel involved with the operation, programming, or repair of the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the DX100.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, “MANDATORY”, or “PROHIBITED”.

- **DANGER**
 Indicates an imminent hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **WARNING**
 Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **CAUTION**
 Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

- **MANDATORY**
 Always be sure to follow explicitly the items listed under this heading.

- **PROHIBITED**
 Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations.

At any rate, be sure to follow these important items.

NOTE
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “CAUTION” and “WARNING”.

WARNING

• Before operating the manipulator, check that servo power is turned off when the emergency stop buttons are pressed. When the servo power is turned off, the SERVO ON LED on the programming pendant is turned off. Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Figure 1: Emergency Stop Button

• Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn the servo power ON. Injury may result from unintentional or unexpected manipulator motion.

Figure 2: Release of EM

• Observe the following precautions when performing teaching operations within the P-point maximum envelope of the manipulator:
 – Be sure to use a lockout device to the safeguarding when going inside. Also, display the sign that the operation is being performed inside the safeguarding and make sure no one closes the safeguarding.
 – View the manipulator from the front whenever possible.
 – Always follow the predetermined operating procedure.
 – Keep in mind the emergency response measures against the manipulator’s unexpected motion toward you.
 – Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

• Confirm that no person is present in the P-point maximum envelope of the manipulator and that you are in a safe location before:
 – Turning on the power for the DX100.
 – Moving the manipulator with the programming pendant.
 – Running the system in the check mode.
 – Performing automatic operations.

Injury may result if anyone enters the working envelope of the manipulator during operation. Always press an emergency stop button immediately if there are problems.
Definition of Terms Used In this Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX100 controller</td>
<td>DX100</td>
</tr>
<tr>
<td>DX100 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>

CAUTION

- Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 - Check for problems in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.
- Always return the programming pendant to the hook on the cabinet of the DX100 after use.

The programming pendant can be damaged if it is left in the manipulator's work area, on the floor, or near fixtures.

- Read and understand the Explanation of Warning Labels in the DX100 Instructions before operating the manipulator.
Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td>Character Keys: The keys which have characters printed on them are denoted with []. ex. [ENTER]</td>
</tr>
<tr>
<td>Symbol Keys</td>
<td>The keys which have a symbol printed on them are not denoted with [] but depicted with a small picture. ex. page key ![page key]</td>
</tr>
<tr>
<td></td>
<td>The cursor key is an exception, and a picture is not shown.</td>
</tr>
<tr>
<td>Axis Keys</td>
<td>“Axis Keys” and “Numeric Keys” are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Numeric Keys</td>
<td>Keys pressed simultaneously: When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. ex. {JOB}</td>
</tr>
</tbody>
</table>

Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • • ” means that the cursor is moved to the object item and the SELECT key is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and TM are omitted.
Safeguarding Tips

All operators, programmers, maintenance personnel, supervisors, and anyone working near the system must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this equipment, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this equipment.
- Improper connections can damage the equipment. All connections must be made within the standard voltage and current ratings of the equipment.
- The system must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06-2012, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

Mechanical Safety Devices

The safe operation of this equipment is ultimately the users responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-2012 safety standards, and other local codes that may pertain to the installation and use of this equipment.

Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety equipment is provided as standard:

- Safety barriers
- Door interlocks
- Emergency stop palm buttons located on operator station

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
Programming, Operation, and Maintenance Safety

All operators, programmers, maintenance personnel, supervisors, and anyone working near the system must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this equipment should be permitted to program, or maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the equipment to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.

- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.

- Check the E-Stop button on the operator station for proper operation before programming. The equipment must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.

- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.

- Any modifications to the controller unit can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to the controller unit. Making any changes without the written permission from Yaskawa will void the warranty.

- Some operations require standard passwords and some require special passwords.

- The equipment allows modifications of the software for maximum performance. Care must be taken when making these modifications. All modifications made to the software will change the way the equipment operates and can cause severe personal injury or death, as well as damage parts of the system. Double check all modifications under every mode of operation to ensure that the changes have not created hazards or dangerous situations.

- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.

- Use proper replacement parts.

- Improper connections can damage the equipment. All connections must be made within the standard voltage and current ratings of the equipment.
Maintenance Safety

Turn the power OFF and disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

Perform only the maintenance described in this manual. Maintenance other than specified in this manual should be performed only by Yaskawa-trained, qualified personnel.

Summary of Warning Information

This manual is provided to help users establish safe conditions for operating the equipment. Specific considerations and precautions are also described in the manual, but appear in the form of Dangers, Warnings, Cautions, and Notes.

It is important that users operate the equipment in accordance with this instruction manual and any additional information which may be provided by Yaskawa. Address any questions regarding the safe and proper operation of the equipment to Yaskawa Customer Support.
Customer Support Information

If you need assistance with any aspect of your DX100 system, please contact YASKAWA Customer Support at the following 24-hour telephone number:

(937) 847-3200

For routine technical inquiries, you can also contact YASKAWA Customer Support at the following e-mail address:

technicalsupport@motoman.com

When using e-mail to contact YASKAWA Customer Support, please provide a detailed description of your issue, along with complete contact information. Please allow approximately 24 to 36 hours for a response to your inquiry.

Please use e-mail for routine inquiries only. If you have an urgent or emergency need for service, replacement parts, or information, you must contact YASKAWA Customer Support at the telephone number shown above.

Please have the following information ready before you call Customer Support:

- **System**: DX100
- **Robots**: __________________________
- **Primary Application**: __________________________
- **Controller**: DX100
- **Software Version**: Access this information on the Programming Pendant’s LCD display screen by selecting {MAIN MENU} - {SYSTEM INFO} - {VERSION}
- **Robot Serial Number**: Located on the robot data plate
- **Robot Sales Order Number**: Located on the DX100 controller data plate
Table of Contents

1 Introduction ... 1-1

1.1 DX100 Overview... 1-1

1.2 Programming Pendant... 1-2

1.2.1 Programming Pendant Overview.. 1-2

1.2.2 Key Description ... 1-3

1.2.2.1 Character Keys .. 1-3

1.2.2.2 Symbol Keys ... 1-3

1.2.2.3 Axis Keys and Numeric Keys .. 1-3

1.2.2.4 Keys Pressed Simultaneously ... 1-3

1.2.3 Programming Pendant Keys... 1-4

1.2.4 Programming Pendant Display.. 1-11

1.2.4.1 Five Display Areas .. 1-11

1.2.4.2 General-purpose Display Area .. 1-12

1.2.4.3 Main Menu Area .. 1-13

1.2.4.4 Status Display Area .. 1-13

1.2.4.5 Human Interface Display Area .. 1-16

1.2.4.6 Menu Area .. 1-16

1.2.5 Screen Descriptions .. 1-17

1.2.6 Character Input Operation .. 1-18

1.2.6.1 Character Input .. 1-18

1.2.6.2 Operation .. 1-18

1.2.6.3 Alphanumeric Input .. 1-19

1.2.6.4 Symbol Input .. 1-20

1.2.6.5 Register Word Function ... 1-21

1.3 Mode.. 1-29

1.3.1 Teach Mode .. 1-29

1.3.2 Play Mode .. 1-29

1.3.3 Remote Mode ... 1-29

1.3.4 Teach Mode Priority .. 1-29

1.4 Security Mode.. 1-30

1.4.1 Types of Security Modes .. 1-30

1.4.2 Changing Security Modes .. 1-35

2 Manipulator Coordinate Systems and Operations .. 2-1

2.1 Control Groups and Coordinate Systems .. 2-1

2.1.1 Control Group ... 2-1

2.1.2 Types of Coordinate Systems .. 2-2
Table of Contents

2. General Operations

- 2.2 General Operations ... 2-3
 - 2.2.0.1 Check Safety ... 2-3
 - 2.2.0.2 Select Teach Mode ... 2-3
 - 2.2.0.3 Select Control Group .. 2-3
 - 2.2.0.4 Select Coordinate System .. 2-3
 - 2.2.0.5 Select Manual Speed .. 2-4
 - 2.2.0.6 Servo ON ... 2-4
 - 2.2.0.7 Axis Operation .. 2-4
 - 2.2.0.8 HIGH SPEED .. 2-4

2.3 Coordinate Systems and Axis Operation

- 2.3 Coordinate Systems and Axis Operation 2-5
 - 2.3.1 Joint Coordinates .. 2-5
 - 2.3.2 Cartesian Coordinates .. 2-6
 - 2.3.3 Cylindrical Coordinates .. 2-7
 - 2.3.4 Tool Coordinates .. 2-9
 - 2.3.4.1 Selecting Tool .. 2-11
 - 2.3.5 User Coordinates .. 2-12
 - 2.3.5.1 Selecting User Coordinates 2-13
 - 2.3.5.2 Examples of User Coordinate Utilization 2-14
 - 2.3.6 External Axis ... 2-14
 - 2.3.7 Control Point Operation .. 2-15
 - 2.3.7.1 Control Point Change ... 2-18

3. Teaching

- 3.1 Preparation for Teaching ... 3-1
 - 3.1.1 Checking Emergency Stop Buttons 3-1
 - 3.1.2 Setting the Teach Lock .. 3-1
 - 3.1.3 Registering a Job ... 3-2
 - 3.1.3.1 Registering Job Names .. 3-2
 - 3.1.3.2 Registering Jobs .. 3-2
 - 3.1.3.3 Registering Comments .. 3-3
 - 3.1.3.4 Registering Control Groups 3-3
 - 3.1.3.5 Switching to the Teaching Window 3-4
 - 3.2 Teaching Operation ... 3-5
 - 3.2.1 Teaching Window ... 3-5
 - 3.2.2 Interpolation Type and Play Speed 3-6
 - 3.2.2.1 Joint Interpolation .. 3-6
 - 3.2.2.2 Linear Interpolation .. 3-7
 - 3.2.2.3 Circular Interpolation .. 3-8
 - 3.2.2.4 Spline Interpolation .. 3-9
Table of Contents

3.2.3 Teaching Steps ... 3-11
 3.2.3.1 Registering Move Instructions 3-11
 3.2.3.2 Registering Reference Point Instructions 3-18
 3.2.3.3 Registering Timer Instructions 3-19

3.2.4 Overlapping the First and Last Steps 3-22

3.3 Checking Steps .. 3-23
 3.3.1 FWD/BWD Key Operations .. 3-23
 3.3.1.1 Precautions When Using FWD / BWD Operations 3-24
 3.3.1.2 Selecting Manual Speed .. 3-26
 3.3.1.3 Moving to Reference Point .. 3-27
 3.3.1.4 Test Operations ... 3-27
 3.3.1.5 Machine Lock Operation .. 3-28

3.4 Modifying Steps .. 3-29
 3.4.1 Displaying the JOB CONTENT Window for Editing.................. 3-33
 3.4.1.1 Currently Called Up Job ... 3-33
 3.4.1.2 Calling Up Other Jobs ... 3-33
 3.4.2 Inserting Move Instructions .. 3-34
 3.4.3 Deleting Move Instructions ... 3-36
 3.4.4 Modifying Move Instructions .. 3-37
 3.4.4.1 Modifying Position Data ... 3-37
 3.4.4.2 Modifying Interpolation Type ... 3-37
 3.4.5 Undo Operation .. 3-38
 3.4.6 Modifying Reference Point Instructions 3-39
 3.4.6.1 Deleting Reference Point Instructions 3-39
 3.4.6.2 Modifying Reference Point Instructions 3-39
 3.4.7 Modifying Timer Instructions .. 3-40
 3.4.7.1 Deleting Timer Instructions .. 3-40
 3.4.7.2 Modifying Timer Instructions .. 3-40

3.5 Modifying Jobs .. 3-41
 3.5.1 Calling Up a Job ... 3-41
 3.5.2 Windows Related to Job ... 3-41
 3.5.3 JOB HEADER Window .. 3-42
 3.5.4 JOB CONTENT Window .. 3-43
 3.5.4.1 Switching the Address Area ... 3-44
 3.5.5 COMMAND POSITION Window .. 3-48
 3.5.6 JOB CAPACITY Window .. 3-49

3.6 Editing Instructions .. 3-50
 3.6.1 Instruction Group ... 3-51
 3.6.2 Inserting Instructions ... 3-52
3.6.3 Deleting Instructions
- Deleting Instructions

3.6.4 Modifying Instructions
- Modifying Instructions

3.6.5 Modifying Additional Numeric Data
- Modifying Additional Numeric Data

3.6.6 Modifying Additional Items
- Modifying Additional Items

3.6.7 Inserting Additional Items
- Inserting Additional Items

3.6.8 Deleting Additional Items
- Deleting Additional Items

3.7 Editing Jobs

3.7.1 Selecting the Range
- Selecting the Range

3.7.2 Copying
- Copying

3.7.3 Cutting
- Cutting

3.7.4 Pasting
- Pasting

3.7.5 Reverse Pasting
- Reverse Pasting

3.8 Test Operations

3.9 Other Job-editing Functions

3.9.1 Editing Play Speed
- Editing Play Speed
 - Modification of Speed Type
 - Relative Modification
 - Modification by TRT (Traverse Time)

3.9.2 Editing Interpolation Type
- Editing Interpolation Type

3.9.3 Editing Condition Files
- Editing Condition Files

3.9.4 User Variables
- User Variables
 - Setting Byte, Integer, Double Precision Integer, and Real Type Variables
 - Setting Character Type Variables
 - Registering Variable Name
 - Displaying Position Variables
 - Setting Position Variables
 - Setting Position Variables Using the Numeric Keys
 - Setting Position Variables Using the Axis Keys
 - Deleting Data Set of Position Variables
 - Checking Positions by Position Variables
 - Manipulator Types

3.9.5 Flip/No Flip
- Flip/No Flip

3.9.6 R-axis Angle
- R-axis Angle

3.9.7 T-axis Angle
- T-axis Angle

3.9.8 Front/Back
- Front/Back

3.9.9 Upper Arm/Lower Arm
- Upper Arm/Lower Arm

3.9.10 S-axis Angle
- S-axis Angle
Table of Contents

3.9.11 Editing Local Variables
- Setting the Number of Local Variables... 3-96

3.9.12 Search
- Line Search... 3-99
- Step Search... 3-100
- Label Search... 3-101
- Instruction Search... 3-103
- Tag Search... 3-105

4 Playback

4.1 Preparation for Playback
- Selecting a Job... 4-1
 - Calling a Job... 4-1
 - Registering the Master Job... 4-2
 - Calling the Master Job... 4-4
- The PLAYBACK Window... 4-6
 - Display of Cycle Time... 4-6
 - Operation Cycle... 4-7

4.2 Playback
- Playback Operation... 4-10
 - Selecting the Start Device... 4-10
 - Servo On... 4-10
 - Start Operation... 4-10
- Special Playback Operations... 4-11
 - Low Speed Operation... 4-11
 - Limited Speed Operations... 4-12
 - Dry-run Speed Operations... 4-12
 - Machine Lock Operation... 4-13
 - Check Mode Operation... 4-13
 - Weaving Prohibit Setting during Check Mode Operation... 4-13
 - Cancel All Special Operations... 4-14

4.3 Stop and Restart
- Hold... 4-15
 - Using the Programming Pendant... 4-15
 - Using an External Input Signal (System Input)... 4-15
- Emergency Stop... 4-16
 - Restart After Emergency Stop... 4-17
- Stop by Alarm... 4-18
- Others... 4-19
 - Temporary Stop by Mode Change... 4-19
 - Temporary Stop by the PAUSE Instruction... 4-19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Modifying Play Speed</td>
<td>4-20</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Speed Override</td>
<td>4-20</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Setting Speed Overrides</td>
<td>4-21</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Modifying Play Speed</td>
<td>4-22</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>Canceling Speed Override Settings</td>
<td>4-22</td>
</tr>
<tr>
<td>4.5</td>
<td>Playback with Reserved Start</td>
<td>4-23</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Preparation for Reserved Start</td>
<td>4-23</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>Enabling Reserved Start</td>
<td>4-24</td>
</tr>
<tr>
<td>4.5.1.2</td>
<td>Registering Reserved Start I/O Signal</td>
<td>4-26</td>
</tr>
<tr>
<td>4.5.1.3</td>
<td>Registering Jobs to Stations</td>
<td>4-28</td>
</tr>
<tr>
<td>4.5.1.4</td>
<td>Deleting Registered Jobs from Stations</td>
<td>4-30</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Playback from Reserved Start</td>
<td>4-31</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Start Operation</td>
<td>4-31</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Checking Job Reservation Status</td>
<td>4-32</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Resetting Job Reservation</td>
<td>4-33</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Hold Operation</td>
<td>4-34</td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>[HOLD] on the Programming Pendant</td>
<td>4-34</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>Hold by External Input Signal (System Input)</td>
<td>4-34</td>
</tr>
<tr>
<td>4.5.3.3</td>
<td>Hold at the Station</td>
<td>4-35</td>
</tr>
<tr>
<td>4.6</td>
<td>Displaying Job Stack</td>
<td>4-36</td>
</tr>
<tr>
<td>5</td>
<td>Editing Jobs</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Copying Jobs</td>
<td>5-2</td>
</tr>
<tr>
<td>5.1.0.1</td>
<td>Copying Jobs on the JOB CONTENT Window</td>
<td>5-2</td>
</tr>
<tr>
<td>5.1.0.2</td>
<td>Copying Jobs on the JOB LIST Window</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Deleting Jobs</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.0.1</td>
<td>Deleting Jobs on the JOB CONTENT Window</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.0.2</td>
<td>Deleting Jobs on the JOB LIST Window</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3</td>
<td>Modifying Job Names</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.0.1</td>
<td>Modifying Job Names on the JOB CONTENT Window</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.0.2</td>
<td>Modifying Job Names on the JOB LIST Window</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4</td>
<td>Editing Comments</td>
<td>5-11</td>
</tr>
<tr>
<td>5.5</td>
<td>Setting Edit Lock on Individual Job Units</td>
<td>5-13</td>
</tr>
<tr>
<td>5.6</td>
<td>Enabling the Modification of Position Data Only</td>
<td>5-14</td>
</tr>
<tr>
<td>6</td>
<td>Convenient Functions</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1</td>
<td>One-touch Operation “Direct Open”</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2</td>
<td>Job Edit Function During Playback</td>
<td>6-3</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Function</td>
<td>6-3</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Job Edit During Playback</td>
<td>6-3</td>
<td></td>
</tr>
<tr>
<td>6.2.2.1 Basic Operation</td>
<td>6-3</td>
<td></td>
</tr>
<tr>
<td>6.2.2.2 Editing</td>
<td>6-6</td>
<td></td>
</tr>
<tr>
<td>6.2.2.3 Editing Multiple Jobs</td>
<td>6-8</td>
<td></td>
</tr>
<tr>
<td>6.2.2.4 Canceling Write Request</td>
<td>6-11</td>
<td></td>
</tr>
<tr>
<td>6.3 Parallel Shift Function</td>
<td>6-13</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Function Overview</td>
<td>6-13</td>
<td></td>
</tr>
<tr>
<td>6.3.1.1 Parallel Shift of Step</td>
<td>6-14</td>
<td></td>
</tr>
<tr>
<td>6.3.1.2 Parallel Shift of Job</td>
<td>6-14</td>
<td></td>
</tr>
<tr>
<td>6.3.2 Setting the Shift Value</td>
<td>6-15</td>
<td></td>
</tr>
<tr>
<td>6.3.2.1 Coordinate Systems</td>
<td>6-15</td>
<td></td>
</tr>
<tr>
<td>6.3.2.2 Setting the Shift Value</td>
<td>6-15</td>
<td></td>
</tr>
<tr>
<td>6.3.3 Registering Shift Instructions</td>
<td>6-17</td>
<td></td>
</tr>
<tr>
<td>6.3.3.1 SFTON Instruction</td>
<td>6-18</td>
<td></td>
</tr>
<tr>
<td>6.3.3.2 SFTOF Instruction</td>
<td>6-20</td>
<td></td>
</tr>
<tr>
<td>6.3.3.3 MSHIFT Instruction</td>
<td>6-21</td>
<td></td>
</tr>
<tr>
<td>6.3.4 Continuation of the Parallel Shift Function</td>
<td>6-23</td>
<td></td>
</tr>
<tr>
<td>6.3.5 Examples of Use</td>
<td>6-24</td>
<td></td>
</tr>
<tr>
<td>6.3.5.1 Example of Use of Shift Addition/Subtraction</td>
<td>6-24</td>
<td></td>
</tr>
<tr>
<td>6.3.5.2 Example of Use of MSHIFT Instruction</td>
<td>6-25</td>
<td></td>
</tr>
<tr>
<td>6.4 Parallel Shift Job Conversion Function</td>
<td>6-26</td>
<td></td>
</tr>
<tr>
<td>6.4.1 Function Overview</td>
<td>6-26</td>
<td></td>
</tr>
<tr>
<td>6.4.2 Coordinate Systems for Conversion</td>
<td>6-27</td>
<td></td>
</tr>
<tr>
<td>6.4.3 Executing the Parallel Shift Job Conversion</td>
<td>6-31</td>
<td></td>
</tr>
<tr>
<td>6.4.3.1 Window Display</td>
<td>6-31</td>
<td></td>
</tr>
<tr>
<td>6.4.3.2 Parallel Shift Job Conversion Operation</td>
<td>6-33</td>
<td></td>
</tr>
<tr>
<td>6.4.4 Specifying the Shift Value by Position Variables</td>
<td>6-39</td>
<td></td>
</tr>
<tr>
<td>6.4.4.1 Window Display</td>
<td>6-39</td>
<td></td>
</tr>
<tr>
<td>6.4.4.2 Jobs Targeted for Conversion</td>
<td>6-41</td>
<td></td>
</tr>
<tr>
<td>6.4.4.3 Conversion of Coordinated Jobs</td>
<td>6-42</td>
<td></td>
</tr>
<tr>
<td>6.4.4.4 Operation Procedure</td>
<td>6-45</td>
<td></td>
</tr>
<tr>
<td>6.5 PAM Function</td>
<td>6-47</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Function Overview</td>
<td>6-47</td>
<td></td>
</tr>
<tr>
<td>6.5.1.1 Input Ranges for Adjustment Data</td>
<td>6-47</td>
<td></td>
</tr>
<tr>
<td>6.5.2 Operating Methods</td>
<td>6-49</td>
<td></td>
</tr>
<tr>
<td>6.5.2.1 Setting Adjustment Data</td>
<td>6-49</td>
<td></td>
</tr>
<tr>
<td>6.5.2.2 Executing the Adjustment</td>
<td>6-51</td>
<td></td>
</tr>
<tr>
<td>6.6 Mirror Shift Function</td>
<td>6-55</td>
<td></td>
</tr>
<tr>
<td>6.6.1 Function Overview</td>
<td>6-55</td>
<td></td>
</tr>
</tbody>
</table>
6.6.2 Pulse Mirror-shift Function... 6-56
 6.6.2.1 Parameter Setting ... 6-56
 6.6.2.2 Object Job ... 6-56
 6.6.2.3 Group Axes Specification ... 6-56
 6.6.2.4 Position Variables ... 6-56

6.6.3 Robot-coordinates Mirror-shift Function .. 6-57
 6.6.3.1 Object Job ... 6-57
 6.6.3.2 Group Axes Specification ... 6-57
 6.6.3.3 Position Variables ... 6-57

6.6.4 User-coordinates Mirror-shift Function .. 6-58
 6.6.4.1 Object Job ... 6-58
 6.6.4.2 Group Axes Specification ... 6-58
 6.6.4.3 Position Variables ... 6-58

6.6.5 Notes on the Mirror Shift Function... 6-59

6.6.6 Operation Procedures... 6-60
 6.6.6.1 Calling Up the JOB CONTENT Window .. 6-60
 6.6.6.2 Mirror Shift Conversion ... 6-60
 6.6.6.3 Explanation of the Mirror Shift Window 6-61

6.7 Multi Window Function... 6-63
 6.7.1 Function Overview ... 6-63

6.7.2 Setting the Dividing Pattern of the General-Purpose Display Area 6-63
 6.7.2.1 Calling Up and Operating Methods of the Display Dividing Pattern Setting Window ... 6-64

6.7.3 Displaying the Multi Window... 6-68
 6.7.3.1 Multi Window Mode and Single Window Mode 6-68
 6.7.3.2 Displaying the Status of Plural (more than two) Window Dividing Pattern Setting ... 6-68
 6.7.3.3 Displaying of Active Window and Non-Active Window 6-69
 6.7.3.4 Limited Matters in Multi Window Mode .. 6-69

6.7.4 Operation of Multi Window... 6-70
 6.7.4.1 Switching of Multi Window Mode and Single Window Mode 6-70
 6.7.4.2 Switching of Active Window ... 6-72

6.7.5 Switching the Axis Operation Control Group 6-74
 6.7.5.1 S2C540 “Choosing Method of Notifying the Change of Axis Operation Control Group when Switching the Active Window” 6-74

6.8 Simple Menu Function ... 6-76
 6.8.1 Simple Menu.. 6-76

6.8.2 Registering the Layout Patters to User Definition Menu.................... 6-77
 6.8.2.1 Register with (REGIST) Button .. 6-77
 6.8.2.2 Register by Key Operation .. 6-78
 6.8.2.3 Conditions to Register the Layout .. 6-79
 6.8.2.4 The Displayed Layout Name .. 6-79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8.3</td>
<td>Calling Up of the Registered Layout</td>
<td>6-80</td>
</tr>
<tr>
<td>6.8.3.1</td>
<td>Calling up</td>
<td>6-80</td>
</tr>
<tr>
<td>6.8.3.2</td>
<td>Conditions when Calling Up the Layout</td>
<td>6-81</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Editing “USER DEFINITION” Menu</td>
<td>6-81</td>
</tr>
<tr>
<td>6.8.4.1</td>
<td>Displaying “UNSER DEFINITION” Window</td>
<td>6-81</td>
</tr>
<tr>
<td>6.8.4.2</td>
<td>Displaying “USER DEFINITION MENU” window Under Main Menu</td>
<td>6-82</td>
</tr>
<tr>
<td>6.8.4.3</td>
<td>Change the Name of Registered Layout Name</td>
<td>6-84</td>
</tr>
<tr>
<td>6.8.4.4</td>
<td>Deleting the Layout</td>
<td>6-86</td>
</tr>
<tr>
<td>6.8.4.5</td>
<td>Delete All Layout</td>
<td>6-88</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Save/Load (to external memory devices) the User Definition Menu Data</td>
<td>6-90</td>
</tr>
<tr>
<td>6.8.5.1</td>
<td>Saving the Data</td>
<td>6-90</td>
</tr>
<tr>
<td>6.8.5.2</td>
<td>Loading the Data</td>
<td>6-92</td>
</tr>
<tr>
<td>6.9</td>
<td>Parameter Setting Function</td>
<td>6-94</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Parameter Setting Function</td>
<td>6-94</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Teaching Condition Setting</td>
<td>6-96</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Operation Condition Setting</td>
<td>6-99</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Operate Enable Setting</td>
<td>6-102</td>
</tr>
<tr>
<td>6.9.5</td>
<td>Function Enable Setting</td>
<td>6-104</td>
</tr>
<tr>
<td>6.9.6</td>
<td>Jog Condition Setting</td>
<td>6-106</td>
</tr>
<tr>
<td>6.9.7</td>
<td>Playback Condition Setting</td>
<td>6-107</td>
</tr>
<tr>
<td>6.9.8</td>
<td>Functional Condition Setting</td>
<td>6-109</td>
</tr>
<tr>
<td>6.10</td>
<td>Jog Key Allocation</td>
<td>6-110</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Jog Key Allocation Function</td>
<td>6-110</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Jog Key Allocation Setting</td>
<td>6-111</td>
</tr>
<tr>
<td>6.10.2.1</td>
<td>Allocation of the Jog Key</td>
<td>6-111</td>
</tr>
<tr>
<td>6.10.2.2</td>
<td>Cancellation of Jog Key Allocation</td>
<td>6-113</td>
</tr>
<tr>
<td>6.10.2.3</td>
<td>Operating Method of Allocated External Axis</td>
<td>6-114</td>
</tr>
<tr>
<td>6.11</td>
<td>Energy-Saving Function</td>
<td>6-115</td>
</tr>
<tr>
<td>6.11.1</td>
<td>Energy-Saving Function</td>
<td>6-115</td>
</tr>
<tr>
<td>6.11.2</td>
<td>Energy-Saving Setting Method</td>
<td>6-116</td>
</tr>
<tr>
<td>6.11.2.1</td>
<td>Valid/Invalid of Energy-Saving Setting</td>
<td>6-116</td>
</tr>
<tr>
<td>6.11.2.2</td>
<td>Accumulated Energy-Saving Time Clearance</td>
<td>6-118</td>
</tr>
<tr>
<td>6.11.3</td>
<td>Energy-Saving Status Confirmation Method</td>
<td>6-120</td>
</tr>
<tr>
<td>6.11.3.1</td>
<td>Confirmation by the accumulated energy-saving time</td>
<td>6-120</td>
</tr>
<tr>
<td>6.11.3.2</td>
<td>Confirmation by System Signal Output</td>
<td>6-120</td>
</tr>
<tr>
<td>6.12</td>
<td>Instruction Displaying Color Setting Function</td>
<td>6-121</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Setting the Instruction Displaying Color on the Job Window</td>
<td>6-121</td>
</tr>
<tr>
<td>6.13</td>
<td>Present Manipulator Position Output Function</td>
<td>6-123</td>
</tr>
<tr>
<td>6.13.1</td>
<td>Outline</td>
<td>6-123</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>6.13.2</td>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>Softlimit Setting Function</td>
<td></td>
</tr>
<tr>
<td>6.14.1</td>
<td>About the Softlimit Setting Function</td>
<td></td>
</tr>
<tr>
<td>6.14.2</td>
<td>The Softlimit Setting Screen</td>
<td></td>
</tr>
<tr>
<td>6.14.3</td>
<td>Setting the Softlimit by Numerical Value Input</td>
<td></td>
</tr>
<tr>
<td>6.14.4</td>
<td>Set the Current Value to the Softlimit</td>
<td></td>
</tr>
<tr>
<td>6.14.5</td>
<td>Set the Softlimit (+) the Softlimit (−) to the Initial Maker Value</td>
<td></td>
</tr>
<tr>
<td>6.14.6</td>
<td>Change the Coordinate Display of the Softlimit (+) the Softlimit (−)</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>Analog Output Function Corresponding to Speed</td>
<td></td>
</tr>
<tr>
<td>6.15.1</td>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>6.15.2</td>
<td>Instructions</td>
<td></td>
</tr>
<tr>
<td>6.15.2.1</td>
<td>Instructions for Analog Output Function Corresponding to Speed</td>
<td></td>
</tr>
<tr>
<td>6.15.2.2</td>
<td>Registration of Instructions</td>
<td></td>
</tr>
<tr>
<td>6.15.2.3</td>
<td>Analog Output Display</td>
<td></td>
</tr>
<tr>
<td>6.15.3</td>
<td>Examples</td>
<td></td>
</tr>
<tr>
<td>6.15.3.1</td>
<td>Examples of Output Characteristics</td>
<td></td>
</tr>
<tr>
<td>6.15.3.2</td>
<td>Example of Variation of Operating Speed and Analog Output Value</td>
<td></td>
</tr>
<tr>
<td>6.15.4</td>
<td>Filter Process</td>
<td></td>
</tr>
<tr>
<td>6.15.4.1</td>
<td>When Parameter is Set to “0”</td>
<td></td>
</tr>
<tr>
<td>6.15.4.2</td>
<td>When Parameter is Set to Values Other Than “0”</td>
<td></td>
</tr>
<tr>
<td>6.15.4.3</td>
<td>Parameter Setting</td>
<td></td>
</tr>
<tr>
<td>6.15.5</td>
<td>Precautions</td>
<td></td>
</tr>
<tr>
<td>6.15.5.1</td>
<td>When Analog Output Corresponding to Speed is Interrupted</td>
<td></td>
</tr>
<tr>
<td>6.15.5.2</td>
<td>When More than One Manipulator is Used</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>External Memory Devices</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Memory Devices</td>
<td></td>
</tr>
<tr>
<td>7.1.1</td>
<td>Compact Flash (CF Cards)</td>
<td></td>
</tr>
<tr>
<td>7.1.1.1</td>
<td>Recommended Compact Flash Cards</td>
<td></td>
</tr>
<tr>
<td>7.1.1.2</td>
<td>Notes on handling Compact Flash</td>
<td></td>
</tr>
<tr>
<td>7.1.1.3</td>
<td>Inserting a Compact Flash</td>
<td></td>
</tr>
<tr>
<td>7.1.2</td>
<td>USB Memory Stick</td>
<td></td>
</tr>
<tr>
<td>7.1.2.1</td>
<td>Recommended USB Memory Stick</td>
<td></td>
</tr>
<tr>
<td>7.1.2.2</td>
<td>Notes on handling USB Memory Stick</td>
<td></td>
</tr>
<tr>
<td>7.1.2.3</td>
<td>Inserting a USB Memory Stick</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Handling Data</td>
<td></td>
</tr>
<tr>
<td>7.2.1</td>
<td>Data Classification</td>
<td></td>
</tr>
<tr>
<td>7.2.2</td>
<td>File Existence</td>
<td></td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Saving by Overwriting</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

7.3 Operation Flow

- 7.3.0.1 Operating a Folder ... 7-12
- 7.3.0.2 Saving Data .. 7-16
- 7.3.0.3 Loading Data ... 7-28
- 7.3.0.4 Verifying Data .. 7-38
- 7.3.0.5 Deleting Data ... 7-41
- 7.3.0.6 Job Selection Mode ... 7-43

8 Parameter

8.1 Parameter Configuration ... 8-1

8.2 Motion Speed Setting Parameters ... 8-2
- 8.2.0.1 S1CxG000: IN-GUARD SAFE OPERATION MAX. SPEED 8-2
- 8.2.0.2 S1CxG001: DRY-RUN SPEED .. 8-2
- 8.2.0.3 S1CxG002 to S1CxG009: JOINT SPEED FOR REGISTRATION ... 8-2
- 8.2.0.4 S1CxG010 to S1CxG017: LINEAR SPEED FOR REGISTRATION .. 8-3
- 8.2.0.5 S1CxG018 to S1CxG025: POSITION ANGLE SPEED 8-3
- 8.2.0.6 S1CxG026 to S1CxG029: JOG OPERATION ABSOLUTE VALUE SPEED 8-3
- 8.2.0.7 S1CxG030 to S1CxG032: INCHING MOVE AMOUNT 8-4
- 8.2.0.8 S1CxG033 to S1CxG040: POSITIONING ZONE 8-4
- 8.2.0.9 S1CxG044: LOW-SPEED START ... 8-6
- 8.2.0.10 S1CxG045 to S1CxG048: JOG OPERATION LINK SPEED 8-6
- 8.2.0.11 S1CxG056: WORK HOME POSITION RETURN SPEED 8-6
- 8.2.0.12 S1CxG057: SEARCH MAX. SPEED .. 8-6
- 8.2.0.13 S2C201: POSTURE CONTROL AT CARTESIAN OPERATION OF JOG ... 8-6
- 8.2.0.14 S2C202: OPERATION IN USER COORDINATE SYSTEM WHEN EXTERNAL REFERENCE POINT CONTROL FUNCTION USED) ... 8-6
- 8.2.0.15 S2C320: CONTROLLED GROUP JOB TEACHING POSITION CHANGE ... 8-7
- 8.2.0.16 S2C422: OPERATION AFTER RESET FROM PATH DEVIATION ... 8-7
- 8.2.0.17 S2C423: OPERATION AFTER JOB .. 8-7
- 8.2.0.18 S2C424: DEVIATED POSITION .. 8-8
- 8.2.0.19 S2C425: CIRCULAR INTERPOLATION TOOL POSITION CONTROL 8-9
- 8.2.0.20 S2C653: EMERGENCY STOP CURSOR ADVANCE CONTROL FUNCTION ... 8-9
- 8.2.0.21 S2C654: EMERGENCY STOP CURSOR ADVANCE CONTROL FUNCTION CONT PROCESS COMPLETION POSITION 8-10
- 8.2.0.22 S2C655: EMERGENCY STOP ADVANCE CONTROL FUNCTION WORK START INSTRUCTION STEP MOTION COMPLETION DELAY TIME .. 8-10
- 8.2.0.23 S2C698: BASE AXIS OPERATION KEY ALLOCATION SETTING ... 8-10
- 8.2.0.24 S3C1098 to S3C1102: POSITION CORRECTING FUNCTION DURING PLAYBACK ... 8-11

8.3 Mode Operation Setting Parameters ... 8-12
- 8.3.0.1 S2C195: SECURITY MODE WHEN CONTROL POWER SUPPLY IS TURNED ON ... 8-12
- 8.3.0.2 S2C196: SELECTION OF CARTESIAN/CYLINDRICAL 8-12
8.3.0.3 S2C197: COORDINATE SWITCHING PROHIBITED .. 8-12
8.3.0.4 S2C198: EXECUTION UNITS AT "FORWARD" OPERATION 8-12
8.3.0.5 S2C199: INSTRUCTION (EXCEPT FOR MOVE) EXECUTION AT "FORWARD" OPERATION ... 8-13
8.3.0.6 S2C203: CHANGING STEP ONLY .. 8-13
8.3.0.7 S2C204: MANUAL SPEED STORING FOR EACH COORDINATE 8-13
8.3.0.8 S2C206: ADDITIONAL STEP POSITION ... 8-13
8.3.0.9 S2C207: MASTER JOB CHANGING OPERATION ... 8-14
8.3.0.10 S2C208: CHECK AND MACHINE-LOCK KEY OPERATIOIN IN PLAY MODE ... 8-14
8.3.0.11 S2C209: RESERVED WORK JOB CHANGING OPERATION 8-14
8.3.0.12 S2C210: MASTER OR SUBMASTER CALL OPERATION IN PLAY MODE ... 8-15
8.3.0.13 S2C211: LANGUAGE LEVEL ... 8-16
8.3.0.14 S2C214: INSTRUCTION INPUT LEARNING FUNCTION 8-16
8.3.0.15 S2C215: ADDRESS SETTING WHEN CONTROL POWER IS TURNED ON 8-16
8.3.0.16 S2C216: JOB LIST DISPLAY METHOD AT JOB SELECTION 8-16
8.3.0.17 S2C217: INITIAL OPERATION OF MANIPULATOR 8-17
8.3.0.18 S2C218: PLAYBACK EXECUTION AT CYCLE MODE “1-STEP” 8-17
8.3.0.19 S2C219: EXTERNAL START ... 8-17
8.3.0.20 S2C220: PROGRAMMING PENDANT START ... 8-18
8.3.0.21 S2C221: SPEED DATA INPUT FORM ... 8-18
8.3.0.22 S2C222: RESERVED START ... 8-18
8.3.0.23 S2C224: JOB SELECTION AT REMOTE FUNCTION (PLAY MODE) 8-18
8.3.0.24 S2C225: EXTERNAL MODE SWITCH .. 8-18
8.3.0.25 S2C227: EXTERNAL CYCLE SWITCHING .. 8-18
8.3.0.26 S2C228: PROGRAMMING PENDANT CYCLE SWITCHING 8-19
8.3.0.27 S2C229: SERVO ON FROM EXTERNAL PP PROHIBITION 8-19
8.3.0.28 S2C230: PROGRAMMING PENDANT OPERATION WHEN "IO" IS SELECTED FOR REMOTE MODE ... 8-19
8.3.0.29 S2C234: STEP REGISTRATION AT TOOL NO. CHANGE 8-20
8.3.0.30 S2C293: REMOTE FIRST CYCLE MODE ... 8-20
8.3.0.31 S2C294: LOCAL FIRST CYCLE MODE .. 8-20
8.3.0.32 S2C312: POWER ON FIRST CYCLE MODE ... 8-20
8.3.0.33 S2C313: TEACH MODE FIRST CYCLE MODE .. 8-21
8.3.0.34 S2C314: PLAY MODE FIRST CYCLE MODE ... 8-21
8.3.0.35 S2C316: START CONDITION AFTER ALARM-4107 (“OUT OF RANGE (ABSO DATA)”) .. 8-21
8.3.0.36 S2C395: SIGNAL NAME ALIAS FUNCTION ... 8-22
8.3.0.37 S2C396: VARIABLE NAME ALIAS FUNCTION .. 8-23
8.3.0.38 S2C397: I/O VARIABLE CUSTOMIZE FUNCTION 8-24
8.3.0.39 S2C410: WORD REGISTRATION FUNCTION / WORD EDITING FUNCTION SPECIFICATION ... 8-25
8.3.0.40 S2C413: JOB UNDELETE FUNCTION .. 8-25
8.3.0.41 S2C415 to S2C419: TIME RESET ... 8-27
8.3.0.42 S2C431: TOOL NO. SWITCHING ... 8-28
8.3.0.43 S2C433: POSITION TEACHING BUZZER .. 8-28
8.3.0.44 S2C434: JOB LINKING DESIGNATION (When Twin Synchronous Function Used) ... 8-28
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.0.45</td>
<td>S2C437: PLAYBACK OPERATION CONTINUATION FUNCTION</td>
<td>8-29</td>
</tr>
<tr>
<td>8.3.0.46</td>
<td>S2C544: I/O NAME DISPLAY FUNCTION FOR JOB</td>
<td>8-30</td>
</tr>
<tr>
<td>8.3.0.47</td>
<td>S2C684: ALL AXES ANGLE DISPLAY FUNCTION</td>
<td>8-30</td>
</tr>
<tr>
<td>8.3.0.48</td>
<td>S2C713: CONTROL POINT OPERATION SETTING ON THE SERVO TRACK</td>
<td>8-31</td>
</tr>
<tr>
<td>8.4</td>
<td>Parameters According to Interference Area</td>
<td>8-32</td>
</tr>
<tr>
<td>8.4.0.1</td>
<td>S1CxG400 to S1CxG415: PULSE SOFT LIMIT</td>
<td>8-32</td>
</tr>
<tr>
<td>8.4.0.2</td>
<td>S2C001: CUBE SOFT LIMIT CHECK</td>
<td>8-32</td>
</tr>
<tr>
<td>8.4.0.3</td>
<td>S2C002: S-AXIS INTERFERENCE CHECK</td>
<td>8-34</td>
</tr>
<tr>
<td>8.4.0.4</td>
<td>S2C003 to S2C066: CUBE/AXIS INTERFERENCE CHECK</td>
<td>8-35</td>
</tr>
<tr>
<td>8.4.0.5</td>
<td>S2C067 to S2C194: CUBE USING METHOD</td>
<td>8-37</td>
</tr>
<tr>
<td>8.4.0.6</td>
<td>S3C000 to S3C047: CUBE SOFT LIMIT</td>
<td>8-39</td>
</tr>
<tr>
<td>8.4.0.7</td>
<td>S3C048 to S3C063: S-AXIS INTERFERENCE AREA</td>
<td>8-39</td>
</tr>
<tr>
<td>8.4.0.8</td>
<td>S3C064 to S3C1087: CUBIC INTERFERENCE AREA</td>
<td>8-39</td>
</tr>
<tr>
<td>8.4.0.9</td>
<td>S3C1089 to S3C1096: ROBOT INTERFERENCE AREA</td>
<td>8-39</td>
</tr>
<tr>
<td>8.4.0.10</td>
<td>S3C1097: A SIDE LENGTH OF WORK-HOME-POSITION CUBE</td>
<td>8-39</td>
</tr>
<tr>
<td>8.5</td>
<td>Parameters according to Status I/O</td>
<td>8-40</td>
</tr>
<tr>
<td>8.5.0.1</td>
<td>S2C235: USER OUTPUT RELAY WHEN CONTROL POWER IS ON</td>
<td>8-40</td>
</tr>
<tr>
<td>8.5.0.2</td>
<td>S4C000 to S4C015: PARITY OF USER INPUT GROUPS</td>
<td>8-40</td>
</tr>
<tr>
<td>8.5.0.3</td>
<td>S4C016 to S4C031: PARITY OF USER OUTPUT GROUPS</td>
<td>8-41</td>
</tr>
<tr>
<td>8.5.0.4</td>
<td>S4C032 to S4C047: DATA OF USER INPUT GROUPS</td>
<td>8-42</td>
</tr>
<tr>
<td>8.5.0.5</td>
<td>S4C048 to S4C063: DATA OF USER OUTPUT GROUPS</td>
<td>8-43</td>
</tr>
<tr>
<td>8.5.0.6</td>
<td>S4C064 to S4C079: USER OUTPUT GROUP TO BE INITIALIZED AT SWITCHING MODE</td>
<td>8-44</td>
</tr>
<tr>
<td>8.5.0.7</td>
<td>S4C240: USER OUTPUT NO. WHEN MANIPULATOR DROP ALLOWABLE RANGE ERROR OCCURS</td>
<td>8-44</td>
</tr>
<tr>
<td>8.6</td>
<td>Parameters according to Coordinated or Synchronized Operation</td>
<td>8-45</td>
</tr>
<tr>
<td>8.6.0.1</td>
<td>S2C212: +MOV or +SMOV INSTRUCTION SPEED INPUT</td>
<td>8-45</td>
</tr>
<tr>
<td>8.6.0.2</td>
<td>S2C213: +MOV INSTRUCTION INTERPOLATION INPUT</td>
<td>8-45</td>
</tr>
<tr>
<td>8.6.0.3</td>
<td>S2C231: OPERATION METHOD AT FWD/BWD OPERATION OR TEST RUN BY INDEPENDENT CONTROL</td>
<td>8-45</td>
</tr>
<tr>
<td>8.6.0.4</td>
<td>S2C232: JOB AT CALLING MASTER OF SUBTASK BY INDEPENDENT CONTROL</td>
<td>8-46</td>
</tr>
<tr>
<td>8.6.0.5</td>
<td>S2C264: STATION AXIS CURRENT VALUE DISPLAY FUNCTION</td>
<td>8-46</td>
</tr>
<tr>
<td>8.6.0.6</td>
<td>S2C265 to S2C288: STATION AXIS DISPLAYED UNIT</td>
<td>8-46</td>
</tr>
<tr>
<td>8.6.0.7</td>
<td>S2C420: POSTURE CONTROL OF SYNCHRONIZED MANIPULATOR (When Twin Synchronous Function Used)</td>
<td>8-47</td>
</tr>
<tr>
<td>8.6.0.8</td>
<td>S2C421: POSTURE CONTROL OF MANIPULATOR IN MULTI-JOB</td>
<td>8-47</td>
</tr>
<tr>
<td>8.6.0.9</td>
<td>S2C687: OPERATION OF JOB WITHOUT CONTROL GROUP SPECIFICATION</td>
<td>8-48</td>
</tr>
<tr>
<td>8.6.10</td>
<td>S2C688: EXECUTION OF “BWD” OPERATION</td>
<td>8-48</td>
</tr>
<tr>
<td>8.6.11</td>
<td>S3C1101: MAXIMUM DEVIATION ANGLE OF CURRENT STATION POSITION</td>
<td>8-48</td>
</tr>
<tr>
<td>8.7</td>
<td>Parameters for Other Functions or Applications</td>
<td>8-49</td>
</tr>
<tr>
<td>8.7.0.1</td>
<td>S1CxG049 to S1CxG051: SMALL CIRCLE CUTTING</td>
<td>8-49</td>
</tr>
<tr>
<td>8.7.0.2</td>
<td>S1CxG052 to S1CxG053: SMALL CIRCLE CUTTING DIRECTION LIMIT VALUE</td>
<td>8-49</td>
</tr>
</tbody>
</table>
8.7.0.3 S1CxG054 to S1CxG055: SMALL CIRCLE CUTTING OVERLAP VALUE ... 8-49
8.7.0.4 S1CxG063, S1CxG064: PATTERN CUTTING DIMENSION 8-49
8.7.0.5 S1CxG065: MIRROR SHIFT SIGN INVERSION .. 8-49
8.7.0.6 S2C430: RELATIVE JOB OPERATION METHOD 8-49
8.7.0.7 S3C1111 to S3C1190: ANALOG OUTPUT FILTER CONSTANT (When analog output corresponding to speed function is used) 8-50
8.7.0.8 S3C1191: CUT WIDTH CORRECTION VALUE (When form cutting function is used) .. 8-50

8.8 Hardware Control Parameters .. 8-51
8.8.0.1 S2C646: ANTICIPATOR FUNCTION .. 8-51
8.8.0.2 S4C327 to S4C390: SETTING OF OPERATING RELAY NO 8-52
8.8.0.3 S4C391 to S4C454: OPERATING METHOD OF RELAYS 8-52
8.8.0.4 S2C786 to S2C788: COOLING FAN ALARM DETECTION 8-52
8.8.0.5 S2C789 to S2C792: COOLING FAN ALARM 1 OPERATION 8-53
8.8.0.6 S2C793 to S2C796: COOLING FAN ALARM 2 OPERATION 8-53
8.8.0.7 S2C797 to S2C800: COOLING FAN ALARM 3 OPERATION 8-53
8.8.0.8 S2C801 to S2C804: FAN ALARM 1 POWER SOURCE STATUS 8-53
8.8.0.9 S2C805 to S2C808: FAN ALARM 2 POWER SOURCE STATUS 8-53
8.8.0.10 S2C809 to S2C812: FAN ALARM 3 POWER SOURCE STATUS 8-54

8.9 TRANSMISSION PARAMETERS ... 8-55

8.10 Application Parameters ... 8-55
8.10.1 Arc Welding ... 8-55
8.10.1.1 AxP000: APPLICATION .. 8-55
8.10.1.2 AxP003: WELDING ASSIGNMENT OF WELDING START CONDITION FILE .. 8-55
8.10.1.3 AxP004: WELDING ASSIGNMENT OF WELDING END CONDITION FILES .. 8-55
8.10.1.4 AxP005: WELDING SPEED PRIORITY ... 8-55
8.10.1.5 AxP009: WORK CONTINUING ... 8-55
8.10.1.6 AxP010: WELDING INSTRUCTION OUTPUT 8-56
8.10.1.7 AxP011, AxP012: MANUAL WIRE OPERATION SPEED 8-56
8.10.1.8 AxP013, AxP014: WELDING CONTROL TIME 8-56
8.10.1.9 AxP015 to AxP017: NUMBER OF WELDING CONTROL 8-56
8.10.1.10 AxP026 to AxP029: TOOL ON/OFF USER OUTPUT NO. (Jigless system) .. 8-56

8.10.2 Handling Application .. 8-56
8.10.2.1 AxP002, AxP004: f1 KEY FUNCTION .. 8-56
8.10.2.2 AxP003, AxP005: f2 KEY FUNCTION .. 8-56

8.10.3 Spot Welding ... 8-56
8.10.3.1 AxP003: MAXIMUM NUMBER OF CONNECTED POWER SOURCES .. 8-56
8.10.3.2 AxP004: GUN FULL OPEN STROKE ON/OFF SIGNAL 8-57
8.10.3.3 AxP005: STROKE CHANGE ANSWER TIME LIMIT 8-57
8.10.3.4 AxP006: PARITY SPECIFICATION FOR WELDING CONDITIONS 8-57
8.10.3.5 AxP007: ANTICIPATE TIME ... 8-57
8.10.3.6 AxP015: WELDING ERROR RESET OUTPUT TIME 8-57
Table of Contents

8.10.3.7 AxP016, AxP017: ELECTRODE WEAR AMOUNT ALARM VALUE... 8-57
8.10.4 General-purpose Application... 8-58
 8.10.4.1 AxP009: WORK CONTINUE PROHIBIT...................................... 8-58
9 Spot Welding Application Using a Motor Gun... 9-1
 9.1 System Overview... 9-1
 9.2 Function Keys.. 9-3
 9.2.1 Switching of the Function Key... 9-5
 9.2.1.1 Two-Robot System.. 9-5
 9.2.1.2 Single-Robot System... 9-6
 9.3 Before Teaching .. 9-8
 9.3.1 Manual Welding... 9-8
 9.3.2 Manual Dry Spotting... 9-8
 9.3.3 Open/Close of a Motor Gun... 9-9
 9.3.4 Mounting Electrodes.. 9-10
 9.3.5 Registering the Operation Tool... 9-10
 9.3.5.1 When Using a Single Gun... 9-10
 9.3.5.2 When Using a Double Gun.. 9-11
 9.3.6 Teaching... 9-12
 9.3.6.1 Preparing a Pressure Instruction Job... 9-12
 9.3.6.2 Registering Steps... 9-13
 9.3.6.3 Registering the SVSPOT Instruction.. 9-14
 9.4 Setting Welding Conditions.. 9-15
 9.4.1 Setting of MANUAL SPOT Window... 9-15
 9.4.2 Pressure Setting.. 9-17
 9.4.3 Welding Current and Welding Time Settings..................................... 9-20
 9.5 Playback (Motor Gun)... 9-21
 9.5.1 Check Run... 9-21
 9.5.2 Actual Welding... 9-21
 9.6 Dry Spotting (Motor Gun)... 9-22
 9.6.1 SVGUNCL (Dry Spotting Motion) Instruction................................. 9-22
 9.6.2 Dry Spotting Pressure Setting... 9-22
 9.7 Electrode Wear Detection and Wear Compensation.............................. 9-26
 9.7.1 Wear Detection and Wear Compensation Operation Flow Chart........ 9-26
 9.7.2 Wear Detection.. 9-27
 9.7.2.1 Dry Spotting Touch Motion... 9-27
 9.7.2.2 Sensor Detection... 9-27
 9.7.2.3 Example of Wear Detection.. 9-28
9.7.3 SPOT WELD DIAGNOSIS..9-29
9.7.4 Wear Compensation..9-32
9.7.5 Teaching Positions with a Worn Electrode ...9-33
 9.7.5.1 Teaching Example..9-33
 9.7.5.2 Parameters...9-33
9.7.6 Wear Amount Loading...9-34
9.8 Other Functions Using a Motor Gun ..9-35
 9.8.1 Motor Gun Stroke ...9-35
 9.8.1.1 Registering the Full-open/Short-open Position ...9-35
 9.8.1.2 Registering the current position ..9-36
 9.8.1.3 Registering by entering a numerical value ..9-36
 9.8.1.4 Moving to Full-open/Short-open Position ...9-37
 9.8.1.5 Moving to Full-open/Short-open Position While Other Window is Displayed 9-37
9.8.2 Gun Change ..9-38
 9.8.2.1 Gun Change Instruction ...9-38
 9.8.2.2 Signal Status to Execute a GUNCHG Instruction ..9-38
 9.8.2.3 Gun Change Job ...9-40
 9.8.2.4 Gun Changing Timing ..9-42
9.8.3 Electrode Touch Position Teaching Function ..9-43
 9.8.3.1 Setting the Workpiece Thickness ..9-43
 9.8.3.2 Registering and Confirming Positions by Touch Motion Teaching9-46
9.8.4 Forced Gun-pressurizing Function...9-47
 9.8.4.1 Setting an Input Signal Number ...9-47
9.8.5 Electrode Wear Compensation for Fixed Gun ..9-49
 9.8.5.1 Setting the User Coordinates ...9-49
 9.8.5.2 Parameters...9-50
 9.8.5.3 Example of Wear Compensation ..9-51
9.8.6 Clearance Teaching Function ...9-52
 9.8.6.1 Operation Flow Chart ...9-52
 9.8.6.2 Setting the Teaching Type ...9-53
 9.8.6.3 Setting the Clearance Files ...9-55
 9.8.6.4 Operations for Teaching Welding Points ...9-57
 9.8.6.5 Move Instruction for Clearance ...9-58
 9.8.6.6 Moving for Clearance ...9-59
9.8.7 Teaching with Gun Pressure ..9-61
 9.8.7.1 Operation Flow Chart ...9-61
 9.8.7.2 Procedure for Registering the Position ..9-62
 9.8.7.3 Setting the Pressure Conditions ...9-62
9.8.8 Gun Pressure Compensation Function...9-63
 9.8.8.1 Operation Flow Chart ...9-63
 9.8.8.2 Overview ..9-64
 9.8.8.3 Setting the Pressure Compensation Value ...9-67
9.8.9 Workpiece Transfer Function Using a Motor Gun.. 9-69
 9.8.9.1 Operation Flow Chart .. 9-69
 9.8.9.2 Setting the Conditions for Grasping/Releasing Workpieces........... 9-70
 9.8.9.3 Instruction for Grasping/Releasing Workpieces 9-72
 9.8.9.4 Manual Operation for Grasping/Releasing Workpieces 9-75
9.8.10 Individual Reset Function for Wear Amount....................................... 9-76
 9.8.10.1 Operation Flow Chart .. 9-76
 9.8.10.2 Procedure for Signal Assignment .. 9-76
9.8.11 Welding Conditions Group Output Function .. 9-78
 9.8.11.1 Operation Flow Chart .. 9-78
 9.8.11.2 Procedure for Assigning the Group Output Relay 9-78
 9.8.11.3 Setting the Group Output Tag ... 9-80
 9.8.11.4 Group Output .. 9-82
9.8.12 Compensation of Gun Arm Bend for C-Gun and X-Gun (SINGLE ARM MOTION) ... 9-83
 9.8.12.1 Setting the Gun Bend Compensation Coefficient 9-83
 9.8.12.2 Compensation Example ... 9-84
9.8.13 Gun Stroke Setting for Welding Start ... 9-85
 9.8.13.1 Setting the Gun Stroke Position .. 9-85
 9.8.13.2 Setting the Gun Stroke Motion Speed ... 9-86
 9.8.13.3 Motion Example .. 9-87
9.8.14 Setting the Gun Pushing Coefficient ... 9-87
 9.8.14.1 Setting of gun pushing coefficient .. 9-88
 9.8.14.2 Calculation of Gun Pushing Coefficient ... 9-89
9.8.15 Tip Mounting Control Function ... 9-90
 9.8.15.1 Tip Mounting Error Detection Flow Chart 9-91
 9.8.15.2 Tip Installation .. 9-92
 9.8.15.3 Tip Mounting Error Detection ... 9-94
 9.8.15.4 Job Examples ... 9-95
 9.8.15.5 Monitoring tip Mounting Errors ... 9-96
9.8.16 Workpiece Thickness Detection Function .. 9-97
 9.8.16.1 Outline ... 9-97
 9.8.16.2 Instruction .. 9-98
 9.8.16.3 Operational Procedure .. 9-100
 9.8.16.4 Related Functions ... 9-108
 9.8.16.5 Notes ... 9-110
9.9 I/O Signals for a Motor Gun ... 9-111
 9.9.1 I/O Allocation .. 9-111
 9.9.1.1 INPUT ALLOCATION Window .. 9-111
 9.9.1.2 OUTPUT ALLOCATION Window .. 9-113
 9.9.1.3 PSEUDO INPUT SIGNAL Window ... 9-115
 9.9.2 Allocated Signals .. 9-116
9.10 System Setting ... 9-118
Table of Contents

9.10.1 Gun Condition File ... 9-118
 9.10.1.1 Entering Pulse to Stroke Conversion Data 9-123
 9.10.1.2 Entering Torque to Pressure Conversion Data 9-123

9.10.2 Power Source Condition File .. 9-124

9.10.3 Clearing Reference Position Pulse for Wear Detection 9-128

9.10.4 Setting the Software Limit Value ... 9-130

9.10.5 Setting the Lost-electrode Detection Value 9-131

9.11 Instruction List .. 9-132

10 Arc Welding Application .. 10-1
 10.1 System Structure Example of Arc Welding System 10-1
 10.2 General Descriptions of Instructions and Functions 10-2
 10.2.1 Setup .. 10-2
 10.2.2 Teaching Operation ... 10-2
 10.2.3 Playback ... 10-4
 10.2.4 Production (Automatic Operation) 10-4

10.3 Function Keys .. 10-5
 10.3.1 Switching of the Function Key .. 10-7
 10.3.1.1 Two-Robot System ... 10-7
 10.3.1.2 Single-Robot System ... 10-8
 10.3.2 Wire Inching Function .. 10-10
 10.3.3 Gas Flow Control Function ... 10-10

10.4 Power Source Condition File .. 10-11
 10.4.1 About Power Source Condition File 10-11
 10.4.2 Specifying Welding Voltage when Synergic Power Supply is Used 10-12
 10.4.3 POWER SOURCE CONDITION File 10-14
 10.4.3.1 POWER SOURCE CONDITION Window 10-14
 10.4.3.2 POWER SOURCE CONDITION Window for Current/Voltage Output 10-15
 10.4.4 Editing the Power Source Condition Files 10-16
 10.4.4.1 Displaying a Power Source Condition File 10-16
 10.4.4.2 Reading a Power Source Condition File 10-16
 10.4.4.3 Editing a Power Source Condition File 10-18
 10.4.4.4 Editing a Power Source Condition File for Current/Voltage Output ... 10-19
 10.4.4.5 Registering the Power Source Condition File Data 10-20

10.5 Basic Functions .. 10-22
 10.5.1 ARCON .. 10-22
 10.5.1.1 Function .. 10-22
 10.5.1.2 Syntax ... 10-22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5.1.3</td>
<td>Explanation</td>
<td>10-23</td>
</tr>
<tr>
<td>10.5.1.4</td>
<td>Registering the ARCON Instruction</td>
<td>10-25</td>
</tr>
<tr>
<td>10.5.1.5</td>
<td>Setting Welding Start Conditions</td>
<td>10-25</td>
</tr>
<tr>
<td>10.5.2</td>
<td>ARCOF</td>
<td>10-34</td>
</tr>
<tr>
<td>10.5.2.1</td>
<td>Function</td>
<td>10-34</td>
</tr>
<tr>
<td>10.5.2.2</td>
<td>Syntax</td>
<td>10-34</td>
</tr>
<tr>
<td>10.5.2.3</td>
<td>Explanation</td>
<td>10-35</td>
</tr>
<tr>
<td>10.5.2.4</td>
<td>Registering the ARCOF Instruction</td>
<td>10-37</td>
</tr>
<tr>
<td>10.5.2.5</td>
<td>Setting Arc Welding End Conditions (Crater Processing)</td>
<td>10-38</td>
</tr>
<tr>
<td>10.5.3</td>
<td>ARCSET</td>
<td>10-47</td>
</tr>
<tr>
<td>10.5.3.1</td>
<td>Function</td>
<td>10-47</td>
</tr>
<tr>
<td>10.5.3.2</td>
<td>Syntax</td>
<td>10-47</td>
</tr>
<tr>
<td>10.5.3.3</td>
<td>Explanation</td>
<td>10-48</td>
</tr>
<tr>
<td>10.5.3.4</td>
<td>Registering the ARCSET Instruction</td>
<td>10-50</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Arc Start Condition File</td>
<td>10-56</td>
</tr>
<tr>
<td>10.5.4.1</td>
<td>Displayed File Numbers</td>
<td>10-56</td>
</tr>
<tr>
<td>10.5.4.2</td>
<td>Tabs</td>
<td>10-56</td>
</tr>
<tr>
<td>10.5.4.3</td>
<td>Comment</td>
<td>10-61</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Arc End Condition File</td>
<td>10-63</td>
</tr>
<tr>
<td>10.5.5.1</td>
<td>Displayed File Numbers</td>
<td>10-63</td>
</tr>
<tr>
<td>10.5.5.2</td>
<td>Tabs</td>
<td>10-63</td>
</tr>
<tr>
<td>10.5.5.3</td>
<td>Comment</td>
<td>10-68</td>
</tr>
<tr>
<td>10.5.6</td>
<td>Welding Speed Specifications</td>
<td>10-70</td>
</tr>
<tr>
<td>10.5.7</td>
<td>Welding Execution Function During Teach Mode</td>
<td>10-71</td>
</tr>
<tr>
<td>10.5.8</td>
<td>Notes on Arc Welding</td>
<td>10-72</td>
</tr>
<tr>
<td>10.5.8.1</td>
<td>Notes on Restarting</td>
<td>10-72</td>
</tr>
<tr>
<td>10.6</td>
<td>Arc Retry Function</td>
<td>10-73</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Arc Retry Function Setting</td>
<td>10-74</td>
</tr>
<tr>
<td>10.7</td>
<td>Arc Restart Function</td>
<td>10-75</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Arc Auxiliary Condition File</td>
<td>10-77</td>
</tr>
<tr>
<td>10.7.1.1</td>
<td>Arc Restart Function Setting</td>
<td>10-77</td>
</tr>
<tr>
<td>10.8</td>
<td>Automatic Wire-stick Release Function</td>
<td>10-79</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Arc Auxiliary Condition File</td>
<td>10-80</td>
</tr>
<tr>
<td>10.8.1.1</td>
<td>Automatic Wire Anti-stick Function Setting</td>
<td>10-80</td>
</tr>
<tr>
<td>10.9</td>
<td>Wire-stick Check Function</td>
<td>10-81</td>
</tr>
<tr>
<td>10.10</td>
<td>Slope Up/Down Function</td>
<td>10-82</td>
</tr>
<tr>
<td>10.10.1</td>
<td>ARCCCTS</td>
<td>10-83</td>
</tr>
<tr>
<td>10.10.1.1</td>
<td>Function</td>
<td>10-83</td>
</tr>
<tr>
<td>10.10.1.2</td>
<td>Syntax</td>
<td>10-83</td>
</tr>
<tr>
<td>10.10.1.3</td>
<td>Explanation</td>
<td>10-84</td>
</tr>
<tr>
<td>10.10.1.4</td>
<td>Registering the ARCCCTS Instruction</td>
<td>10-87</td>
</tr>
</tbody>
</table>
10.10.2 ARCCTE... 10-90
 10.10.2.1 Function... 10-90
 10.10.2.2 Syntax .. 10-90
 10.10.2.3 Explanation... 10-91
 10.10.2.4 Registering the ARCCTE Instruction.. 10-94

10.11 Enhanced Welding Condition File Function... 10-97
 10.11.1 Function Setting... 10-98

10.12 Weaving Condition File.. 10-100
 10.12.1 Weaving Basic Coordinate System .. 10-100
 10.12.1.1 Cases that Require the Registration of Reference Points 10-101
 10.12.2 WVON.. 10-102
 10.12.2.1 Function.. 10-102
 10.12.2.2 Syntax ... 10-102
 10.12.2.3 Explanation... 10-103
 10.12.2.4 Registering the WVON instruction.. 10-106
 10.12.3 WVOF Instruction... 10-108
 10.12.3.1 Function.. 10-108
 10.12.3.2 Syntax ... 10-108
 10.12.3.3 Explanation... 10-109
 10.12.3.4 Registering WVOF instruction.. 10-110
 10.12.4 WEAVING CONDITION Window... 10-111
 10.12.4.1 Displaying a Weaving File... 10-116
 10.12.4.2 Editing the Condition Data... 10-117
 10.12.5 Prohibiting Weaving... 10-118
 10.12.5.1 Method to Prohibit Weaving During a “CHECK” operation.................. 10-118
 10.12.5.2 Method to Prohibit Weaving During the “TEST RUN” or FWD Operation.. 10-119
 10.12.5.3 Method to Prohibit Weaving by Means of a System Input Signal.. 10-119

10.13 Changing Welding Conditions During Playback.. 10-120
 10.13.1 ARC COND ADJUSTMENT Window... 10-120
 10.13.1.1 Displaying the ARC COND ADJUSTMENT Window...................... 10-121
 10.13.2 Notes on Modification of Welding Conditions.. 10-123
 10.13.2.1 When Condition Data cannot be Modified... 10-123
 10.13.2.2 ARCON Instruction... 10-124
 10.13.2.3 ARCOF Instruction... 10-124
 10.13.2.4 ARCCTS and ARCCTE Instructions.. 10-124

10.14 Displaying Welding Alarm History.. 10-125
 10.14.1 Alarm History Windows.. 10-125

10.15 Arc Welding Management and Maintenance... 10-127
 10.15.1 ARC WELD DIAGNOSIS Window.. 10-127
 10.15.2 Editing the ARC WELD DIAGNOSIS Window... 10-128
10.16 Arc Monitor Function.. 10-130
 10.16.1 Hardware Specification... 10-131
 10.16.1.1 Signal Specifications of JANCD-YEW02 Board
 (Analog Input/Output) .. 10-131
 10.16.1.2 Connection .. 10-131
 10.16.2 Arc Monitor (Sampling) Window .. 10-131
 10.16.3 ARCMONON ... 10-132
 10.16.3.1 Function .. 10-132
 10.16.3.2 Syntax .. 10-132
 10.16.3.3 Explanation ... 10-132
 10.16.4 ARCMONOF ... 10-133
 10.16.4.1 Function .. 10-133
 10.16.4.2 Syntax .. 10-133
 10.16.4.3 Explanation ... 10-133
 10.16.5 GETFILE ... 10-134
 10.16.5.1 Function .. 10-134
 10.16.5.2 Syntax .. 10-134
 10.16.5.3 Explanation ... 10-135
 10.16.5.4 Registering the GETFILE instruction ... 10-136
 10.16.5.5 File Data and Element Number ... 10-137
 10.16.6 Arc Monitor File .. 10-138
 10.16.6.1 Function .. 10-138
 10.16.6.2 Arc Monitor File ... 10-138
 10.16.6.3 Displaying the File .. 10-139
 10.16.7 Parameter ... 10-141
 10.17 Appendix 1 ... 10-143
 10.17.1 Table of Work Instructions ... 10-143
 10.18 Appendix 2 ... 10-146
 10.18.1 Power Source Condition File Initial Value .. 10-146
 10.18.2 Contents of 24 Welder Condition Files .. 10-147

11 Table of Basic Instructions ... 11-1
 11.1 Move Instructions .. 11-1
 11.2 I/O Instructions .. 11-4
 11.3 Control Instructions ... 11-6
 11.4 Shift Instructions .. 11-8
 11.5 Operating Instructions ... 11-9
1 Introduction

1.1 DX100 Overview

The main power switch and the door lock are located on the front of the DX100 controller. The emergency stop button is installed in the upper right corner of the cabinet door and the programming pendant hangs from a hook below the button.

For information on setup, installation, and connection of the DX100 system, refer to the “DX100 INSTRUCTIONS”.

Fig. 1-1: DX100 Front View
1.2 Programming Pendant

1.2.1 Programming Pendant Overview

The programming pendant is equipped with the keys and buttons used to conduct manipulator teaching operations and to edit jobs.

Fig. 1-2: Programming Pendant Overview
1.2.2 Key Description

1.2.2.1 Character Keys

The keys which have characters printed on them are denoted with []. For example, [ENTER] is shown as [ENTER].

The Numeric keys have additional functions along with their number values. Dual function keys are used in the context of the operation being performed. For example: [1] may be described in the text as [1] or [TIMER].

1.2.2.2 Symbol Keys

The keys which have a symbol printed on them are not denoted with [] but depicted with a small picture, with the exception of the cursor key, which is not shown with a picture.

![Cursor]

![Emergency Stop button]

![Direct Open key]

![Page key]

1.2.2.3 Axis Keys and Numeric Keys

The keys pictured in the following are referred to as the axis keys and Numeric keys when described.

![Axis Keys]

![Numeric Keys]

1.2.2.4 Keys Pressed Simultaneously

When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them, such as [SHIFT]+[COORD].
1.2.3 Programming Pendant Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
</table>
| **[START]** | Starts the manipulator motion in playback operation.
 - The lamp on this button is lit during the playback operation.
 The lamp also lights when the playback operation is started by the system input START signal.
 The lamp turns OFF when the playback operation is stopped by alarm occurrence, HOLD signal, or mode change. |
| **[HOLD]** | Holds the manipulator motion.
 - This button is enabled in any mode.
 - The lamp on this button is lit only while the button is being pressed. Although the lamp turns OFF when the button is released, the manipulator stays stopped until a START command is input.
 - The HOLD lamp automatically lights in the following cases to indicate that the system is in HOLD status. The start and axis operations are disabled while the lamp is lit.
 1. The HOLD signal of system input is ON.
 2. The HOLD request is being sent from an external device in remote mode.
 3. In the HOLD status caused by an error occurred in working process such as wire sticking at arc welding. |
| E.STOP Button | Turns OFF the servo power.
 - When the servo power is turned OFF, the SERVO ON LED on the programming pendant will extinguish.
 - An emergency stop message is displayed on the screen. |
| **[MODE]** | Selects the Play mode, Teach mode, or Remote mode.
 - PLAY: Play Mode
 The playback of taught job is enabled.
 The START signal from an external device is disabled.
 - TEACH: Teach Mode
 The axis operation and edition from the programming pendant are enabled.
 The START signal from an external device is disabled.
 - REMOTE: Remote Mode
 The operation by external signals is enabled.
 [START] is invalid during the remote mode. |
Enable Switch

Turns ON the servo power.

When the Enable switch is lightly squeezed while the SERVO ON LED is blinking and the Mode Switch is set to “TEACH”, the power is turned ON. And when this switch is released or firmly squeezed while the power is turned ON, the power turns OFF.

[SELECT]

Works as described below.

- Selects menu items in the main menu area and the pull-down menu area.
- Makes the selected item ready to be set in the general-purpose display area.
- Displays multiple messages in the message area.

Cursor

Moves the cursor in the direction of the arrow.

- The size of the cursor and the range/place where the cursor can move will vary depending on the window.
- If the UP cursor button is pressed when the cursor is on the first line, the cursor will move to the last line of the job. Conversely, if the cursor is on the last line of the job and the DOWN cursor button is pressed, the cursor will jump to the first line of the job.

[SHIFT] + UP
Scrolls the screen upward.

[SHIFT] + DOWN
Scrolls the screen downward.

[SHIFT] + RIGHT
Scrolls the screen to the right.

[SHIFT] + LEFT
Scrolls the screen to the left.

[MAIN MENU]

Displays the main menu.

If this button is pressed while the main menu is displayed, the main menu disappears.

[MAIN MENU] + UP
Increases the brightness of the screen.

[MAIN MENU] + DOWN
Decreases the brightness of the screen.

[SIMPLE MENU]

Displays the simple menu.

If this button is pressed while the simple menu is displayed, the simple menu disappears.
1.2 Programming Pendant

[SERVO ON READY] Enables the servo power supply to be turned ON.
Press this button to enable the servo power supply to be turned ON if the servo power supply is shut OFF by the emergency stop or overrun signal.
When this button is pressed:
- In the play mode, the servo power supply is turned ON if the safeguarding is securely closed.
- In the teach mode, the SERVO ON lamp flashes and the servo power supply is turned ON when the Enable switch is ON.
- The SERVO ON lamp is lit while the servo power is ON.

[ASSIST] Displays the menu to assist the operation for the currently displayed window.
Pressing this button with [SHIFT] or [INTERLOCK] displays the help guidance for the operation.
- [SHIFT] + [ASSIST]
The function list of key combinations with [SHIFT] appears.
- [INTERLOCK] + [ASSIST]
The function list of key combinations with [INTERLOCK] appears.

[CANCEL] Cancels the current status.
- Deletes the sub menu in the main menu area and the pull-down menu area.
- Cancels the input data or the input status in the general-purpose display area.
- Cancels the multiple views in the message area.
- Cancels the occurred error.

[MULTI] Works for the multi mode.
If this button is pressed when the multi mode is ON, the active window switches.
- [SHIFT] + [MULTI]
Switches between the multi-window display and the single-window display when the multi mode is ON.

[COORD] Select the operation coordinate system when the manipulator is operated manually.
- Five coordinate systems (joint, cartesian, cylindrical, tool and user) can be used. Each time this key is pressed, the coordinate system is switched in the following order:
 "JOINT" → "WLD/CYL" → "TOOL" → "USER"
- The selected coordinate system is displayed on the status display area.
- [SHIFT] + [COORD]
The coordinate number can be changed when the "TOOL" or "USER" coordinate system is selected.
1.2 Programming Pendant

<table>
<thead>
<tr>
<th>Button</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DIRECT OPEN]</td>
<td>Displays the content related to the current line.</td>
</tr>
<tr>
<td></td>
<td>- To display the content of a CALL job or condition file, move the cursor to the next</td>
</tr>
<tr>
<td></td>
<td>line and press [DIRECT OPEN]. The file will be displayed for the selected line.</td>
</tr>
<tr>
<td></td>
<td>Display content will vary depending on the type of instruction used in the job.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>For a CALL instruction, the content of the called job will be displayed.</td>
</tr>
<tr>
<td></td>
<td>For a work instruction, the content of the condition file will be displayed.</td>
</tr>
<tr>
<td></td>
<td>For Input/output instructions, the input/output condition will be displayed.</td>
</tr>
<tr>
<td></td>
<td>- The lamp on this button is lit while the direct open is ON. Press this button</td>
</tr>
<tr>
<td></td>
<td>while the lamp is lit to return to the previous window.</td>
</tr>
<tr>
<td>[PAGE]</td>
<td>Displays the next page. The page can be switched only when the lamp on this button</td>
</tr>
<tr>
<td></td>
<td>is lit. [SHIFT] + [PAGE] Switches to the previous page.</td>
</tr>
<tr>
<td>[AREA]</td>
<td>Moves the cursor in the following order: Menu Area → General-Purpose Display Area →</td>
</tr>
<tr>
<td></td>
<td>Message Area → Main Menu Area. If no item is displayed, the cursor does not move.</td>
</tr>
<tr>
<td></td>
<td>[SHIFT] + [AREA] The language can be switched when the bilingual function is valid.</td>
</tr>
<tr>
<td></td>
<td>(Bilingual function is optional.) [AREA] + DOWN</td>
</tr>
<tr>
<td></td>
<td>Moves the cursor from the general-purpose display area to the operation button when</td>
</tr>
<tr>
<td></td>
<td>the operation button is displayed.</td>
</tr>
<tr>
<td></td>
<td>[AREA] + UP</td>
</tr>
<tr>
<td></td>
<td>Moves the cursor to the general-purpose display area when the cursor is on the</td>
</tr>
<tr>
<td></td>
<td>operation button.</td>
</tr>
<tr>
<td>[SHIFT]</td>
<td>Changes the functions of other keys by pressing together. Can be used with [ASSIST],</td>
</tr>
<tr>
<td></td>
<td>[COORD], [AREA], [MOTION TYPE], [ROBOT], [EX. AXIS], cursor key or Numeric key to</td>
</tr>
<tr>
<td></td>
<td>access alternate functions. Refer to the description of each key for the alternate</td>
</tr>
<tr>
<td></td>
<td>[SHIFT] functions.</td>
</tr>
<tr>
<td>[INTERLOCK]</td>
<td>Changes the functions of other keys by pressing together. Can be used with [ASSIST],</td>
</tr>
<tr>
<td></td>
<td>[MULTI], [TEST START], [FWD], or Numeric key (Numeric key customize function),</td>
</tr>
<tr>
<td></td>
<td>[ROBOT]. Refer to the description of each key for the alternate [INTERLOCK]</td>
</tr>
<tr>
<td></td>
<td>functions.</td>
</tr>
</tbody>
</table>
1.2 Programming Pendant

<table>
<thead>
<tr>
<th>Key</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[INFORM LIST]</td>
<td>Displays instruction lists of commands available for job editing.</td>
</tr>
<tr>
<td>[ROBOT]</td>
<td>Enables the robot axis operation.</td>
</tr>
<tr>
<td>[SHIFT] + [ROBOT]</td>
<td>The robot under axis operation can be switched to a robot axis which is not registered to the currently selected job.</td>
</tr>
<tr>
<td>[INTERLOCK] + [ROBOT]</td>
<td>Switches the application when several applications are set to a robot.</td>
</tr>
<tr>
<td>[EX. AXIS]</td>
<td>Enables the external axis (base axis or station axis) operation.</td>
</tr>
<tr>
<td>[SHIFT] + [EX. AXIS]</td>
<td>The external axis under axis operation can be switched to an external axis which is not registered to the currently selected job.</td>
</tr>
<tr>
<td>[MOTION TYPE]</td>
<td>Selects the interpolation type for playback operation.</td>
</tr>
<tr>
<td>[SHIFT] + [MOTION TYPE]</td>
<td>The interpolation mode changes in the following order:</td>
</tr>
<tr>
<td></td>
<td>• "MOVJ" → "MOVL" → "MOVC" → "MOVS"</td>
</tr>
<tr>
<td>[SHIFT] + [MOTION TYPE]</td>
<td>The interpolation mode changes in the following order:</td>
</tr>
<tr>
<td></td>
<td>• "STANDARD" → "EXTERNAL REFERENCE POINT" → "CONVEYOR"</td>
</tr>
</tbody>
</table>

* Interpolation type can be changed in any mode.

*: These modes are purchased options.
1.2 Programming Pendant

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TEST START]</td>
<td>Moves the manipulator through taught steps in a continuous motion when [TEST START] and [INTERLOCK] are simultaneously pressed. The manipulator can be moved to check the path of taught steps. Operation stops immediately when this key is released. • The manipulator operates according to the currently selected operation cycle: "AUTO", "1CYCLE", or "STEP". • The manipulator operates at the taught speed. However, if the taught speed exceeds the maximum teaching speed, the operation proceeds at the maximum teaching speed.</td>
</tr>
<tr>
<td>[FWD]</td>
<td>Moves the manipulator through the taught steps while this key is pressed. • Only move instructions are executed (one instruction at a time, no welding instructions).</td>
</tr>
<tr>
<td>[INTERLOCK] + [FWD]</td>
<td>All instructions are executed. [REFP] + [FWD] Moves to the reference point of the cursor line. See section 3.3.1.3 "Moving to Reference Point" on page 3-27. The manipulator operates at the selected manual speed. Make sure that the selected manual speed is the desired one before starting operation.</td>
</tr>
<tr>
<td>[BWD]</td>
<td>Moves the manipulator through the taught steps in the reverse direction while this key is pressed. • Only move instructions are executed (no weld commands). The manipulator operates at the selected manual speed. Make sure that the selected manual speed is the desired one before starting operation.</td>
</tr>
<tr>
<td>[DELETE]</td>
<td>Deletes the registered instruction. • Deletion completes when [ENTER] is pressed while this key lamp is lit.</td>
</tr>
<tr>
<td>[INSERT]</td>
<td>Inserts a new instruction. • Insertion completes when [ENTER] is pressed while this key lamp is lit.</td>
</tr>
<tr>
<td>[MODIFY]</td>
<td>Modifies the taught position data or instruction. • Modification completes when [ENTER] is pressed while this key lamp is lit.</td>
</tr>
</tbody>
</table>
1.2 Programming Pendant

| [ENTER] | Registers instructions, data, current position of the manipulator, etc.
| | • When [ENTER] is pressed, the instruction or data displayed in the input buffer line moves to the cursor position to complete a registration, insertion, or modification. |

| MANUAL SPEED keys | Sets the speed for manual operation. This speed is also valid for operations with [FWD] and [BWD].
| | • There are four speed levels (slow, medium, fast, and inching). The speed changes as described below. The selected speed is displayed on the status area.
| | Each time [FAST] is pressed, manual speed changes in the following order:
| | "INCH" → "SLOW" → "MED" → "FST".
| | Each time [SLOW] is pressed, manual speed changes in the following order:
| | "FST" → "MED" → "SLOW" → "INCH" |

| [HIGH SPEED] | Makes the manipulator move at high speed while this button and one of the axis keys are pressed simultaneously during manual operation. No need to change the setting of speed.
| | • The speed for [HIGH SPEED] is specified in advance. |

| Axis Keys | Moves specified axes on manipulator.
| | • The manipulator axes only move while the key is pressed.
| | • Multiple axes can be operated simultaneously by pressing two or more keys at the same time.
| | The manipulator operates in the selected coordinate system at the selected manual speed. Make sure that the selected coordinate system and the manual speed are the desired ones before starting the axis operation.
| | It is possible to allocate any external axes to [E-] + [E+], [8-] + [8+] keys to operate them. Refer to section 6.10 "Jog Key Allocation" on page 6-110. |

| Numeric Keys | Enters the number or symbol when the ">" prompt appears on the input line.
| | • "." is the decimal point. "-" is a minus sign or hyphen.
| | The Numeric keys are also used as function keys. Refer to the explanation of each function for details. |
1.2.4 Programming Pendant Display

The programming pendant display is a 5.7 inch color display. Alphanumeric characters can be used.

1.2.4.1 Five Display Areas

The general-purpose display area, menu area, human interface display area, and main menu area among the following five areas can be moved by pressing [AREA], or can be selected by directly touching the screen.

Each window displayed during operations is provided with its name on the upper left of the general-purpose display area.
1.2.4.2 General-purpose Display Area

On the general-purpose display area, various settings and contents such as jobs and characteristics files can be displayed and edited. The operation buttons are also displayed at the bottom of the window according to the window contents.

- To move the cursor to the operation button, press [AREA] + DOWN cursor key.
- To move the cursor to the general-purpose display area, press [AREA] + UP cursor key or press [CANCEL].
- To move the cursor between the operation buttons, use the RIGHT or LEFT cursor key.
- To execute the operation button, move the cursor to the button and press [SELECT].

EXECUTE: Continues operation with the displayed contents.
CANCEL: Cancels the displayed contents and returns to the previous window.
COMPLETE: Completes the setting operation displayed on the general-purpose display area.
STOP: Stops operation when loading, saving, or verifying with an external memory device.
RELEASE: Releases the overrun and shock sensor function.
RESET: Resets an alarm. (Cannot reset major alarms.)
PAGE: Jumps to the appropriate page if the page can be switched.
- When the page can be switched by specifying the page number, the following input box appears when “DIRECT PAGE” is selected. Directly type the desired page number and press [ENTER].

- When the page can be switched by selecting an item, the following selection list appears when “DIRECT PAGE” is selected. Select a desired item using the UP and DOWN cursor key and press [ENTER].
1.2.4.3 Main Menu Area

Each menu and submenu are displayed in the main menu area. Press [MAIN MENU] or touch (Main Menu) on the left bottom of the window to display the main menu.

1.2.4.4 Status Display Area

The Status Display area shows controller status. The displayed information will vary depending on the controller mode (Play/Teach).

A. Control Group

Displays the active control group for systems equipped with station axes or several robot axes.

- : Robot Axes
- : Base Axes
- : Station Axes
1 Introduction
1.2 Programming Pendant

B. Operation Coordinate System
Displays the selected coordinate system. Switched by pressing [COORD].

- Joint Coordinates
- Cartesian Coordinates
- Cylindrical Coordinates
- Tool Coordinates
- User Coordinates

C. Manual Speed
Displays the selected speed. For details, refer to section 2.2.0.5 “Select Manual Speed” on page 2-4.

- Inching
- Low Speed
- Medium Speed
- High Speed

D. Security Mode

- Operation Mode
- Edit Mode
- Management Mode

E. Operation Cycle
Displays the present operation cycle.

- Step
- Cycle
- Continuous
F. State Under Execution
Displays the present system status (STOP, HOLD, ESTOP, ALARM, or RUN).

- : Stop Status
- : Hold Status
- : Emergency Stop Status
- : Alarm Status
- : Operating Status

G. Mode

- : Teach mode
- : Play mode

H. Tool Number

From to : Displayed the tool No. which is chosen by a robot when the tool No. switch function is valid. (S2C431=1).

I. Page

: Displayed when the page can be switched.

J. Multi Mode

: Displayed when the multi window mode is set.

K. Weak Battery of Memory

: Displayed when the battery of memory is weak.

L. Saving Data

: Displayed while saving the data.
1.2.4.5 Human Interface Display Area

An error(s) or a message(s) is displayed in the human interface display area.

When an error is displayed, operations cannot be performed until the error is canceled. Press [CANCEL] to allow for operations.

When two or more errors occur, \(\text{err} \) appears in the message display area. Activate the message display area and press [SELECT] to view the list of current errors.

To close the error list, select "CLOSE" or press [CANCEL].

1.2.4.6 Menu Area

The menu area is used to edit a job, manage jobs, and execute various utilities.
1.2.5 Screen Descriptions

- The menu displayed in the programming pendant is denoted with `{}`.

The above menu items are denoted with `{DATA}`, `{EDIT}`, `{DISPLAY}`, AND `{UTILITY}`.

- The window can be displayed according to the view desired.

Full Window View

```
JOB CONTENT
J TERR1
CONTROL GROUP: R1 TOOL: AA

0001 SET B000 0
0002 SET B001 1
0003 MOVU V4=120.00
0004 MOVU V4=120.00
0005 OUT D8(16) ON
0006 TIMER T1=2.00
0007 MOVU V4=120.00
0008 MOVU V4=100.00
0009 MOVU V4=100.00
0010 MOVU V4=100.00
0011 MOVU V4=100.00

MDU V4=0.78
```

Upper Window View

```
JOB CONTENT
J TERR1
CONTROL GROUP: R1 TOOL: AA

0001 SET B000 0
0002 SET B001 1
0003 MOVU V4=120.00
0004 MOVU V4=120.00
0005 OUT D8(16) ON
0006 TIMER T1=2.00
0007 MOVU V4=120.00
0008 MOVU V4=100.00
0009 MOVU V4=100.00
0010 MOVU V4=100.00
0011 MOVU V4=100.00
```

Middle Window View

```
0001 SET B000 0
0002 SET B001 1
0003 MOVU V4=120.00
0004 MOVU V4=120.00
0005 OUT D8(16) ON
0006 TIMER T1=2.00
0007 MOVU V4=120.00
0008 MOVU V4=100.00
0009 MOVU V4=100.00
0010 MOVU V4=100.00
0011 MOVU V4=100.00
```

Lower Window View

```
MDU V4=0.78
```
1.2.6 Character Input Operation

Move the cursor to the data for which characters are to be input, and press [SELECT] to display the software keypad.

1.2.6.1 Character Input

To input characters, the software keypad is shown on the programming pendant display.

There are three types of software keypads: the alphanumeric keypads each for upper-case and lower-case characters and the symbol keypad. To switch between the alphanumeric keypads and the symbol keypad, touch the button tab on the screen or press [PAGE]. To switch the alphanumeric keypads between upper-case and lower-case characters, touch “CapsLock OFF” or “CapsLock ON”.

1.2.6.2 Operation

<table>
<thead>
<tr>
<th>Keypad</th>
<th>Button on the Programming Pendant</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor</td>
<td></td>
<td>Moves the cursor (focus).</td>
</tr>
<tr>
<td>[SELECT]</td>
<td></td>
<td>Selects a character.</td>
</tr>
<tr>
<td>[CANCEL]</td>
<td></td>
<td>Clears all the characters being typed. Pressing this second time cancels the software keypad.</td>
</tr>
<tr>
<td>[ENTER]</td>
<td></td>
<td>Enters the input characters.</td>
</tr>
<tr>
<td>Button Tab</td>
<td></td>
<td>Switches the keypads displayed on the programming pendant.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Closes the software keypad.</td>
</tr>
<tr>
<td>Numeric Keys</td>
<td></td>
<td>Enters numbers.</td>
</tr>
</tbody>
</table>
1.2.6.3 Alphanumeric Input

Number input is performed with the Numeric keys or on the following alphanumeric input window. Numbers include 0 to 9, the decimal point (.), and the minus sign/hyphen (-).

Note however, that the decimal point cannot be used in job names.

Press the page key \(\Rightarrow \) to display the alphanumeric input window. Move the cursor to the desired letter and press [SELECT] to enter the letter.

For Numbers and Upper-case Characters
1.2.6.4 Symbol Input

Press the page key to display the symbol input window.

Move the cursor to the desired symbol and press [SELECT] to enter the symbol.

Note that only some symbols are available for naming jobs.

For Symbols

When the focus is in a text field of [Result], it is able to move a cursor position by pressing [Shift]+[→] or [Shift]+[←].
1.2.6.5 Register Word Function

This function enables to use the registered word when input a character by registering the word (character string) in advance. To use this function simplifies to input the same character strings. It is able to register the 32 words of eight characters.

There is a limit to enter the character by input contents. If a registered word includes a limited character, it is unable to use the word.

- e.g. Unable to use the lower case characters, a decimal point and symbols to the job name.

Select (SET WORD) from (SETUP) in the main menu.
- Register word window is displayed
- The registered words are displayed in the word area.
- If there is not any registered word, unable to select [Name order], [Delete] and [Delete All] in the button area.
1. Introduction
1.2 Programming Pendant

Word Registration

It is able to register the 32 words of eight characters. Register a word by selecting [REGISTER WORD] button while the word editing is valid (S2C410=1) during using the keyboard, or register the word in the word register screen.

Example: Register the word “TEST”.

Select [KEYBOARD].

Enter [TEST] by using the keyboard, and select [Regist].

– The dial box appears.

Enter [TEST] by using the keyboard, and select [Regist].

– The dial box appears.
Select [REGISTER WORD].

- The word area appears.
- Confirm that [TEST] is in the word area.

- **Back Space**
 Delete the last character of the input character string.
 Select [Back space] in the word register screen.
 - Delete the last character of the input character string.

- **Cancel**
 Cancel the input character string.
 Select [Cancel] in the word register screen.
 - Cancel the character string if there is a character string is input.
 - End the word register screen if there is not any character string.
1 Introduction
1.2 Programming Pendant

- **Use of Words**
 e.g. Use the registered word [TEST].
 Select [REGISTER WORD].
 - The word area is displayed.

 There is a limit to enter the character by input contents. If a registered word includes a limited character, it is unable to use the word.
 e.g. Unable to use the lower case characters, a decimal point and symbols to the job name.

Select [TEST] in the word area.
 - The registered word [TEST] appears in the input area.
Select [KEYBORD].
Move the focus to “1” by the programming pendant, and press [Select].

- The “1” is added after [TEST] in the [Result].

While [TEST1] is displayed in the [Result], select [Regist].
The dial box, which says “TEST1” Word registration succeeded.
appears, and the registration is completed.
1. Introduction
1.2 Programming Pendant

- **Change the Arrangement of the Words to Display**

 Able to change the arrangement of the words to display.

1. Name order display

 Select [Name order] in the button area.

 - Displayed by the name order of the words.
 - [Name order] button changes to [Register order] button.

2. Register order display

 Select [Register order] in the button area.

 - Displayed by the register order of the words.
 - [Register order] button changes to [Name order] button.
Delete the Word
Able to delete the registered words.

Delete the words while the word editing is valid (S2C410=1) during using the keyboard, or delete the word in the word register screen.

e.g. Delete registered word “TEST”.
Select [REGISTER WORD].
The word area appears.

```
Select [REGISTER WORD].
The word area appears.
```

```
Select [TEST] in the word area, and select [Delete] in the button area.

– The dialog box, which asks “TEST” Do you delete a word?, appears.
```

```
Select [Yes].
[TEST] in the word area is deleted.
```

Delete All Words
Able to delete all registered words.

Delete while the word editing is valid (S2C410=1) during using the keyboard, or delete the word in the word register screen.

• Delete all registered words.
 Select [Delete All] in the button area.
 The dialog box, which asks {Do you delete all words?}, appears.
 Select [Yes].
 The all words are deleted.
1.3 Mode

The following three modes are available for DX100.

• Teach Mode
• Play Mode
• Remote Mode

1.3.1 Teach Mode
In the teach mode, the following can be done.

• Preparation and teaching of a job
• Modification of a registered job
• Setting of various characteristic files and parameters

1.3.2 Play Mode
In the play mode, the following can be done.

• Playback of a taught job
• Setting, modification, or deletion of various condition files

1.3.3 Remote Mode
In the remote mode, the operations such as Servo ON Ready, Start, Cycle Change, Call Master Job can be commanded by external input signals.

The operations by external input signals become enabled in the remote mode, while [START] on the programming pendant becomes disabled.

The data transmission function (optional function) is also available in the remote mode.

The following table shows how each operation is input in each mode.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Teach Mode</th>
<th>Play Mode</th>
<th>Remote Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo ON Ready</td>
<td>PP</td>
<td>PP</td>
<td>External input signal</td>
</tr>
<tr>
<td>Start</td>
<td>Invalid</td>
<td>PP</td>
<td>External input signal</td>
</tr>
<tr>
<td>Cycle Change</td>
<td>PP</td>
<td>PP</td>
<td>External input signal</td>
</tr>
<tr>
<td>Call Master Job</td>
<td>PP</td>
<td>PP</td>
<td>External input signal</td>
</tr>
</tbody>
</table>

Note: “PP” indicates the programming pendant.

1.3.4 Teach Mode Priority
In the teach mode, following operations are disabled:

1. Playback using [START].
2. Playback from external input signals.
1.4 Security Mode

1.4.1 Types of Security Modes

The following three types of security modes are available for DX100.

Any operation in the edit mode and the management mode requires a password. The password must contain between 4 and 8 letters, numbers, or symbols.

- Operation Mode
 The operator can monitor the line operation and start and stop the manipulator. Repairs, etc. can be performed if any abnormalities are detected.

- Edit Mode
 Teaching, robot jog operations, and editing of jobs and various condition files can be performed in addition to the operations enabled in the operation mode.

- Management Mode
 The operator who performs setup and maintenance for the system can set the machine control parameter, set the time, change the password, etc. in addition to the operations enabled in the edit mode.
1 Introduction

1.4 Security Mode

Table 1-1: Menu & Security Mode (Sheet 1 of 4)

<table>
<thead>
<tr>
<th>Main Menu</th>
<th>Sub Menu</th>
<th>Allowed Security Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DISPLAY</td>
<td>EDIT</td>
</tr>
<tr>
<td>JOB</td>
<td>JOB</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>SELECT JOB</td>
<td>Operation Operation</td>
</tr>
<tr>
<td></td>
<td>CREATE NEW JOB(^1)</td>
<td>Edit Edit</td>
</tr>
<tr>
<td></td>
<td>MASTER JOB</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>JOB CAPACITY</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>RES. START (JOB)(^1)</td>
<td>Edit Edit</td>
</tr>
<tr>
<td></td>
<td>RES. STATUS(^2)</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>CYCLE</td>
<td>Operation Operation</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>BYTE</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>INTEGER</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>DOUBLE</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>REAL</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>STRING</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>POSITION (ROBOT)</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>POSITION (BASE)</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>POSITION (ST)</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>LOCAL VARIABLE</td>
<td>Operation -</td>
</tr>
<tr>
<td>IN/OUT</td>
<td>EXTERNAL INPUT</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL OUTPUT</td>
<td>Operation Edit</td>
</tr>
<tr>
<td></td>
<td>UNIVERSAL INPUT</td>
<td>Operation Operation</td>
</tr>
<tr>
<td></td>
<td>UNIVERSAL OUTPUT</td>
<td>Operation Operation</td>
</tr>
<tr>
<td></td>
<td>SPECIFIC INPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>SPECIFIC OUTPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>RIN</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>CPRIN</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>REGISTER</td>
<td>Operation Management</td>
</tr>
<tr>
<td></td>
<td>AUXILIARY RELAY</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>CONTROL INPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>PSEUDO INPUT SIG</td>
<td>Operation Management</td>
</tr>
<tr>
<td></td>
<td>NETWORK INPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>NETWORK OUTPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>ANALOG OUTPUT</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>SV POWER STATUS</td>
<td>Operation -</td>
</tr>
<tr>
<td></td>
<td>LADDER PROGRAM</td>
<td>Management Management</td>
</tr>
<tr>
<td></td>
<td>I/O ALARM</td>
<td>Management Management</td>
</tr>
<tr>
<td></td>
<td>I/O MESSAGE</td>
<td>Management Management</td>
</tr>
</tbody>
</table>
Table 1-1: Menu & Security Mode (Sheet 2 of 4)

<table>
<thead>
<tr>
<th>Main Menu</th>
<th>Sub Menu</th>
<th>Allowed Security Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DISPLAY</td>
<td></td>
</tr>
<tr>
<td>ROBOT</td>
<td>CURRENT POSITION Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>COMMAND POSITION Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SERVO MONITOR Management</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>WORK HOME POS Operation</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>SECOND HOME POS Operation</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>DROP AMOUNT Management</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>POWER ON/OFF POS Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOOL Edit</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>INTERFERENCE Management</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>SHOCK SENS LEVEL Operation</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>USER COORDINATE Edit</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>HOME POSITION Management</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>MANIPULATOR TYPE Management</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ANALOG MONITOR Management</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>OVERRUN&S-SENSOR¹ Edit</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>LIMIT RELEASE¹ Edit</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>ARM CONTROL¹ Management</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>SHIFT VALUE Operation</td>
<td>-</td>
</tr>
<tr>
<td>SYSTEM INFO</td>
<td>VERSION Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>MONITORING TIME Operation</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>ALARM HISTORY Operation</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>I/O MSG HISTORY Operation</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>SECURITY Operation</td>
<td>Operation</td>
</tr>
<tr>
<td>FD/CF</td>
<td>LOAD Edit</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SAVE Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VERIFY Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DELETE Operation</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DEVICE Operation</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>FOLDER Edit</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>INITIALIZE¹ Operation</td>
<td>Operation</td>
</tr>
</tbody>
</table>

¹ Use Security Mode 1
Table 1-1: Menu & Security Mode (Sheet 3 of 4)

<table>
<thead>
<tr>
<th>Main Menu</th>
<th>Sub Menu</th>
<th>Allowed Security Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DISPLAY</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>S1CxG</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S2C</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S3C</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S4C</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A1P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A2P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A3P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A4P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A5P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A6P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A7P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>A8P</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S1E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S2E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S3E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S4E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S5E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S6E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S7E</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>S8E</td>
<td>Management</td>
</tr>
<tr>
<td>SETUP</td>
<td>TEACHING COND.</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>OPERATE COND.</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>OPERATE ENABLE</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>FUNCTION ENABLE</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>JOG COND.</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>PLAYBACK COND.</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>FUNCTION COND.</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>DATE/TIME</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>GRP COMBINATION(^2)</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>RESERVE JOB NAME</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>USER ID</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>SET SPEED</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>KEY ALLOCATION</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>JOG KEY ALLOC.</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>RES. START (CNCT)</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>AUTO BACK SET</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>WRONG DATA LOG</td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td>ENERGY SAVING FUNCTION</td>
<td>Edit</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>CHANGE FONT</td>
<td>Operation</td>
</tr>
<tr>
<td>SETUP</td>
<td>CHANGE BUTTON</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>INITIALIZE LAYOUT</td>
<td>Operation</td>
</tr>
<tr>
<td></td>
<td>CHANGE WINDOW PATTERN</td>
<td>Operation</td>
</tr>
</tbody>
</table>
Table 1-1: Menu & Security Mode (Sheet 4 of 4)

<table>
<thead>
<tr>
<th>Main Menu</th>
<th>Sub Menu</th>
<th>Allowed Security Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC WELDING</td>
<td>ARC START COND.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>ARC END COND.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>ARC AUX COND.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>POWER SOURCE COND.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>ARC WELD DIAG.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>WEAVING</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>ARC MONITOR</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>ARC WELDING</td>
<td>ARC MONITOR (SAMPL)</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>HANDLING</td>
<td>HANDLING DIAGNOSIS</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>SPOT WELDING</td>
<td>WELD DIAGNOSIS</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>SPOT WELDING</td>
<td>I/O ALLOCATION</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING</td>
<td>GUN CONDITION</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING</td>
<td>SPOT POWER SOURCE COND.</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING</td>
<td>APPLICATION CONDITION SETTING</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>WELD DIAGNOSIS</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>GUN PRESSURE</td>
<td>Edit Edit</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>PRESSURE</td>
<td>Edit Edit</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>I/O ALLOCATION</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>GUN CONDITION</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>CLEARANCE SETTING</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>SPOT POWER SOURCE COND.</td>
<td>Management Management</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>TIP INSTALLATION</td>
<td>Operation Management</td>
</tr>
<tr>
<td>SPOT WELDING (MOTOR GUN)</td>
<td>APPLICATION SETTING</td>
<td>Management Management</td>
</tr>
<tr>
<td>GENERAL</td>
<td>WEAVING</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>GENERAL</td>
<td>GENERAL DIAG.</td>
<td>Operation Edit</td>
</tr>
<tr>
<td>COMMON TO ALL APPLICATIONS</td>
<td>I/O VARIABLE CUSTOMIZE</td>
<td>Operation Operation</td>
</tr>
</tbody>
</table>

1. Displayed in the teach mode only.
2. Displayed in the play mode only.
1.4.2 Changing Security Modes

The security mode can be changed only when the main menu is displayed.

1. Select {SYSTEM INFO} under the main menu.
 - The sub menu appears.

2. Select {SECURITY}.
 - The security of the main menu is shown.

 - The security mode can be selected from operation mode, edit mode, or management mode.
3. Select the desired security mode.
 - When the selected security mode is higher than the currently set mode, the user ID input status window appears.

4. Input the user ID as required.
 - At the factory, the user ID number is preset as follows:
 Edit Mode: [00000000]
 Management Mode: [99999999]

5. Press [ENTER].
 - The selected security mode’s input ID is checked. If the correct user ID is input, the security mode is changed.
2.1 Control Groups and Coordinate Systems

2.1.1 Control Group

For the DX100, a group of axes to be controlled at a time is called “Control Group”, and the group is classified into three units: “ROBOT” as a manipulator itself, “BASE” that moves the manipulator in parallel, and “STATION” as jigs or tools other than “ROBOT” and “BASE”. BASE and STATION are also called external axes.
2.1.2 Types of Coordinate Systems

The following coordinate systems can be used to operate the manipulator:

- **Joint Coordinates**
 Each axis of the manipulator moves independently.

- **Cartesian Coordinates**
 The tool tip of the manipulator moves parallel to any of the X-, Y-, and Z-axes.

- **Cylindrical Coordinates**
 The θ axis moves around the S-axis. The R-axis moves parallel to the L-axis arm. For vertical motion, the tool tip of the manipulator moves parallel to the Z-axis.

- **Tool Coordinates**
 The effective direction of the tool mounted in the wrist flange of the manipulator is defined as the Z-axis. This axis controls the coordinates of the end point of the tool.

- **User Coordinates**
 The XYZ-cartesian coordinates are defined at any point and angle. The tool tip of the manipulator moves parallel to the axes of them.
2.2 General Operations

2.2.0.1 Check Safety
Before any operation of the DX100, read Section 1 “Safety” of “DX100 INSTRUCTIONS” again and keep safe around the robot system or peripherals.

2.2.0.2 Select Teach Mode
Set the mode switch on the programming pendant to “teach”.

2.2.0.3 Select Control Group
If the DX100 has several Control Groups or Coordinate Control Systems (optional function), select control group first.
If two or more ROBOT, BASE, STATION are registered, switch control group by pressing [SHIFT] + [ROBOT] or [SHIFT] + [EX. AXIS].
After selecting a job, the control group registered in the selected job is enabled. The control group registered in the edit job can be switched by pressing [ROBOT] or [EX. AXIS].
Check the selected control group at the status display area on the programming pendant.

2.2.0.4 Select Coordinate System
Select a coordinate system by pressing [COORD] key.
Each time [COORD] key is pressed, the coordinate system switches in the following order:
 Joint → Cartesian (Cylindrical) → Tool → User.
Check the selected coordinate on the status display area on the programming pendant.
2.2.0.5 Select Manual Speed

Select manual speed of operation by pressing [FAST] or [SLOW]. The selected speed is effective not only for axis operation but [FWD] or [BWD] operation.

- Each time [FAST] is pressed, the speed switches in the order of “INCH”→“SLOW”→“MED”→“FAST”.

- Each time [SLOW] is pressed, the speed switches in the order of “FAST”→“MED”→“SLOW”→“INCH”.

Check selected manual speed on the status area of Programming Pendant.

2.2.0.6 Servo ON

Press [SERVO ON READY], then SERVO ON LED starts blinking. Squeeze the Enable switch, then SERVO ON LED starts lighting.

2.2.0.7 Axis Operation

Make sure of safety around the manipulator. Press axis key, then axis moves according to the selected control group, coordinates, and manual speed. See section 2.3 “Coordinate Systems and Axis Operation” on page 2-5.

2.2.0.8 HIGH SPEED

Press [HIGH SPEED] while pressing an axis key to make the manipulator move faster than the usual speed.

The [HIGH SPEED] key is disabled when “INCH” is selected for the manual speed.
2.3 Coordinate Systems and Axis Operation

2.3.1 Joint Coordinates

When operating in joint coordinates mode, the S, L, U, R, B, and T-axes of the manipulator move independently. The motion of each axis is described in the table below.

Table 2-1: Axis Motion in Joint Coordinates

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-axis</td>
<td>
</td>
<td>Main unit rotates right and left.</td>
</tr>
<tr>
<td>L-axis</td>
<td>
</td>
<td>Lower arm moves forward and backward.</td>
</tr>
<tr>
<td>U-axis</td>
<td>
</td>
<td>Upper arm moves up and down.</td>
</tr>
<tr>
<td>Wrist Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-axis</td>
<td>
</td>
<td>Wrist rolls right and left.</td>
</tr>
<tr>
<td>B-axis</td>
<td>
</td>
<td>Wrist moves up and down.</td>
</tr>
<tr>
<td>T-axis</td>
<td>
</td>
<td>Wrist turns right and left.</td>
</tr>
<tr>
<td>E-axis</td>
<td></td>
<td>Lower arm turns right and left.</td>
</tr>
</tbody>
</table>

• When two or more axis keys are pressed at the same time, the manipulator will perform a compound movement. However, if two different directional keys (such as [S -] + [S +]) for the same axis are pressed at the same time, the axis will not operate. (When [S -] + [S +] + [L +] are pressed, only the axis corresponding to [L +] will operate.)
2.3.2 Cartesian Coordinates

In the cartesian coordinates, the manipulator moves parallel to the X-, Y-, or Z-axes. The motion of each axis is described in the table below.

Table 2-2: Axis Motion in Cartesian Coordinates

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-axis</td>
<td>[X-] [S-] [X+] [S+]</td>
<td>Moves parallel to X-axis.</td>
</tr>
<tr>
<td>Z-axis</td>
<td>[Z-] [U-] [Z+] [U+]</td>
<td>Moves parallel to Z-axis.</td>
</tr>
<tr>
<td>Wrist Axes</td>
<td>Motion about TCP is executed.</td>
<td>See section 2.3.7 "Control Point Operation" on page 2-15.</td>
</tr>
</tbody>
</table>

- When two or more axis keys are pressed at the same time, the manipulator will perform compound movement. However, if two different directional keys (such as [X-] + [X+]) for the same axis are pressed at the same time, the axis will not operate. (When [X-] + [X+] + [Y+] are pressed, only the axis corresponding to [Y+] will operate.)
2.3.3 Cylindrical Coordinates

In the cylindrical coordinates, the manipulator moves as follows. The motion of each axis is described in the table below.

Table 2-3: Axis Motion in Cylindrical Coordinates

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ-axis</td>
<td>X- S- X+ S+</td>
<td>Main unit rolls around S-axis.</td>
</tr>
<tr>
<td>r-axis</td>
<td>Y- L- Y+ L+</td>
<td>Moves perpendicular to Z-axis.</td>
</tr>
<tr>
<td>Z-axis</td>
<td>Z- U- Z+ U+</td>
<td>Moves parallel to Z-axis.</td>
</tr>
<tr>
<td>Wrist Axes</td>
<td>Motion about TCP is executed. See section 2.3.7 "Control Point Operation" on page 2-15.</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Coordinate Systems and Axis Operation

- When two or more axis keys are pressed at the same time, the manipulator will perform compound movement. However, if two different directional keys (such as \([Z-] + [Z+]\)) for the same axis are pressed at the same time, the axis will not operate. (When \([Z-] + [Z+] + [Y+]\) are pressed, only the axis corresponding to \([Y+]\) will operate.)

Fig. 2-3: Rolls around q-axis

Fig. 2-4: Moves perpendicular to r-axis
2.3.4 Tool Coordinates

In the tool coordinates, the manipulator moves parallel to the X-, Y-, and Z-axes, which are defined at the tip of the tool. The motion of each axis is described in the table below.

Table 2-4: Axis Motion in Tool Coordinates

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-axis</td>
<td>X^-, X^+</td>
<td>Moves parallel to X-axis.</td>
</tr>
<tr>
<td>Y-axis</td>
<td>Y^-, Y^+</td>
<td>Moves parallel to Y-axis.</td>
</tr>
<tr>
<td>Z-axis</td>
<td>Z^-, Z^+</td>
<td>Moves parallel to Z-axis.</td>
</tr>
<tr>
<td>Wrist Axes</td>
<td>Motion about TCP is executed. See section 2.3.7 “Control Point Operation” on page 2-15.</td>
<td></td>
</tr>
</tbody>
</table>

- When two or more axis keys are pressed at the same time, the manipulator will perform compound movement. However, if two different directional keys (such as $[X^-] + [X^+]$) for the same axis are pressed at the same time, the axis will not operate. (When $[X^-] + [X^+] + [Y^+]$ are pressed, only the axis corresponding to $[Y^+]$ will operate.)

The tool coordinates are defined at the tip of the tool, assuming that the effective direction of the tool mounted on the manipulator wrist flange is the Z-axis. Therefore, the tool coordinates axis direction moves with the wrist.

In the tool coordinates motion, the manipulator can be moved using the effective tool direction as a reference regardless of the manipulator position or orientation. These motions are best suited when the manipulator is required to move parallel while maintaining the tool orientation with the workpieces.
For tool coordinates, the tool file should be registered in advance. For further details, refer to section 8.3 "Tool Data Setting" of coordinates “DX100 INSTRUCTIONS” (RE-CTO-A215).
2.3.4.1 Selecting Tool

Tool numbers are used to specify a tool when more than one tool is used on the system.

You may select from the registered tool files when you switch tools on the manipulator.

This operation can be performed only when the number of tool is more than one.
To use several tool files with one manipulator, set the following parameter.
S2C431: Tool number switch specifying parameter
1: Can be switched
0: Cannot be switched

1. Press the [COORD] key and select the tool coordinates.
 - Each time [COORD] key is pressed, the coordinate system switches in the following order:
 Joint → Cartesian (Cylindrical) → Tool → User.
 Check the change on the status display area.

2. Press [SHIFT] + [COORD].
 - The TOOL NO. SELECT window appears.

3. Move the cursor to the tool to use.
 - The TOOL NO. SELECT window above shows an example; “TOOL NO. 0 TORCH MT-3501” is selected.

4. Press [SHIFT] + [COORD].
 - The window goes back to the previous window.
2.3.5 User Coordinates

In the user coordinates, the manipulator moves parallel to each axis of the coordinates which are set by the user. Up to 24 coordinate types can be registered. Each coordinate has a user number and is called a user coordinate file.

The figure and the table below describe the motion of each axis when the axis key is pressed.

Table 2-5: Axis Motion in User Coordinates

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-axis</td>
<td> </td>
<td>Moves parallel to X-axis.</td>
</tr>
<tr>
<td>Y-axis</td>
<td> </td>
<td>Moves parallel to Y-axis.</td>
</tr>
<tr>
<td>Z-axis</td>
<td> </td>
<td>Moves parallel to Z-axis.</td>
</tr>
<tr>
<td>Wrist Axes</td>
<td>Motion about TCP is executed. See section 2.3.7 "Control Point Operation" on page 2-15.</td>
<td></td>
</tr>
</tbody>
</table>

- **SUPPLEMENT**
 - When two or more axis keys are pressed at the same time, the manipulator will perform compound movement. However, if two different directional keys (such as [X-] + [X+]) for the same axis are pressed at the same time, the axis will not operate. (When [X-] + [X+] + [Y+] are pressed, only the axis corresponding to [Y+] will operate.)

Fig. 2-5: Moves parallel to X or Y-axis

Fig. 2-6: Moves parallel to Z-axis
2.3.5.1 Selecting User Coordinates

Follow these procedures to select the desired coordinate system from among the registered user coordinates.

1. Press [COORD] to select the user coordinates.
 – Each time [COORD] key is pressed, the coordinate system switches in the following order: Joint → Cartesian (Cylindrical) → Tool → User. Check the change on the status display area.

2. Press [SHIFT] + [COORD].
 – The USER COORD SELECT window appears.

3. Select the desired user number.

SUPPLEMENT
For more information on registration of the user coordinates, refer to section 8.8 “User Coordinate Setting” of “DX100 INSTRUCTIONS” (RE-CTO-A215).
2.3.5.2 Examples of User Coordinate Utilization

The user coordinate settings allow easy teaching in various situations. For example:

- When multiple positioners are used, manual operation can be simplified by setting the user coordinates for each fixture.

- When performing arranging or stacking operations, the incremental value for shift can be easily programmed by setting user coordinates on a pallet.

- When performing conveyor tracking operations, the moving direction of the conveyor is specified.

2.3.6 External Axis

The external axis can be operated by selecting “BASE” or “STATION” for the control group. The motion of each axis is described in the table below.

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE or STATION</td>
<td>1st axis</td>
<td>The 1st axis moves.</td>
</tr>
<tr>
<td></td>
<td>X- S- X+ S+</td>
<td></td>
</tr>
<tr>
<td>2nd axis</td>
<td>Y- L- Y+ L+</td>
<td>The 2nd axis moves.</td>
</tr>
<tr>
<td>3rd axis</td>
<td>Z- U- Z+ U+</td>
<td>The 3rd axis moves.</td>
</tr>
</tbody>
</table>
2.3.7 Control Point Operation

Motion about TCP (Tool Center Point) can only change the wrist orientation at a fixed TCP position in all coordinate systems except the joint coordinates. The motion of each axis is described in the table below.

Table 2-6: Axis Motion in Motion about TCP

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Operation Key</th>
<th>Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Axes</td>
<td></td>
<td>TCP moves. These movements differ depending on cartesian, cylindrical, tool and user coordinates.</td>
</tr>
<tr>
<td></td>
<td>X-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z+</td>
<td></td>
</tr>
<tr>
<td>Wrist Axes</td>
<td></td>
<td>Wrist axes move with the TCP fixed. These movements differ depending on cartesian, cylindrical, tool and user coordinates.</td>
</tr>
<tr>
<td></td>
<td>X-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z+</td>
<td></td>
</tr>
<tr>
<td>E-axis</td>
<td></td>
<td>* Available only for the manipulator with seven axes</td>
</tr>
<tr>
<td></td>
<td>E-</td>
<td>The posture of arm changes while the position and posture of the tool remain fixed. (The Re degree changes.)</td>
</tr>
<tr>
<td></td>
<td>E+</td>
<td></td>
</tr>
</tbody>
</table>

* When two or more axis keys are pressed at the same time, the manipulator will perform compound movement. However, if two different directional keys (such as [X -] + [X +]) for the same axis are pressed at the same time, the axis will not operate. (When [X -] + [X +] + [Y +] are pressed, only the axis corresponding to [Y +] will operate.)
Re is an element to indicate the posture of the manipulator with seven axes and does not change by the specified coordinates.

The definition of Re is shown below.

Fig. 2-7: Torch Welding

Fig. 2-8: Gun Spot Welding
Turning of each wrist axis differs in each coordinate system.

- In cartesian or cylindrical coordinates, wrist axis rotations are based on the X-, Y-, or Z-axis.

- In tool coordinates, wrist axis rotations are based on X-, Y-, or Z-axis of the tool coordinates.
2.3 Coordinate Systems and Axis Operation

- In user coordinates, wrist axis rotations are based on X-, Y-, or Z-axis of the user coordinates.

2.3.7.1 Control Point Change

The tool tip position (TCP) is the target point of axis operations and is set as the distance from the flange face. The control point change operation is an axis operation that involves selecting a tool from the list of registered tools (Refer to section 2.3.4.1 “Selecting Tool” on page 2-11), and then manipulating the axes while changing the TCP. This can be performed with all coordinates except the joint coordinates. The axis operation is the same as that of the motion about TCP.

<Example 1> TCP Change Operation with Multiple Tools

1. Set the TCPs for Tool 1 and Tool 2 as P1 and P2, respectively.
2. When Tool 1 is selected to perform an axis operation, P1 (Tool 1’s TCP) is the target point of the operation. Tool 2 follows Tool 1 and is not controlled by the axis operation.
3. On the other hand, when Tool 2 is selected to perform an axis operation, P2 (Tool 2’s TCP) is the target point of the axis operation. In this case, Tool 1 just follows Tool 2.
<Example 2> TCP Change Operation with a Single Tool

1. Set the two corners of the workpiece that the tool is holding as TCP P1 and P2 respectively.

2. By selecting two TCPs alternately, the workpiece can be moved as shown below:

For registration of the tool file, refer to section 8.3 “Tool Data Setting” of “DX100 INSTRUCTIONS” (RE-CTO-A215).
3 Teaching

3.1 Preparation for Teaching

To ensure safety, the following operations should always be performed before teaching:

- Check the emergency stop buttons to be sure they function properly.
- Set the mode switch to “TEACH”.

Then,
- Register a job.

3.1.1 Checking Emergency Stop Buttons

The Servo ON button on the programming pendant should be lit while the power is ON for the servo system. Perform the following operation to ensure that the emergency stop buttons on both the DX100 and the programming pendant are functioning correctly before operating the manipulator.

1. Press E. STOP button.
 - Press the emergency stop button on the DX100 or the programming pendant.
2. Confirm the servo power is turned OFF.
 - The SERVO ON button on the programming pendant lights while servo supply is turned ON.
 - When the emergency stop button is pressed and the servo power is turned OFF, the SERVO ON lamp will turn OFF.
 - After confirming correct operation, press [SERVO ON READY]. The servo power will be ready to turn ON.
 - The servo power can be turned ON while the SERVO ON button lamp blinks.

3.1.2 Setting the Teach Lock

For safety purposes, always set the mode switch to “TEACH” before beginning to teach.

While the teach lock is set, the mode of operation is tied to the teach mode and the machines cannot be played back using either [START] or external input.
3.1.3 Registering a Job

Specify the name, comments (as required), and control group to register a job.

3.1.3.1 Registering Job Names

Job names can use up to 32 alphanumeric and symbol characters. These different types of characters can coexist within the same job name.

The following rules apply to the designation of job names:

- A maximum of 32 characters can be used for a job name.
- If the job name is already used, an input error is caused.

<Example>

```
0 0 1  JOB - 1  WORK - A
```

3.1.3.2 Registering Jobs

1. Select {JOB} under the main menu.

- The sub-menu appears.
3. Select {CREATE NEW JOB}.
 – The NEW JOB CREATE window appears.

3. Input job name.
 – Move the cursor to JOB NAME, and press [SELECT]. Input job names using the character input operation. For information on character input operation, refer to section 1.2.6 “Character Input Operation” on page 1-18.

4. Press [ENTER].

3.1.3.3 Registering Comments

 Register a comment using up to 32 alphanumeric and symbol characters as required.

 1. Enter a comment.
 – In the NEW JOB CREATE window, move the cursor to the comment and press [SELECT]. For information on character input operation, refer to section 1.2.6 “Character Input Operation” on page 1-18.

 2. Press [ENTER].

3.1.3.4 Registering Control Groups

 Select the control group that has been registered in advance. If external axes (BASE or STATION) or multiple robot systems are not used, the registration of control groups is not required.
3 Teaching
3.1 Preparation for Teaching

3.1.3.5 Switching to the Teaching Window

After the name, comments (can be omitted), and the control groups have been registered, switch the window to the teaching window as follows.

1. In the NEW JOB CREATE window, press [ENTER] or select “EXECUTE”.

 - Job name, comments, and control groups are all registered. Then, the JOB CONTENT window appears. NOP and END instructions are automatically registered.
3.2 Teaching Operation

3.2.1 Teaching Window

Teaching is conducted in the JOB CONTENT window. The JOB CONTENT window contains the following items:

Line Numbers	The number of the job line is automatically displayed. Line numbers are automatically updated if lines are inserted or deleted.
Cursor	The cursor for manipulator control. For the FWD, BWD, and test operation, the manipulator motion starts from the line this cursor points.
Instructions, Additional Items, Comments, Etc.	These are instructions needed to process or perform an operation. In the case of MOVE instructions, the instruction corresponding to the interpolation type is automatically displayed at the time position is taught. Speed and time are set depending on the type of instruction. When needed, numerical or character data is added to the condition-setting tags.

![Teaching Window Diagram](image)

A. Line Numbers

The number of the job line is automatically displayed. Line numbers are automatically updated if lines are inserted or deleted.

B. Cursor

The cursor for manipulator control. For the FWD, BWD, and test operation, the manipulator motion starts from the line this cursor points.

C. Instructions, Additional Items, Comments, Etc.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Additional Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVJ</td>
<td>VJ = 50.00</td>
</tr>
</tbody>
</table>
3.2 Teaching Operation

3.2.2 Interpolation Type and Play Speed

Interpolation type determines the path along which the manipulator moves between playback steps. Play speed is the rate at which the manipulator moves.

Normally, the position data, interpolation type, and play speed are registered together for a robot axis step. If the interpolation type or play speed settings are omitted during teaching, the data used from the previously taught step is automatically used.

3.2.2.1 Joint Interpolation

The joint interpolation is used when the manipulator does not need to move in a specific path toward the next step position. When the joint interpolation is used for teaching a robot axis, the move instruction is MOVJ. For safety purposes, use the joint interpolation to teach the first step.

When [MOTION TYPE] is pressed, the move instruction on the input buffer line changes.

<Play Speed Setting Window>

- Speeds are indicated as percentages of the maximum rate.
- Setting “0:Speed Omit” sets the same speed as the previous determination.

1. Move the cursor to the play speed.
2. Set the play speed by pressing [SHIFT] + the cursor key.
 - The joint speed value increases or decreases.

```
MOVJ

<table>
<thead>
<tr>
<th>Speed</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>25.00</td>
</tr>
<tr>
<td></td>
<td>12.50</td>
</tr>
<tr>
<td></td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>1.56</td>
</tr>
<tr>
<td>Slow</td>
<td>0.78 (%)</td>
</tr>
</tbody>
</table>
```
3.2.2.2 Linear Interpolation

The manipulator moves in a linear path from one taught step to the next. When the linear interpolation is used to teach a robot axis, the move instruction is MOVL. Linear interpolation is used for work such as welding. The manipulator moves automatically changing the wrist position as shown in the figure below.

<Play Speed Setting Window (same for circular and spline interpolation)>

- There are two types of displays, and they can be switched depending on the application.

1. Move the cursor to the play speed.
2. Set the play speed by pressing [SHIFT] + the cursor key.
 - The play speed value increases or decreases.
3.2.2.3 Circular Interpolation

The manipulator moves in an arc that passes through three points. When circular interpolation is used for teaching a robot axis, the move instruction is MOVC.

Single Circular Arc

When a single circular movement is required, teach the circular interpolation for three points, P1 to P3, as shown in the following figure. If joint or linear interpolation is taught at P0, the point before starting the circular operation, the manipulator moves from P0 to P1 in a straight line.

Table 3-1: Interpolation Type for Single Circular Arc

<table>
<thead>
<tr>
<th>Point</th>
<th>Interpolation Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P1</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P2</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous Circular Arcs

As shown below, when two or more successive circular movements with different curvatures are required, the movements must be separated from each other by a joint or linear interpolation step. This step must be inserted between the steps at an identical point. The step at the end point of the preceding circular movement must coincide with the beginning point of the following circular movement.

Table 3-2: Interpolation Type for Continuous Circular Arcs

<table>
<thead>
<tr>
<th>Point</th>
<th>Interpolation Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P1</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P2</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P5</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P6</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
</tbody>
</table>
Alternatively, to continue movements without adding an extra joint or linear interpolation step in between, add “FPT” tag to the step whose curvature is needed to be changed.

<table>
<thead>
<tr>
<th>Point</th>
<th>Interpolation Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P1</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P2</td>
<td>Circular</td>
<td>MOVC FPT</td>
</tr>
<tr>
<td>P3</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P4</td>
<td>Circular</td>
<td>MOVC</td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
</tbody>
</table>

<Play Speed>
- The play speed set display is identical to that for the linear interpolation.
- The speed taught at P2 is applied from P1 to P2. The speed taught at P3 is applied from P2 to P3.
- If a circular operation is taught at high speed, the actual arc path has a shorter radius than that taught.

3.2.2.4 Spline Interpolation

When performing operations such as welding, cutting, and applying primer, using the spline interpolation makes teaching for workpieces with irregular shapes easier. The path of motion is a parabola passing through three points. When spline interpolation is used for teaching a robot axis, the move instruction is MOVJ.

- **Single Spline Curve**
 When a single spline curve movement is required, teach the spline interpolation for three points, P1 to P3, as shown in the figure below. If joint or linear interpolation is taught at point P0, the point before starting the spline interpolation, the manipulator moves from P0 to P1 in a straight line.

 Table 3-3: Interpolation Type for Single Spline Curve

<table>
<thead>
<tr>
<th>Point</th>
<th>Interpolation Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P1</td>
<td>Spline</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P2</td>
<td>Spline</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P3</td>
<td>Spline</td>
<td>MOVJ, MOVL</td>
</tr>
</tbody>
</table>

Automatically becomes a straight line.
Continuous Spline Curves

The manipulator moves through a path created by combining parabolic curves. This differs from the circular interpolation in that steps with identical points are not required at the junction between two spline curves.

Table 3-4: Interpolation Type for Continuous Spline Curves

<table>
<thead>
<tr>
<th>Point</th>
<th>Interpolation Type</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
<tr>
<td>P1 to P5</td>
<td>Spline</td>
<td>MOVS</td>
</tr>
<tr>
<td>P6</td>
<td>Joint or Linear</td>
<td>MOVJ, MOVL</td>
</tr>
</tbody>
</table>

When the parabolas overlap, a composite motion path is created.

<Play Speed>

- The play speed setting window is identical to that for the linear interpolation.
- As with the circular interpolation, the speed taught at P2 is applied from P1 to P2, and the speed taught at P3 is applied from P2 to P3.

Teach points so that the distances between the three points are roughly equal. If there is any significant difference, an error will occur on playback and the manipulator may operate in an unexpected, dangerous manner. Ensure that the ratio of distances between steps m:n is within the range of 0.25 to 0.75.
3.2.3 Teaching Steps

3.2.3.1 Registering Move Instructions

Whenever one step is taught, one move instruction is registered. There are two ways to teach a step. Steps can be taught in sequence as shown in the following left figure Fig. 3-1 “Registering Move Instructions” or they can be done by inserting steps between already registered steps, as shown in the right figure Fig. 3-2 “Inserting Move Instructions”

This paragraph explains the teaching of Fig. 3-1 “Registering Move Instructions”, the operations involved in registering new steps.

Teaching of Fig. 3-2 “Inserting Move Instructions” is called “Inserting move instruction”, to distinguish it from the method shown in Fig. 3-1 “Registering Move Instructions”. For more details on this operation, see section 3.4.2 “Inserting Move Instructions” on page 3-34. The basic operations for registration and insertion are the same. The only difference is pressing [INSERT] in the case of insertion. For registration (Fig. 3-1 “Registering Move Instructions”), the instruction is always registered before the END instruction. Therefore, it is not necessary to press [INSERT]. For insertion (Fig. 3-2 “Inserting Move Instructions”), [INSERT] must be pressed.
3.2 Teaching Operation

Setting the Position Data

1. Select {JOB} under the main menu.
 – The sub-menu appears.

2. Select {JOB}.
 – The contents of the currently-selected job is displayed.

3. Move the cursor on the line immediately before the position where a move instruction to be registered.

4. Grip the Enable switch.
 – Grip the Enable switch to turn the servo power ON.

5. Move the manipulator to the desired position using the axis key.
 – Use the axis operation key to move the manipulator to the desired position.
3-13

3 Teaching
3.2 Teaching Operation

■ Selecting the Tool Number

1. Press [SHIFT] + [COORD].
 – When selecting the "JOINT", "XYZ/CYLINDRICAL", or "TOOL" coordinates, press [SHIFT] + [COORD] and the TOOL NO. SELECT window will be shown.

 ![Tool Number Selection Window]

2. Move the cursor to the desired tool number.
 – The currently-selected tool number by the cursor is displayed.
3. Press [SHIFT] + [COORD].
 – The JOB CONTENT window appears.

■ Setting the Interpolation Type

1. Press [MOTION TYPE].
2. Select the desired interpolation type.
 – When [MOTION TYPE] is pressed, MOVJ → MOVL → MOVC → MOVS are displayed in order in the input buffer line.

Using Multiple Tools with One Manipulator

• When multiple tools are to be used with one manipulator, set parameter S2C431 to 1.
• See section 2.3.4 "Tool Coordinates" on page 2-9 for details on this operation.

• When multiple tools are to be used with one manipulator, set parameter S2C431 to 1.
• See section 2.3.4 "Tool Coordinates" on page 2-9 for details on this operation.
3 Teaching
3.2 Teaching Operation

Setting the Play Speed
1. Move the cursor to the instruction.

 0000 NOP
 0001 MOV J 0.0, 78
 0002 END

2. Press [SELECT].
 – The cursor moves to the input buffer line.

 MOV J 0.0, 78

3. Move the cursor to the play speed to be set.

 MOV J 0.0, 78

4. Press [SHIFT] + the cursor key [↑] or [↓] simultaneously.
 – The joint speed moves up and down.

 MOV J 0.0, 78

5. Press [ENTER].
 – The MOV instruction is registered.

 Move instruction is registered.

 0000 NOP
 0001 MOV J 0.0, 78
 0002 END

Follow the above instructions when conducting teaching. (Tool number, interpolation type, or play speed does not need to be set if it is same as the previous step.)

To make the setting so that the play speed tag is not displayed as a default, select {EDIT} from the menu and then select “ENABLE SPEED TAG” to delete “*”.

- The position level can be set at the same time that the move instruction is registered.
- To display the position level tag as a default, select {EDIT} from the menu and then select “ENABLE POS LEVEL TAG”.

Position Level: The position level is the degree of approximation of the manipulator to a taught position.
The position level can be added to move instructions MOVJ (joint interpolation) and MOVL (linear interpolation).
If the position level is not set, the precision depends on the operation speed. Setting an appropriate level moves the manipulator in a path suitable to circumferential conditions and the workpiece.
3 Teaching
3.2 Teaching Operation

The relationship between path and accuracy for position levels is as follows.

<table>
<thead>
<tr>
<th>Position Levels</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Teaching position</td>
</tr>
<tr>
<td>1 to 8</td>
<td>Fine Rough</td>
</tr>
</tbody>
</table>

Setting the Position Level

1. Select move instruction.
 - The DETAIL EDIT window appears.

2. Select the position level “UNUSED”.
 - The selection dialog box appears.
3. Select “PL”.

- The position level is displayed. The position initial value is 1.

4. Press [ENTER].

- To change the position level, select the level in the input buffer line, type the value using the Numeric keys, and press [ENTER]. The position level's move instruction is registered.

5. Press [ENTER].
For example, to perform the movement steps shown below, set as follows:

Steps P2, P4, and P5 are simple passing points, and do not require accurate positioning. Adding PL=1 to 8 to the move instructions of these steps moves the manipulator around the inner corners, thereby reducing the cycle time.

If complete positioning is necessary as P3 or P6, add PL=0.

<EXAMPLE>
 Passing points P2, P4, and P5:
 MOVL V=138 PL=3
 Positioning point P3 and P6:
 MOVL V=138 PL=0
3.2.3.2 Registering Reference Point Instructions

Reference point instructions (REFP) set an auxiliary point such as a wall point for weaving. Reference point Nos. 1 to 8 are assigned for each application. Follow these procedures to register reference point instructions.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor.
 - Move the cursor to the line immediately before the position where the reference point to be registered.
4. Grip the Enable switch.
 - The servo power is turned ON.
5. Press the axis operation key.
 - Move the manipulator to the position to be registered as the reference point.
6. Press [REFP] or select “REFP” from the inform list.
 - The reference point instruction is displayed in the input buffer line.
7. Change the reference point number in one of the following ways.
 - Move the cursor to the reference point number, and press [SHIFT] + the cursor key to change the reference point number; or
 - Press [SELECT] when the cursor is on the reference point number. Then, the data input buffer line appears. Input the number and press [ENTER].
8. Press [INSERT].
 - The [INSERT] key lamp lights.
 - When registering before the END instruction, pressing [INSERT] is not needed.
9. Press [ENTER].
 - The REFP instruction is registered.

SUPPLEMENT

The programming pendant does not have the [REFP] key for the application of spot welding, motor gun, and of material handling, assembling, and cutting.
3.2.3.3 Registering Timer Instructions

The timer instruction stops the manipulator for a specified time. Follow these procedures to register timer instructions.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor.
 - Move the cursor to one line before the position where the timer instruction is to be registered.

4. Press [TIMER].
 - The TIMER instruction is displayed on the input buffer line.

5. Change the timer value.
 - Move the cursor to the timer value and change it by pressing [SHIFT] + the cursor key. The timer unit of adjustment is 0.01 seconds.
 - If you use the Numeric keys to input the timer value, press [SELECT] when the cursor is on the timer value. The data input line appears. Input the value and press [ENTER].

6. Press [INSERT].
 - The [INSERT] key lamp lights.
 - When registering before the END instruction, pressing [INSERT] is not needed.

7. Press [ENTER].
 - The TIMER instruction is registered.
Changing Timer Value

1. Press [TIMER].
2. Press [SELECT].
 - The DETAIL EDIT window for the TIMER instruction appears.

3. Input the timer value on the instruction DETAIL EDIT window.

 (1) When ✔ is selected, the items available to be changed are displayed in the dialog box.

 (2) Select the particular item to be changed.
 - When a number is to be changed, move the cursor to the number and press [SELECT]. Input the desired value using the Numeric keys, and press [ENTER].

4. Press [ENTER].
 - The DETAIL EDIT window is closed and the JOB CONTENT window appears again. Modified content is displayed in the input buffer line.
3. Teaching
3.2 Teaching Operation

5. Press [INSERT].
 – The [INSERT] key lamp lights.
 – When registering before the END instruction, pressing [INSERT] is not needed.

6. Press [ENTER].
 – The TIMER instruction is registered.

```
0001 M02 Y1=50.00
0002 TIMERR T-1000
0003 MOV L V=100
```
3.2.4 Overlapping the First and Last Steps

Why is overlapping the first and last step necessary?

Assume that the job shown below is to be repeated. The manipulator moves from the last step (Step 6) to the first step (Step 1). If Step 6 and Step 1 are the same position, the manipulator moves directly Step 5 to Step 1, thereby improving work efficiency.

1. Move the cursor to the first step line.
2. Press [FWD].
 – The manipulator moves to the first step position.
3. Move the cursor to the last step line.
 – The cursor starts blinking.
 – When the cursor line position and the manipulator position are different in the JOB CONTENT window, the cursor blinks.
4. Press [MODIFY].
 – The key lamp lights.
5. Press [ENTER].
 – The position data for the first step is registered on the line of the last step.
 – At this time, only the position data can be changed in the last step. Interpolation type and play speed do not change.
3.3 Checking Steps

3.3.1 FWD/BWD Key Operations

Check whether the position of the taught steps is appropriate using [FWD] or [BWD] on the programming pendant. Each time [FWD] or [BWD] is pressed, the manipulator moves by a single step.

[FWD]: Moves the manipulator ahead in step number sequence. Only the move instruction is executed when [FWD] is pressed.

[INTERLOCK] + [FWD]: All instructions are executed alternately.

[BWD]: Moves the manipulator backward a step at a time in reverse step number sequence. Only the move instruction is executed.

NOTE

For safety, set manual speed at or below.

1. Move the cursor to the step to be checked.
2. Press [FWD] or [BWD].
 - The manipulator reaches the following / previous step and stops.
3.3.1.1 Precautions When Using FWD / BWD Operations

- **FWD Movements**
 - The manipulator moves in step number sequence. Only move instructions are executed when [FWD] is pressed. To execute all instructions, press [INTERLOCK] + [FWD].
 - The manipulator stops after playing a single cycle. It does not move after the END instruction is reached, even if [FWD] is pressed. However, at the end of a called job, the manipulator moves the instruction next to the CALL instruction.

- **BWD Movements**
 - The manipulator moves in reverse step number sequence. Only move instructions are executed.
 - The manipulator does not move after the first step is reached, even if [BWD] is pressed. However, at the beginning of a called job, the manipulator moves to the instruction immediately before the CALL instruction.

- **Circular Movements with FWD/BWD Key Operations**
 - The manipulator moves in a straight line to the first step of the circular interpolation.
 - There must be three circular interpolation steps in a row to move the manipulator in an arc.
 - If [FWD] or [BWD] operation is restarted after being stopped to move the cursor or to perform search, the manipulator moves in a straight line to the next step.
 - If [FWD] or [BWD] operation is restarted after being stopped to move the axis as shown below, the manipulator moves in a straight line to P2, the next circular interpolation. Circular motion is restored from P2 to P3.
Spline Curve Movements with FWD/BWD Operations

- The manipulator moves in a straight line to the first step of spline interpolation.

- There must be three spline curve motion steps in a row to perform a spline curve operation.

- Depending on the position where the [FWD] / [BWD] operation is performed, the alarm “IRREGULAR DISTANCES BETWEEN TEACHING POINTS” may occur.

- Note that FWD/BWD inching operations change the path of the manipulator and **caution is therefore required**. Performing these operations also increases the likelihood that the “IRREGULAR DISTANCES BETWEEN TEACHING POINTS” will occur.

- If the [FWD] or [BWD] operation is restarted after being stopped to move the cursor or perform a search, the manipulator moves in a straight line to the next step.

- If the [FWD] or [BWD] operation is restarted after being stopped to move the axis as shown below, the manipulator moves in a straight line to P2, the next spline curve motion step. Spline curve motion is restored from P2 onward. However, the path followed between P2 and P3 is somewhat different from the path followed at playback.

- If the manipulator is moved to P3 with [FWD], stopped, and then returned to P2 with [BWD], the path followed between P2 and P3 is different for each of the following: the first FWD operation, the BWD operation, and the consequent FWD operation.
3.3.1.2 Selecting Manual Speed

When [FWD] or [BWD] is pressed, the manipulator moves at the manual speed selected at that time. Selected manual speed can be checked by the manual speed indication on the programming pendant.

Manual speed is set with [FAST] and [SLOW]. FWD operation can be performed at a high speed by pressing [HIGH SPEED]. Follow these procedures to select a manual speed.

- Each time [FAST] is pressed, the speed switches in the order of "INCH" → "SLOW" → "MED" → "FAST".

- Each time [SLOW] is pressed, the speed switches in the order of "FAST" → "MED" → "SLOW" → "INCH".

- FWD/BWD operation is performed with SLW speed even if INCH is selected.

- [HIGH SPEED] is available only for the FWD operation but not for BWD operation.
3.3 Checking Steps

3.3.1.3 Moving to Reference Point

To check the position of a taught reference point, follow these procedures to move the manipulator to the reference point.

1. Move the cursor to the reference point instruction line to be checked.
2. Press [REFP] + [FWD].
 - The manipulator moves to the reference point of the cursor line.

3.3.1.4 Test Operations

Playback operations can be simulated in the teach mode with test operations. This function is convenient for checking continuous paths and operation instructions.

Test operation differs in the following ways from actual playback in the play mode.

- Operation speeds greater than the maximum teaching speed are reduced to the maximum teaching speed.
- Work instruction output, such as arc output, is not executed.

Note that the motion path for the playback operation is replayed during the test operation. Therefore, make sure that there is no obstacle around the manipulator and great caution should be exercised when the test operation is performed.

Motion Path for Test Operation

<table>
<thead>
<tr>
<th>Job Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP</td>
</tr>
<tr>
<td>MOVJ VJ=50.0 → A</td>
</tr>
<tr>
<td>MOVL V=1500.0 → B</td>
</tr>
<tr>
<td>MOVL V=1500.0 → C</td>
</tr>
</tbody>
</table>

There may be a slight difference between the motion path for the test operation and the motion path for the playback operation due to a mechanical error or control delay, etc.
Test operation is performed by pressing [INTERLOCK] and [TEST START]. For safety purposes, these keys will only function while the keys are held down.

1. Select {JOB} under the main menu.
2. Press {JOB}.
 - The test operation JOB CONTENT window appears.
3. Press [INTERLOCK] + [TEST START].
 - The manipulator starts the test cycle operation.
 - However, after the operation starts, the motion continues even if [INTERLOCK] is released.
 - The manipulator moves only while these keys are held down.
 - The manipulator stops immediately when [TEST START] is released.

NOTE
Always check safety conditions before pressing [INTERLOCK] + [TEST START] to start the manipulator in motion.

3.3.1.5 Machine Lock Operation

When "MACHINE LOCK" is enabled, the [FWD] / [BWD] operation or the test operation can be performed to check the status of input and output without moving the manipulator.

1. Press [AREA].
2. Select {UTILITY}.
3. Select {SETUP SPECIAL RUN}.
 - The SPECIAL TEACH window appears.
4. Select "MACHINE LOCK".
 - Press [SELECT] to switch "VALID" and "INVALID".

NOTE
- The setting of "MACHINE LOCK" is maintained even after the mode is switched: If the machine lock is set to "VALID" in the teach mode, it is still "VALID" after switching to the play mode. The same applies when the mode is switched from the play mode to the teach mode.
- Note that the machine lock becomes "INVALID" if the following operation is performed.
 - Execution of "CANCEL ALL SELECT" in the SPECIAL PLAY window.
 - Turning off the main power.
3.4 Modifying Steps

- Begin move instruction insertion.
 - Move step cursor to location where you want to insert the instruction.
 - Perform axis operations.
 - Set interpolation type.
 - Set play speed.
 - Set position level when necessary.
 - Press [INSERT].
 - Press [ENTER].
 - Insertion completed.

- Begin move instruction deletion.
 - Move cursor to location of instruction to be deleted.
 - Press [DELETE].
 - Press [ENTER].
 - Deletion completed.
3.4 Modifying Steps

It is not possible to change a move instruction to a reference point instruction and vice versa.

- Move step cursor to step to be modified.
- Modify position data:
 - Move to position to be modified using the axis operation keys.
 - Press [MODIFY].
 - Press [ENTER].
 - Modification completed.
- Modify interpolation type:
 - Perform axis operations to position to be modified.
 - Delete MOV instruction.
 - Press [MOTION TYPE] and select motion type.
 - Insert MOV instruction.
 - Modification completed.
3.4 Modifying Steps

Begin REFP instruction modification.

Deletions

Move step cursor to the REFP instruction to be deleted, and move the manipulator to the position.

Press [DELETE].

Press [ENTER].

Deletion completed.

Modifications

Move step cursor to the REFP instruction to be modified.

Perform axis operations.

Press [REFP].

Press [MODIFY].

Press [ENTER].

Modification completed.
Begin TIMER Instruction
Modification.

Deletions

Move edit cursor to the TIMER instruction to be deleted.

Press [DELETE].

Press [ENTER].

Deletion completed.

Modifications

Move edit cursor to the TIMER instruction to be modified.

Press [TIMER].

Enter timer value.

Press [MODIFY].

Press [ENTER].

Modification completed.
3.4 Modifying Steps

3.4.1 Displaying the JOB CONTENT Window for Editing

3.4.1.1 Currently Called Up Job
1. Select {JOB} under the main menu.
2. Select {JOB}.
 – The JOB CONTENT window appears.

3.4.1.2 Calling Up Other Jobs

 In any other than the teach mode, set the mode switch to “TEACH”.

1. Select {JOB} under the main menu.
2. Select {SELECT JOB}.
 – The JOB LIST window appears.

 ![JOB LIST Window]

3. Select the job name to be called.
3.4.2 Inserting Move Instructions

NOTE
Move instructions cannot be inserted when the servo power is OFF.

1. Move the cursor to the line immediately before the insert position.
 - The line immediately before where the move instruction is to be added.

<table>
<thead>
<tr>
<th>Step where move instruction is to be inserted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path before insertion</td>
</tr>
<tr>
<td>Path after insertion</td>
</tr>
</tbody>
</table>

 0006 MOV L V=276
 0007 TIMER T=1.00
 0008 DOUT OT#(1) ON
 0009 MOVJ VJ=100.0

2. Press the axis operation key.
 - Turn ON the servo power and press the axis operation key to move the manipulator to the position to be inserted.

 NOTE
 Confirm the move instruction on the input buffer line and set desired interpolation type and play speed.

3. Press [INSERT].
 - The key lamp will light.

 NOTE
 When the inserting position is immediately before the END instruction, pressing [INSERT] is not needed.

4. Press [ENTER].
 - The move instruction is inserted after the cursor line.

<table>
<thead>
<tr>
<th>The move instruction is added.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0006 MOV L V=276</td>
</tr>
<tr>
<td>0007 TIMER T=1.00</td>
</tr>
<tr>
<td>0008 DOUT OT#(1) ON</td>
</tr>
<tr>
<td>0009 MOVJ VJ=100.0</td>
</tr>
<tr>
<td>000901 MOV L V=558</td>
</tr>
<tr>
<td>0010 MOVJ VJ=100.0</td>
</tr>
</tbody>
</table>

5. Press [ENTER].
 - <Examples of Inserting a Move Instruction>
 * When a move instruction is inserted in the following job, it is placed on different lines according to the setting in the
3.4 Modifying Steps

Positions where the move instructions are inserted.

The default location for insertions is “before the next step”, but it is also possible to insert “after the cursor line”. This setting is made in the “Move Instruction Register Method” in the TEACHING CONDITION window.

NOTE
3.4.3 Deleting Move Instructions

1. Move the cursor to the move instruction to be deleted.

<table>
<thead>
<tr>
<th>Move instruction to be deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0003 MOV L V=138</td>
</tr>
<tr>
<td>0004 MOV L V=558</td>
</tr>
<tr>
<td>0005 MOV J VJ=50.00</td>
</tr>
</tbody>
</table>

 If the manipulator position differs from the cursor position on the window, the cursor blinks. Stop the blinking by either of the following procedures.

 NOTE
 1. Press [FWD] and move the manipulator to the position where the move instruction is to be deleted.
 2. Press [MODIFY] → [ENTER] to change the position data of the blinking cursor position to the current manipulator position.

2. Press [DELETE].
 - The key lamp will blink.

3. Press [ENTER].
 - The step indicated by cursor line is deleted.
3.4.4 Modifying Move Instructions

3.4.4.1 Modifying Position Data

1. Move the cursor to the MOV instruction to be modified.
 – Display the JOB CONTENT window and move the cursor to the move instruction to be changed.

2. Press the axis operation key.
 – Turn ON the servo power and press the axis operation key to move the manipulator to the desired position.

3. Press [MODIFY].
 – The key lamp will blink.

4. Press [ENTER].
 – The position data in the present position is registered.

 For MOV instructions for which position variables have been set, the position variables will not be changed.

3.4.4.2 Modifying Interpolation Type

1. Move the cursor to the move instruction to be modified.
 – Display the JOB CONTENT window, and move the cursor to the move instruction for which interpolation type is to be changed.

2. Press [FWD].
 – Turn ON the servo power and press [FWD] to move the manipulator to the position of the move instruction.

3. Press [DELETE].
 – The key lamp will blink.

4. Press [ENTER].
 – The cursor line step is deleted.

5. Press [MOTION TYPE].
 – Press [MOTION TYPE] to change the interpolation type.
 – Each time [MOTION TYPE] is pressed, the input buffer line instruction alternates.

6. Press [INSERT].

7. Press [ENTER].
 – The interpolation type and position data are changed at the same time.

NOTE Modifying only interpolation type is impossible. The interpolation type can be modified as a choice for modifying the position data.
3.4.5 Undo Operation

After inserting, deleting, or modifying an instruction, the operation can be undone.

The UNDO operation becomes enabled by selecting {EDIT} \(\rightarrow\) {ENABLE UNDO}, and becomes disabled by selecting {EDIT} \(\rightarrow\) {ENABLE UNDO} while editing a job.

NOTE

- The undo operation can be performed even after the manipulator is moved by the FWD or BWD operation or test operation after inserting, deleting, or modifying a move instruction. However, the undo operation cannot be performed if other instructions are edited or a job is executed in the play mode after editing the move instruction.
- The undo operation works only for the last five edited instructions only.

1. Press [ASSIST].
 - The assist menu appears.

2. Select {UNDO}.
 - The last operation is undone.

3. Select {REDO}.
 - The last UNDO operation is undone.
3.4.6 Modifying Reference Point Instructions

3.4.6.1 Deleting Reference Point Instructions

If the manipulator position differs from the cursor position, an error message is displayed. If this occurs, follow either of the procedures below.

NOTE

- Press [REFP] + [FWD] to move the manipulator to the position to be deleted.
- Press [MODIFY] then [ENTER] to change the reference point position data to the current position of the manipulator.

1. Move the cursor to the reference point instruction to be deleted.
2. Press [DELETE].
 - The key lamp will blink.
3. Press [ENTER].
 - The reference point instruction at the cursor line is deleted.

3.4.6.2 Modifying Reference Point Instructions

1. Move the cursor to the reference point instruction to be modified.
2. Move the manipulator with the axis operation keys.
 - Turn ON the servo power and use the axis operation keys to move the manipulator to the desired position.
3. Press [REFP].
4. Press [MODIFY].
 - The key lamp will light.
5. Press [ENTER].
 - The reference point instruction at the cursor line is changed.
3.4.7 Modifying Timer Instructions

3.4.7.1 Deleting Timer Instructions

1. Move the cursor to the timer instruction to be deleted.

 |
 |
 |
 |
 |
 | Timer instruction to be deleted
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
3.5 Modifying Jobs

3.5.1 Calling Up a Job

1. Select {JOB} under the main menu.
2. Select {SELECT JOB}.
 – The JOB LIST window appears.
3. Select the desired job.

3.5.2 Windows Related to Job

There are five types of job windows. Jobs can be checked and edited in these windows.

- JOB HEADER Window
 Comments, data and time of registration, edit prohibit status, and so on are displayed and edited.

- JOB CONTENT Window
 The content of the registered job can be displayed and edited.

- COMMAND POSITION Window
 The taught data is displayed.

- JOB LIST Window
 The registered job is sorted alphabetically, then displayed, and the job is selected.

- JOB CAPACITY Window
 The number of registered jobs, amount of memory, number of steps used, etc. is shown.
3.5 Modifying Jobs

3.5.3 JOB HEADER Window

1. Select {JOB} under the main menu.
2. Select (JOB).
3. Select {DISPLAY} under the menu.
4. Select {JOB HEADER}.

- The JOB HEADER window appears. Scroll the window using the cursor.

A. JOB NAME
Displays the name of the current job.

B. COMMENT
Displays the comments attached to the current job. This can be edited in this window.

C. DATE
Displays the date and time of the last editing of the job.

D. CAPACITY
Displays the amount of memory that is being used to register this job.

E. LINES
Displays the total number of instructions registered in this job.

F. STEPS
Displays the total number of move instructions registered in this job.

G. EDIT LOCK
Displays whether the edit prohibit setting for this job is ON or OFF. This can be changed in this window.

H. TO SAVE TO FD
Displays “DONE” if the contents of the job have already been saved to an external memory after the date and time of the last editing operation, and displays “NOT DONE” if they have not been saved. The job is marked as “DONE” only if it is saved as an independent job or as a related job. If it is saved in a CMOS batch operation, it is not marked as “DONE”.

I. GROUP SET
Displays the control group that this job controls. If the master axis is specified, the master axis is highlighted.

J. JOB KIND
Displays the kind of this job.

To return to the JOB CONTENT window from the JOB HEADER window, select {DISPLAY} from the menu and then select (JOB CONTENT).
3.5.4 JOB CONTENT Window

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
 -  (Left) : The cursor is moved to the address area.
 -  (Right): The cursor is moved to the instruction area.

A. Address Area
Displays the line numbers, the step numbers and the tool numbers which are registered in the each step.

B. Instruction Area
Displays instructions, additional items, and comments. Line editing is possible.
3.5.4.1 Switching the Address Area

Able to switch a state of the display (to hide or show) of the following numbers in the address area.

- Step numbers
- Tool numbers in the each step

1. Select the {JOB} under the main menu.
2. Select {JOB CONTENT}.
 - Job content appears.
3. Select {DISPLAY} in the menu area.
 - A pull down menu appears.
4. Select {ENABLE STEP NO}.
 - Step numbers appear in the address area.
 - In the pull down menu, {ENABLE STEP NO} changes to {✻ ENABLE STEP NO}.

![Diagram of DX100 interface showing step numbers in the address area and pull down menu options].

STEP NO. 132 of 793
3. Teaching
3.5 Modifying Jobs

5. Select { ✓ ENABLE STEP NO}.
 – Step numbers in the address area disappear.
 – In the pull down menu, { ✓ ENABLE STEP NO} changes to (ENABLE STEP NO).

6. Select {ENABLE TOOL NO}.
 – Tool numbers appear in the address area.
 – In the pull down menu, (ENABLE TOOL NO) changes to { ✓ ENABLE TOOL NO}.

Tool numbers only appear in the line during the move instruction and also appear under the teach mode.
7. Select {※ ENABLE TOOL NO}.

- Step numbers in the address area disappear.
- In the pull down menu, {※ ENABLE TOOL NO} changes to {ENABLE TOOL NO}.

8. Select both {ENABLE STEP NO} and {ENABLE TOOL NO}.

- The both step numbers and tool numbers appear in the address area.
- In the pull down menu, {ENABLE STEP NO} changes to {※ ENABLE STEP NO}.
- In the pull down menu, {ENABLE TOOL NO} changes to {※ ENABLE TOOL NO}.

Tool numbers only appear in the line during the move instruction and also appear under the teach mode.
9. Select both {※ ENABLE STEP NO} and {※ ENABLE TOOL NO}.
 – The both step numbers and tool numbers disappear in the address area.
 – In the pull down menu, {※ ENABLE STEP NO} changes to {ENABLE STEP NO}.
 – In the pull down menu, {※ ENABLE TOOL NO} changes to {ENABLE TOOL NO}.
3.5.5 COMMAND POSITION Window

1. Select {ROBOT} under the main menu.
2. Select {COMMAND POSITION}.

- Edit operations cannot be conducted on this window, but the taught play speed and position data can be viewed on this window.

A. Interpolation
 Displays the interpolation type.

B. Speed
 Displays the play speed.

C. Command Position
 Displays the tool file number and position data that has been taught for this job. Steps which have no position data, such as move instructions which use position variables, are marked with an asterisk (*).

D. Current Data
 Displays the current tool file number and position of the manipulator.
3. Teaching
3.5 Modifying Jobs

3.5.6 JOB CAPACITY Window

1. Select {JOB} under the main menu.
2. Select {JOB CAPACITY}.

![JOB CAPACITY Window](image)

A	NUMBER OF JOBS	7
B	USED MEMORY	4096 BYTES
	EEPROM	3042440 BYTES
C	STEPS	10
	REMAIN STEPS	120779
D	EDITING BUFFER	NOT USED

A. NUMBER OF JOBS
Displays the total number of jobs currently registered in the memory of DX100.

B. USED MEMORY
Displays the total amount of memory used in the DX100.

C. STEPS
Displays the total number of used steps.

D. EDITING BUFFER
Displays editing buffer use.
3.6 Editing Instructions

The editable content differs depending on whether the cursor is in the address area or instruction area.

A. When the cursor is in the address area
 Instructions can be inserted, deleted, or modified.

B. When the cursor is in the instruction area
 The data of additional items of already-registered instructions can be modified, inserted, or deleted.
 Editing only additional items is called “line editing”.

When inserting or modifying instructions, input the instruction with the function keys such as [TIMER], etc. or by using the instruction list dialog box.

The selected instruction is displayed on the input buffer line with the same additional items as registered previously.

If the addition, deletion or modification of additional item is needed, edit on the instruction DETAIL EDIT window. If it is not needed, continue the registration process.
3.6.1 Instruction Group

The instructions are divided into eight groups by processing or each work.

<table>
<thead>
<tr>
<th>Display</th>
<th>Instruction Group</th>
<th>Content</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN/OUT</td>
<td>I/O Instruction</td>
<td>Controls input and output</td>
<td>DOUT, WAIT</td>
</tr>
<tr>
<td>CONTROL</td>
<td>Control Instruction</td>
<td>Controls processing and each work</td>
<td>JUMP, TIMER</td>
</tr>
<tr>
<td>MOTION</td>
<td>Move Instructions</td>
<td>Moves the manipulator</td>
<td>MOVJ, REFP</td>
</tr>
<tr>
<td>DEVICE</td>
<td>Work Instructions</td>
<td>Operates arc welding, spot welding, handling, painting, etc.</td>
<td>ARCON, WVON, SVSPOT, SPYON</td>
</tr>
<tr>
<td>ARITH</td>
<td>Operating Instructions</td>
<td>Performs arithmetic calculation</td>
<td>ADD, SET</td>
</tr>
<tr>
<td>SHIFT</td>
<td>Shift Instructions</td>
<td>Shifts the teaching point</td>
<td>SFTON, SFTOF</td>
</tr>
<tr>
<td>SENS (Option)</td>
<td>Sensor Instructions (Option)</td>
<td>Instructions related to the sensor</td>
<td>COMARCON</td>
</tr>
<tr>
<td>OTHER</td>
<td>Other Instructions</td>
<td>Instructions for functions other than above</td>
<td>SHCKSET</td>
</tr>
</tbody>
</table>

- **SAME** - Specifies the instruction where the cursor is.
- **PRIOR** - Specifies the previously-registered instruction.

Instruction List

By pressing [INFORM LIST], the instruction group list dialog box appears.

By selecting a group, the instruction list dialog box of the selected group appears.
3.6.2 Inserting Instructions

1. Move the cursor to the address area in the JOB CONTENT window.
 - Move the cursor to the line immediately before where the instruction is to be inserted, in the teach mode.

 ![Line before where instruction is to be added.](image)

2. Press [INFORM LIST].
 - The INFORM command list appears, and an underline is displayed beneath the line number in the address area.

 ![INFORM command list with underline](image)

3. Select the instruction group.
 - The instruction list dialog box appears. The selected instruction is displayed on the input buffer line with the same additional items as registered previously.

 ![Instruction list dialog box](image)

4. Select the instruction.

5. Change the data of additional items or variables as required.
 - *<When Nothing is to be Changed>*
 1. Proceed to Step 6.
3.6 Editing Instructions

– <When Additional Items are to be edited>

1. Changing numeric data

 (1) Move the cursor to the desired item and press [SHIFT] + the cursor key to increase or decrease the value.

 - [Diagram]

 (2) To directly input the value using Numeric keys, press [SELECT] to display the input buffer line.

 - [Diagram]

 (3) Type the value and press [ENTER]. The value on the input buffer line is changed.

2. Adding, modifying, or deleting an additional item

 (1) To add, modify, or delete an additional item, move the cursor to the instruction on the input buffer line and press [SELECT]. The DETAIL EDIT window appears.

 - [Diagram]

 – To add an item, move the cursor to “UNUSED” and press [SELECT]. The selection dialog box appears.

 (2) Move the cursor to the desired item and press [SELECT].

 - [Diagram]

 To delete an item, move the cursor to the item to be deleted and select “UNUSED”.

 - [Diagram]
3. Changing the data type

(1) To change the data type of an additional item, move the cursor to the appropriate field of the item and press [SELECT]. The data type list appears. Select the desired data type.

(2) After additional items have been added, modified or deleted as required, press [ENTER]. The DETAIL EDIT window closes and the JOB CONTENT window appears.

6. Press [INSERT] and [ENTER].
 – The instruction displayed in the input buffer line is inserted.
3.6.3 Deleting Instructions

1. Move the cursor to the address area in the JOB CONTENT window.
 - Move the cursor to the instruction line to be deleted, in the teach mode.

 ![The line to be deleted]

2. Move the cursor to the deleting line in the address area.

3. Press [DELETE] and [ENTER].
 - The instruction is deleted and the following lines move up.

 ![The following lines move up.]

3.6.4 Modifying Instructions

1. Move the cursor to the address area in the JOB CONTENT window.
 - Move the cursor to the instruction line to be modified, in the teach mode.

 ![Instruction line to be changed]

2. Press [INFORM LIST].
 - The INFORM command list appears and the cursor moves to the INFORM command list.

 ![INFORM command list]

3. Select the instruction group.
 - The instruction list dialog box appears. The selected instruction is displayed on the input buffer line with the same additional items as registered previously.
4. Move the cursor key to the instruction to be modified and press [SELECT].

5. Change the data of additional items or variables as required.

 – **<Editing Additional Items>**

 1. Changing numeric data

 (1) Move the cursor to the desired item and press [SHIFT] + the cursor key to increase or decrease the value.

 ![Image of cursor movement]

 – To directly input the value using Numeric keys, press [SELECT] to display the input buffer line for the numeric values.

 ![Image of numeric input]

 (2) Type the value and press [ENTER]. The value on the input buffer line is changed.

 2. Adding, modifying, or deleting an item

 (1) To add, modify or delete an additional item, move the cursor to the instruction on the input buffer line and press [SELECT]. The DETAIL EDIT window appears.

 ![Image of DETAIL EDIT window]

 (2) To add an item, move the cursor to “UNUSED” and press [SELECT]. The selection dialog box appears.
3. Changing the data type

(1) To change the data type of an additional item, move the cursor to

\[\checkmark \]

of the item and press [SELECT]. The data type list appears. Select the desired data type.

(2) After additional items have been added, modified or deleted as required, press [ENTER]. The DETAIL EDIT window closes and the JOB CONTENT window appears.

6. Press [MODIFY] and [ENTER].
3 Teaching
3.6 Editing Instructions

- The instruction is modified to the instruction displayed in the input buffer line.
3.6.5 Modifying Additional Numeric Data

1. Move the cursor to the instruction area in the JOB CONTENT window.
 - Move the cursor to the instruction area if it is in the address area.
 - Press [SELECT] to change the mode to line editing mode.

2. Select the line where the number data is to be modified.
 - The selected line can now be edited.

```
Number data to be modified

0004 MOVE V=0.00,0.0
0006 TIM0 T=4.00
```

3. Move the cursor to the numeric data to be modified.

4. Input the desired number.
 - Press [SHIFT] + the cursor key to increase or decrease the value. To directly input the number, press [SELECT]. The input buffer line appears. Type the number and press [ENTER].

```
0006 TIM0 T=4.00
```

5. Press [ENTER].
 - The numeric data is modified.

```
Instruction line for which numeric data was changed.

0004 MOVE V=0.00,0.0
0005 TIM0 T=4.00
0006 TIM0 T=4.00
```
3.6.6 Modifying Additional Items

1. Move the cursor to the instruction area in the JOB CONTENT window.

2. Select the instruction line for which the additional item is to be modified.
 - Move the cursor to the instruction area if it is in the address area
 - Press [SELECT] to change the mode to line editing mode.

3. Select the instruction.
 - Move the cursor key to a instruction, the press [SELECT] to display DETAIL EDIT window.

4. Select the additional item to be modified.
 - The selection dialog box appears.

5. Select the desired additional item.
 - The modified additional item is displayed on the DETAIL EDIT window.

6. Press [ENTER].
 - The DETAIL EDIT window closes, and the JOB CONTENT window appears.

7. Press [ENTER].
 - Contents of the input buffer line are registered on the cursor line of the instruction area.
3.6.7 Inserting Additional Items

1. Move the cursor to the instruction area in the JOB CONTENT window.

2. Select the instruction line for which the additional item is to be inserted.
 - The selected line can now be edited.

3. Select the instruction.
 - Move the cursor key to [SELECT] and press, then DETAIL EDIT window appears.

4. Select the additional item to be inserted on DETAIL EDIT window.
 - The selection dialog box appears.

5. Select inserting additional item.
 - The item to be added appears.
 - When the additional item needs the numeric data, move the cursor to the number and press [SELECT]. The input buffer line appears. Type the number and press [ENTER].
6. Press [ENTER].
 – DETAIL EDIT window closes and JOB CONTENT window appears.
7. Press [ENTER].
 – Contents of the input buffer line are registered on the cursor line of the instruction area.

Instruction line for which additional item was added.

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Line</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>DX100 DX100.00</td>
<td>0003</td>
<td>DX100 DX100.00</td>
</tr>
<tr>
<td>0000</td>
<td></td>
<td>0000</td>
<td></td>
</tr>
</tbody>
</table>
3.6.8 Deleting Additional Items

This operation cannot be used for the additional item which is locked.

1. Move the cursor to the instruction area in the JOB CONTENT window.

2. Select the line where the additional item is to be deleted.
 - Move the cursor to the instruction area when it is in the address area.
 - Press [SELECT] to change the mode to line editing mode.

3. Select the instruction.
 - Move the cursor to the instruction and press [SELECT], then DETAIL EDIT window appears.

4. Select the additional item to be deleted.
 - The selection dialog box appears.

5. Select “UNUSED”.
 - “UNUSED” is displayed on the DETAIL EDIT window.

6. Press [ENTER].
 - The DETAIL EDIT window closes, and the JOB CONTENT window appears.

7. Press [ENTER].
 - Contents of the input buffer line are registered on the cursor line of the instruction area.
3.7 Editing Jobs

The following five operations are to edit jobs.

- **Copy** : Copies a specified range to the buffer.
- **Cut** : Copies a specified range from a job to the buffer, and deletes it in a job.
- **Paste** : Inserts the contents of the buffer into a job.
- **Reverse Paste** : Reverses the order of the contents of the buffer, and inserts them into a job.
 (Refer to the following figure.)
- **Base Reverse Paste** : Reverses the order of the contents of the buffer and adjusts the to-and-from speeds same, and inserts them into a job.
 (Refer to the following figure.)

```
Execute Base Reverse Paste

: MOVL V=100 ; Move to at V=100
    MOVL V=50 ; Move to at V=50
    MOVL V=80 ; Move to at V=80
    MOVL V=30 ; Move to at V=30
    MOVL V=70 ; Move to at V=30

: Execute Reverse Paste

: MOVL V=100 ; Move to at V=100
    MOVL V=50 ; Move to at V=50
    MOVL V=80 ; Move to at V=80
    MOVL V=30 ; Move to at V=30
    MOVL V=70 ; Move to at V=70
    MOVL V=30 ; Move to at V=30
    MOVL V=80 ; Move to at V=80
    MOVL V=50 ; Move to at V=50
```

The speed and interpolation are different going and returning.

The speed and interpolation are the same going and returning.
3 Teaching
3.7 Editing Jobs

The buffer content is inserted.

Buffer content order is reversed and inserted.
3.7 Editor Jobs

3.7.1 Selecting the Range

After setting the range, Copy and Delete can be performed.

1. Move the cursor to the instruction area in the JOB CONTENT window.

 - The range specification begins, and the address is displayed in reverse.

2. Move the cursor to the start line and press [SHIFT] + [SELECT].
 - The range specification begins, and the address is displayed in reverse.

3. Move the cursor to the end line.
 - The range is varied by moving the cursor. Up to the line specified by the cursor is the range.
3.7.2 Copying

Before copying, the range to be copied has to be specified.

1. Select {EDIT} under the menu.
 – The pull-down menu appears.

 ![Pull-down menu]

2. Select {COPY}.
 – The specified range is copied to the buffer.

3.7.3 Cutting

Before cutting, the range to be cut has to be specified.

1. Select {EDIT} under the menu.
 – The pull-down menu appears.

2. Select {CUT}.
 – The confirmation dialog box appears. When “YES” is selected, the specified range is deleted and copied to the buffer.
 – When “NO” is selected, the cutting operation is canceled.
3.7.4 Pasting

Before pasting, the range to be pasted has to be stored in the buffer.

1. Move the cursor to the line immediately before the desired position in the JOB CONTENT window.
 - The pull-down menu appears.

2. Select {EDIT} under the menu.

3. Select {PASTE}.
 - The confirmation dialog box appears.
 - When “YES” is selected, the contents of the buffer are inserted to the job.
 - When “NO” is selected, the pasting operation is canceled.
3.7.5 Reverse Pasting

Before pasting, the range to be pasted has to be stored in the buffer.

1. Move the cursor to the line immediately before the desired position in the JOB CONTENT window.

2. Select {EDIT} under the menu.
 - The pull-down menu appears.

3. Select {REVERSE PASTE}.
 - The confirmation dialog box appears.
 - When "YES" is selected, the contents of the buffer are reverse pasted to the job.
 - When "NO" is selected, the reverse-pasting operation is canceled.
3.8 Test Operations

Playback operations can be simulated in the teach mode with test operations. This function is convenient for checking continuous paths and operation instructions.

Test operation differs in the following ways from actual playback in the play mode.

- Operation speeds greater than the maximum teaching speed are reduced to the maximum teaching speed.
- Only machine lock is available among special operations for playback in the play mode.
- Work instruction output, such as arc output, is not executed.

3.8.1 Test Operation Procedures

Test operation is performed by pressing [INTERLOCK] and [TEST START]. For safety purposes, these keys will only function while the keys are held down.

1. Select {JOB} under the main menu.
2. Press {JOB}.
 - The test operation JOB CONTENT window appears.
3. Press [INTERLOCK] + [TEST START].
 - The manipulator starts the test cycle operation.
 - The manipulator moves only while these keys are held down. However, after the operation starts, the motion continues even if [INTERLOCK] is released.
 - The manipulator stops immediately when [TEST START] is released.

NOTE Always check safety conditions before starting the manipulator in motion.
3.9 Other Job-editing Functions

3.9.1 Editing Play Speed

There are two ways to modify play speed:

• Modification of Speed Type
• Relative Modification

3.9.1.1 Modification of Speed Type

This method is used to modify the speed type (such as VJ, V, VR, etc.)

<table>
<thead>
<tr>
<th>Type of Play Speed</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VJ</td>
<td>Joint Speed</td>
</tr>
<tr>
<td>V</td>
<td>TCP Speed</td>
</tr>
<tr>
<td>VR</td>
<td>Posture Angle Speed</td>
</tr>
<tr>
<td>VE</td>
<td>Base Axis Speed</td>
</tr>
</tbody>
</table>

Example:

0005 MOVJ VJ=25.00
0006 MOVL V=138
0007 MOVJ VJ=50.00

Only VJ is changed to 100.

0005 MOVJ VJ=100.00
0006 MOVL V=138
0007 MOVJ VJ=100.00

3.9.1.2 Relative Modification

All steps are selected regardless of the play speed type. This method is used to change all steps by a specified percentage (1% to 200%). This is called relative modification.

Example:

0005 MOVJ VJ=25.00
0006 MOVL V=138
0007 MOVJ VJ=50.00

Speed is doubled.

0005 MOVJ VJ=50.00
0006 MOVL V=276
0007 MOVJ VJ=100.00

The speed of the entire job or specified section can be changed.

1. Select {JOB} under the main menu.
2. Select {JOB}.
 – The JOB CONTENT window appears.
3. Move the cursor to the instruction area.
4. Press [SHIFT] + [SELECT] in the speed modify start line.
 – If the section is not specified, the speed of the entire job will be changed.
 – Move the cursor to the end line. The line numbers of the selected lines are highlighted.
5. Select {EDIT} under the menu.

6. Select {CHANGE SPEED}.
 – The SPEED MODIFICATION window appears.

7. Set desired items.

 A. START LINE NO.
 Displays the first line number of the section to be modified.

 B. END LINE NO.
 Displays the last line number of the section to be modified.

 C. MODIFICATION TYPE
 Selects the confirmation before changing: “CONFIRM” or “NO CONFIRM”.
 Each time [SELECT] is pressed when the cursor is on this item, the setting alternates between “CONFIRM” and “NO CONFIRM”.

 D. SPEED KIND
 Selects the speed type.
 When [SELECT] is pressed when the cursor is on this item, selection dialog box appears. Select the speed type to be changed.

 E. SPEED
 Specifies the speed value.
 When [SELECT] is pressed when the cursor is on this item, the mode changes to the number input mode. Input the speed value and press [ENTER].

8. Select “EXECUTE”.
 – The speed begins to change.
 – If “MODIFICATION TYPE” is set to “CONFIRM”, the confirmation dialog box “Modifying speed” is displayed. Press [ENTER] to change the speed on the first line and search for the next speed. Press the UP/DOWN cursor button to keep the speed on the first line and search for the next speed. To cancel the speed modification, press [CANCEL].
 – If “MODIFICATION TYPE” is set to “NOT CONFIRM”, all the speeds of the specified section are changed.
3.9 Other Job-editing Functions

3.9.1.3 Modification by TRT (Traverse Time)

Modifications made by TRT have the following characteristics:

- By setting the time required to execute a move instruction (moving time) to a desired value, the speeds can be modified.
- It is possible to measure the moving time without actually moving the manipulator.

For example, when the movement from lines 5 through 20 currently requires 34 seconds, and you want to reduce it to 15 seconds or extend it to 50 seconds, this function is used.

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
3. Move the cursor to the instruction area.
4. Press [SHIFT] + [SELECT] in the weaving time measure start line.
 - Move the cursor to the end line. The line numbers of the selected lines are highlighted.
5. Select {EDIT} under the menu.
6. Select {TRT}.
 - The TRT window appears.

7. Set the desired items.

A. START LINE NO.
Displays the first line number of the section to be measured and modified.

B. END LINE NO.
Displays the last line number of the section to be measured and modified.

C. MOVING TIME
The weaving time needed to move from the first number to last number is measured and displayed.

D. SETTING TIME
Set the desired weaving time.
When [SELECT] is pressed when the cursor is on this item, the input buffer line appears. Input the desired weaving time and press [ENTER].
8. Select “EXECUTE”.

– The speed is changed according to the setting.

NOTE

- If instructions that include specific speed data such as SPEED or ARCON instructions (including speed data of the welding condition file) exist in the specified section, the speed data for those steps are not changed. Therefore, in such cases, the set time and the actual time required are not same.

- If the speed data is limited by the maximum value, the following message is displayed.
3.9.2 Editing Interpolation Type

1. Select {JOB} under the main menu.
2. Select {JOB}.
 – The JOB CONTENT window appears.
3. Move the cursor to the instruction area.
4. Select the line to be modified.
 – The instruction on the cursor is displayed in the input buffer line.

5. Press [SHIFT] + the cursor key simultaneously.
 – The interpolation type in the input buffer line changes.
 – The modification of the speed according to the modification of the interpolation type is calculated by the ratio to maximum speed at each speed.
 – Joint Speed: MAX=100.0%
 Linear Speed: MAX=9000cm/min
 (e.g.)
 Joint Speed: 50% = Linear Speed: 4500cm/min
 Linear Speed: 10% = Linear Speed: 900cm/min

6. Press [ENTER].
 – The instruction on the cursor line is replaced with one on the input buffer line.
3.9.3 Editing Condition Files

Condition files are prepared in order to set the conditions for the manipulator to execute instructions.

Multiple condition files are provided for each application. More than one pattern can be set up in each condition file. The patterns are listed by “condition numbers”. This number is specified by the work instruction in a job.

Refer to DX100 Operator’s Manual of each application for information regarding the contents and editing methods of the condition file.
3.9.4 User Variables

User variables are used for jobs to store counters, calculation results or input signals. Since the same user variable can be used in multiple jobs, save the numerical values as common references for the jobs and the user variables are maintained even when the power is turned OFF.

User variables have the following applications:

- Controlling of the number of workpieces
- Controlling of the number of jobs
- Sending/receiving of information between jobs

The data formats for user variables are described in the following table:

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Variable No. (pcs)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Type</td>
<td>B000 to B099 (100)</td>
<td>Range of storable values is from 0 to 255. Can store I/O status. Can perform logical operations (AND, OR, etc.)</td>
</tr>
<tr>
<td>Integer Type</td>
<td>1000 to 1099 (100)</td>
<td>Range of storable values is from -32768 to 32767.</td>
</tr>
<tr>
<td>Double Precision Integer Type</td>
<td>D000 to D099 (100)</td>
<td>Range of storable values is from -2147483648 to 2147483647.</td>
</tr>
<tr>
<td>Real Type</td>
<td>R000 to R099 (100)</td>
<td>Range of storable values is from -3.4E+38 to 3.4E38. Accuracy: 1.18E-38 < x ≤ 3.4E38</td>
</tr>
<tr>
<td>Character Type</td>
<td>S000 to S099 (100)</td>
<td>Maximum storable number of characters is 16.</td>
</tr>
<tr>
<td>Position Type</td>
<td>P000 to P127 (128)</td>
<td>Can store position data in pulse form or in XYZ form. XYZ type variable can be used as target position data for move instructions, and as incremental values for parallel shift instructions.</td>
</tr>
<tr>
<td></td>
<td>BP000 to BP127 (128)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EX000 to EX127 (128)</td>
<td></td>
</tr>
</tbody>
</table>
3.9.4.1 Setting Byte, Integer, Double Precision Integer, and Real Type Variables

1. Select **(VARIABLE)** under the main menu.
 - (BYTE), (INTEGER), (DOUBLE), and (REAL) are displayed for the sub menu.

2. Select desired variable type.
 - The **BYTE VARIABLE** window appears. (Following is a case that (BYTE) is selected.)

Play Speed V:
MOVL V=I000
The variable I000 is used for speed V with this move instruction.
The unit for V is 0.1mm per second.
For example, if I000 were set as 1000, the following would be true:
I000=1000 → unit for V is 0.1mm/s → V=100.0mm/s
Note that, depending on the unit being used, the value of the variable and the value of the actual speed on occasion might not match.

Play Speed VJ:
MOVL VJ=I000
The unit for VJ is 0.01%.
For example, if I000 were set as 1000, the following would be true:
I000=1000 → unit for VJ is 0.01% → VJ=10.00%.

Timer T:
TIMER T=I000
The unit for T is 0.01 seconds.
For example, if I000 were set as 1000, the following would be true:
I000=1000 → unit for T is 0.01 seconds → T=10.00 seconds.
3. Move the cursor to the desired variable No.

 – When the desired variable number is not displayed, move the cursor with either of the following operations.

 • Move the cursor on the variable No. and press [SELECT]. Then input the variable No. using the Numeric keys and press [ENTER].

 • Move the cursor to the menu area and select {EDIT} → {SEARCH}. Then input the variable No. with the Numeric keys and press [ENTER]

4. Move the cursor to the data of the variable.

 – The number can be directly typed.

5. Input the desired number.

6. Press [ENTER].

 – Input value is set to the variable on the cursor position.
3.9.4.2 Setting Character Type Variables

1. Select {VARIABLE} under the main menu.
2. Select {STRING}.
 - The STRING VARIABLE window appears.

3. Move the cursor to the desired variable No.
 - When the desired variable number is not displayed, move the cursor with either of the following operations.
 - Move the cursor on the variable No. and press [SELECT]. Then input the variable No. using the Numeric keys and press [ENTER].
 - Move the cursor to the menu area and select {EDIT} → {SEARCH}. Then input the variable No. with the Numeric keys and press [ENTER]
3 Teaching
3.9 Other Job-editing Functions

4. Move the cursor to the data of the variable.
 – The characters can be directly typed.

5. Input the desired characters.
 – For information on character input operation, refer to section 1.2.6
 “Character Input Operation” on page 1-18.

6. Press [ENTER].
 – The input characters are set to the variable on the cursor position.
3.9.4.3 Registering Variable Name

1. Select {VARIABLE} under the main menu.
2. Select desired variable.
 – Select any variable type from among byte type, integer type, double precision integer type, real type, robot position type, base position type, and station position type.
3. Move the cursor to desired variable number.
 – If desired variable number is not displayed, move the cursor by either of following operations.
 • Select the variable number, input desired variable number and press [ENTER]. The cursor moves to the variable number to be input.
 • Move the cursor to the menu area and select {EDIT}→{SEARCH}. Input desired variable number and press [ENTER]. The cursor moves to the variable number to be input.
4. Select “NAME”.
 – The input buffer line appears.
5. Input name.
6. Press [ENTER].
 – The variable name is registered.

Refer to section 1.2.6 “Character Input Operation” on page 1-18 for the character input operation.
3.9.4.4 Displaying Position Variables

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.
 - The POSITION VARIABLE window of desired type among robot type, base type, and station type appears.

3. Move to a page with the objective variable number.
 - When the desired variable number is not displayed, move the cursor with either of the following operations.
 • Press the page key or [SHIFT] + page key .
 • Press page button, then input the variable No. using the Numeric keys and press [ENTER].
 • Move the cursor to the menu area and select {EDIT} \rightarrow {SEARCH}. Then input the variable No. with the Numeric keys and press [ENTER].
3.9.4.5 Setting Position Variables

The following table shows the types of position variables and setting methods.

- The setting of position variables is done in the teach mode.
- Turn the servo power ON when setting the variables with the axis keys.

Table 3-6: Types of Position Variables and Setting Method

<table>
<thead>
<tr>
<th>Type</th>
<th>Pxxx (Robot)</th>
<th>BPxxx (Base)</th>
<th>EXxxx (Station)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulse Type</td>
<td>XYZ Type</td>
<td>Pulse Type</td>
</tr>
<tr>
<td></td>
<td>Select coordinates from base, robot, user, tool.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Setting Method**
 - Using the numeric keys
 - Using the axis keys

![Diagram showing setting methods](image-url)
3.9.4.6 Setting Position Variables Using the Numeric Keys

- **Pulse Type**

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.
 - The desired variable window appears (robot, base, or station). (The POSITION VARIABLE window is used for this example.)

![Position Variable Window](image)

3. Select the variable data type.
 - The selection dialog box appears.
 - If the position variable was set before, confirmation dialog box appears for data clear. If "YES" is selected, the data is cleared.

![Selection Dialog Box](image)

4. Select {PULSE}.
5. Move the cursor to desired data to be input and press [SELECT].
6. Input the value.
7. Press [ENTER].
 - The value is set in the cursor position.

![Setting Value](image)
3.9 Other Job-editing Functions

XYZ Type

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.
3. Select the variable data type.
 - The selection dialog box appears.
4. Select desired coordinates except PULSE.
5. Move the cursor to desired data to be input and press [SELECT].
6. Input the value.
7. Press [ENTER].
 - The value is set in the cursor position.

(1) Setting of "<TYPE>"

- Each time [SELECT] is pressed when the cursor is on the setting data in the input buffer line, the settings alternate.

About "<TYPE>"

- It is not necessary to set a type if the position variable is to be used for parallel shift operations.
- When the position variable is used with a move instruction such as "MOVJ P001", it is necessary to set a type. For details on types, refer to section 3.9.4.10 "Manipulator Types" on page 3-89. Current Position Window (XYZ) shows the current setting of a type.
3.9.4.7 Setting Position Variables Using the Axis Keys

- **Pulse Type**

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.
 - The desired variable window appears (robot, base, or station).
3. Press [SHIFT] + [ROBOT]. When you need an external axis position, press [SHIFT]+[EX.AXIS].

 (1) When there are two or more robot, base, or a station, specify the axis with following operation.

 - **Robot**
 Each time [SHIFT] + [ROBOT] is pressed, the axis displayed on the status line changes:

 R1 → R2 → ... → R8.

 - **Base or Station**
 Each time [SHIFT]+[EX.AXIS] is pressed, the axis displayed on the status line changes:

 B1→ B2 → ... → B8 → S1 → S2 → → S24.

 (2) Check the selected axis on the status line.
4. Move the manipulator with the axis keys.
 - Move the manipulator or the external axis to the desired position to be set to position variable.
5. Press [MODIFY].
6. Press [ENTER].

- **XYZ Type**

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.

 (1) When there are two or more robot, base, or a station, specify the axis with following operation.

 - **Robot**
 Each time [SHIFT] + [ROBOT] is pressed, the axis displayed on the status line changes:

 R1 → R2 → ... → R8.

 - **Base or Station**
 Each time [SHIFT]+[EX.AXIS] is pressed, the axis displayed on the status line changes:

 B1→ B2 → ... → B8 → S1 → S2 → → S24.

 (2) Check the selected axis on the status line.
3. Move the manipulator with the axis keys.
 - Move the manipulator or the external axis to the desired position to be set to position variable.
4. Press [MODIFY].
5. Press [ENTER].
3.9.4.8 Deleting Data Set of Position Variables

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.
3. Select {DATA} under the menu.
 - The pull-down menu appears.
4. Select {CLEAR DATA}.
 - The position variable data on the displayed page are deleted.

3.9.4.9 Checking Positions by Position Variables

1. Select {VARIABLE} under the main menu.
2. Select desired position variable type.

 (1) When there are two or more robot, base, or a station, specify the axis with following operation.

 • **Robot**
 Each time [SHIFT] + [ROBOT] is pressed, the axis displayed on the status line changes:
 \[R1 \rightarrow R2 \rightarrow ... \rightarrow R8. \]

 • **Base or Station**
 Each time [SHIFT]+[EX.AXIS] is pressed, the axis displayed on the status line changes:
 \[B1 \rightarrow B2 \rightarrow ... \rightarrow B8 \rightarrow S1 \rightarrow S2 \rightarrow \rightarrow S24. \]

 (2) Check the selected axis on the status line.
3. Press [FWD].
 - Selected axis moves to the position specified by the variable.

 NOTE
 The selected axis (manipulator, base, or station) moves directly to the set variable position. Before pressing [FWD], check that the surrounding area is safe.
3.9.4.10 Manipulator Types

When the position data of the job data are described using the XYZ format, several postures may be taken according to the manipulator’s structure when moving it to the described position.

Although these postures have the same coordinates for TCP, they vary in pulse for each axis.

Thus, the manipulator’s posture cannot be uniquely defined only by the coordinate value, and it is necessary to specify the data other than the coordinate value to define the manipulator’s posture.

This is called “Type”.

Type varies according to the manipulator model.

For the manipulator with seven axes, X, Y, Z, Rx, Ry, Rz, Re and Type are used.

Re is an element to indicate the posture of the manipulator with seven axes and does not change by the specified coordinates.

The definition of Re is shown below.

\[
\begin{align*}
\text{Re} & \leq 0^\circ \\
\text{Re} & < 0^\circ
\end{align*}
\]
3.9.5 Flip/No Flip

When the angle of B-axis is within (+) range ($\theta_B \geq 0^\circ$), it is called “Flip”, and when within (-) range ($\theta_B < 0^\circ$), “No Flip”.

3.9.6 R-axis Angle

This specifies whether the R-axis angle is less than ±180° or greater than ±180°.

<table>
<thead>
<tr>
<th>R < 180°</th>
<th>R ≥ 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>-180° ≤ θ R ≤ 180°</td>
<td>180° < θ R ≤ 360°</td>
</tr>
</tbody>
</table>

θ_R is the angle when the R-axis home position is 0°.
3.9.7 T-axis Angle

This specifies positions of the R-, B-, and T-axis. For manipulators with wrist axes (three axes), this specifies whether the T-axis angle is less than ±180° or greater than ±180°.

<table>
<thead>
<tr>
<th>T < 180°</th>
<th>T ≥ 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>-180°</td>
<td>360°</td>
</tr>
<tr>
<td>180°</td>
<td>-360°</td>
</tr>
</tbody>
</table>

-180° < θ T <= 180°

180° < θ T

θ T is the angle when the T-axis home position is 0°.

3.9.8 Front/Back

This specifies where in the S-axis rotation center the B-axis rotation center locates when viewing the L-axis and U-axis from the right-hand side. When viewed from the right-hand side, the right of the S-axis rotation center is called the front, and the left is called the back.
The diagram below shows the S-axis at 0° and at 180°. This is the configuration when the L-axis and the U-axis are viewed from the right-hand side.

<table>
<thead>
<tr>
<th>S-axis 0°</th>
<th>S-axis 180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>Front</td>
</tr>
<tr>
<td>Front</td>
<td>Back</td>
</tr>
</tbody>
</table>

For the manipulator with seven axes, this specifies where in the S-axis rotation center the U-axis rotation center locates when viewing the L-axis and U-axis from the right-hand side.

When viewed from the right-hand side, the right of the S-axis rotation center is called the front, and the left is called the back.
3.9.9 Upper Arm/Lower Arm

This specifies a type comprised of L-axis and U-axis when the L-axis and U-axis are viewed from the right-hand side.

- Upper Arm
- Lower Arm

3.9.10 S-axis Angle

This designation is required for the manipulators which have working envelopes greater than ±180°. This specifies whether the S-axis angle is less than ±180° or greater than ±180°.

- S < 180°
- S ≥ 180°

NOTE

θ S is the angle when the S-axis home position is 0°.
3.9.11 Editing Local Variables

As well as user variables, local variables can be used for the storage of counters, calculations, and input signals. The data format is the same as that of user variables. As shown in the following table, the letter L is affixed to the variable number to indicate a local variable.

Table 3-7: Local Variables

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Variable No.</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Type</td>
<td>LB000 to LB☐☐☐</td>
<td>Range of storable values is from 0 to 255. Can store I/O status. Can perform logical operations (AND, OR, etc.)</td>
</tr>
<tr>
<td>Integer Type</td>
<td>LI000 to LI☐☐☐</td>
<td>Range of storable values is from -32768 to 32767.</td>
</tr>
<tr>
<td>Double Precision Integer Type</td>
<td>LD000 to LD☐☐☐</td>
<td>Range of storable values is from -2147483648 to 2147483647.</td>
</tr>
<tr>
<td>Real Type</td>
<td>LR000 to LR☐☐☐</td>
<td>Range of storable values is from -3.4E+38 to 3.4E+38. Accuracy: 1.18E-38 < x ≤ 3.4E+38</td>
</tr>
<tr>
<td>Character Type</td>
<td>LS000 to LS☐☐☐</td>
<td>Maximum storable number of characters is 16.</td>
</tr>
<tr>
<td>Position Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robot Axes</td>
<td>LP000 to LP☐☐☐</td>
<td>Can store position data in pulse form or in XYZ form. XYZ type variables can be used as target position data for move instructions, and as incremental values for parallel shift instructions.</td>
</tr>
<tr>
<td>Base Axes</td>
<td>LBP000 to LBP☐☐☐</td>
<td></td>
</tr>
<tr>
<td>Station Axes</td>
<td>LEX000 to LEX☐☐☐</td>
<td></td>
</tr>
</tbody>
</table>

Local variables differ from user variables in the following four ways:

- **Used in One Job Only**
 With user variables it is possible to define and use one variable in multiple jobs, but local variables are used only in the job in which they are defined, and cannot be read from other jobs.
 Accordingly, local variables do not affect other jobs, so it is possible to define a variable number (such as LB001) separately in different jobs, and use it in different ways in each of these jobs.

- **Able to Use Any Number of Variables**
 The number is set in the JOB HEADER window. When the number is set, the area for the value is saved in memory.
• **Not Able to Display the Variable Contents**
 To display the local variable contents, user variables are needed. For example, to view the contents of local variable LP000, save it temporarily as user variable P001. Then execute the instruction SET P001 LP000, and view the POSITION VARIABLE window for P001.

• **Enabled Only During the Execution of the Defined Job**
 The contents of the local variables are enabled only during the execution of the defined job. The local variable field is assured when the defined job is called (when the job is executed by a CALL or JUMP instruction, or the job is selected by the menu). Once the job is completed by the execution of a RET, END, or JUMP instruction, the local variable data that was set is disabled. However, if a job which uses local variables itself calls a separate job, then is returned by use of a RET instruction, the data that was present prior to the CALL instruction remains in effect and can be used.

Precautions for Variables and Units

As was the case with user variables, note that, depending on the value of the unit being used, the value of the variable and the value of the actual speed or time an occasion might not match. Refer to section 3.9.4 “User Variables” on page 3-77.
3.9.11.1 Setting the Number of Local Variables

The number of local variables used in a job is set in the JOB HEADER window. When the number of local variables is set, memory is allocated for those variables.

NOTE

Only when expanding the "INSTRUCTION LEVEL", it is possible to use local variables. Refer to section 8.12 “Instruction Level Setting” of “DX100 INSTRUCTIONS” (RE-CTO-A215) for details on setting the language level.

1. Select {JOB} under the main menu.
2. Select (JOB).
3. Select {DISPLAY} under the menu.
4. Select (JOB HEADER).
 - The JOB HEADER window appears. Scroll the window using the cursor.

 ![JOB HEADER window](image)

5. Select the number of local variables to be set.
 - The input buffer line appears.

 ![Input buffer line](image)
6. Input the number of variables.
7. Press [ENTER].
 – The number of local variables are set.
3.9.12 Search

When editing or checking, jobs and steps can be searched for. Search can be done when the cursor is in either the address or instruction area on the JOB CONTENT window.

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
3. Select {EDIT} under the menu.
 - The pull-down menu appears.
4. Select {SEARCH}.
 - The selection dialog box appears.
5. Select the search type.

Search is an operation by which the cursor is moved to a specific step or instruction in the edit job. The desired item can be instantly searched for without using the cursor.
3.9.12.1 Line Search

This function moves the cursor to the desired line number.

1. Select {EDIT}, {SEARCH} and “LINE SEARCH”.
 - The number can be entered.

2. Input desired line number.

3. Press [ENTER].
 - The cursor is moved to the line number and the window appears.
3.9.12.2 Step Search

This function moves the cursor to the desired step number (move instruction).

1. Select {EDIT}, {SEARCH} and “STEP SEARCH”.
 – The number can be entered.

2. Input desired step number.

3. Press [ENTER].
 – The cursor is moved to the input step and the window appears.
3.9.12.3 Label Search

This function searches for the desired label and the instruction using that label.

1. Select {EDIT}, {SEARCH} and "LABEL SEARCH".
 - The characters can be entered.

2. Input desired label name.
 - For information on character input operation, refer to section 1.2.6 "Character Input Operation" on page 1-18.
 - At this time, search can be conducted by entering any one character of the label. For example, to search for the "START" label, enter only "S", and the search can be done.

3. Press [ENTER].
 - The cursor is moved to the desired label and the window appears.
4. Use the cursor to continue search.

– While searching, forward search and backward search are possible by pressing the cursor key.

– To end search, select {EDIT} → {END SEARCH} on the menu and press [SELECT].
3.12.4 Instruction Search

This function moves the cursor to a desired instruction.

1. Select {EDIT}, {SEARCH} and "INSTRUCTION SEARCH".
 – The INFORM command list appears.

2. Select desired instruction group.

3. Select desired instruction.

 – The cursor is moved to the selected instruction and the window appears.
4. Use the cursor to continue search.

 – While searching, forward search and backward search are possible by pressing the cursor key.
 – To end search, select {EDIT} \(\Rightarrow\) {END SEARCH} on the menu and press [SELECT], or press [CANCEL].
3.9.12.5 Tag Search

This function moves the cursor to the desired tag.

1. Select {EDIT}, {SEARCH} and "TAG SEARCH".

 – The instruction list dialog box appears.

2. Select desired instruction group.

3. Select desired instruction for which the tag is to be searched.

 – The tag list dialog box for selected instruction appears.
4. Select the desired tag.
 - The cursor is moved to the selected tag and the window appears.

<table>
<thead>
<tr>
<th>JOB</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>J: TEST01</td>
<td>S: 001</td>
<td>TOOL: 00</td>
<td></td>
</tr>
<tr>
<td>0001 NOP</td>
<td>0001 SET 0000 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002 SET 0001 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Use the cursor to continue search.
 - While searching, forward search and backward search are possible by pressing the cursor key.
 - To end search, select {EDIT} → {END SEARCH} on the menu and press [SELECT], or press [CANCEL].

```plaintext
<table>
<thead>
<tr>
<th>JOB</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>J: TEST01</td>
<td>S: 001</td>
<td>TOOL: 00</td>
<td></td>
</tr>
<tr>
<td>0001 TOP</td>
<td>0001 SET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002 SET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
4 Playback

4.1 Preparation for Playback

4.1.1 Selecting a Job

Playback is the act of executing a taught job. Before playback operation, first call the job to be executed.

4.1.1.1 Calling a Job

1. Select {JOB} under the main menu.
2. Select {SELECT JOB}.
 – The JOB LIST window appears.

3. Select the desired job.
4.1.1.2 Registering the Master Job

If a particular job is played back frequently, it is convenient to register that job as a master job (master registration). A job registered as the master job can be called more easily than the method described on the preceding page.

Only one job can be registered as the master job. Registering a master job automatically cancels the previously registered master job.

Be sure to register a master job in the teach mode.
1. Select {JOB} under the main menu.
2. Select {MASTER JOB}.
 – The MASTER JOB window appears.

3. Press [SELECT].
 – The selection dialog box appears.
4 Playback
4.1 Preparation for Playback

4. Select {CALL MASTER JOB}.
 – The JOB LIST window appears.

5. Select a job to be registered as a master job.
 – The selected job is registered as the master job.
4.1.1.3 Calling the Master Job

This operation is to call a master job. The job can be called in the JOB CONTENT window, PLAYBACK window, JOB SELECT window, or the MASTER JOB window.

- Calling from the JOB CONTENT, PLAYBACK, JOB SELECT Window

1. Select {JOB} under the menu.
2. Select {MASTER JOB}.
 - The master job is called, and the JOB CONTENT window appears.
4.1 Preparation for Playback

- Calling from the MASTER JOB Window

1. Select {JOB} under the main menu.
2. Select {MASTER JOB}.
 - The MASTER JOB window appears.
3. Press [SELECT].
 - The selection dialog box appears.
4. Select {CALL MASTER JOB}.
 - The master job is called, and the JOB CONTENT window (during the teach mode), or the PLAYBACK window (during the play mode) appears.
4.1 Preparation for Playback

4.1.2 The PLAYBACK Window

When the mode switch on the programming pendant is switched to “PLAY” while displaying the JOB CONTENT window, the PLAYBACK window appears.

A. Job Content
The cursor moves according to the playback operation. The contents are automatically scrolled as needed.

B. Override Speed Settings
Displayed when override speed setting is performed.

C. Cycle Time
Displays the operating time of the manipulator. Each time the manipulator is started, the previous cycle time is reset, and a new measurement begins. Either showing or hiding the cycle time display is selectable.

D. Start No.
First step in the measurement. Measurement starts when the start button lamp lights and the playback starts.

E. Motion Time
Displays the weaving time of the manipulator.

F. Playback Time
Displays the time from the beginning to the end of the measurement. Measurement ends when the manipulator stops and the start button lamp goes off.

4.1.2.1 Display of Cycle Time

Follow the procedure below to set whether or not to display the cycle time on the PLAYBACK window.

1. Select {DISPLAY} under the menu.
2. Select {CYCLE TIME}.
 - The cycle time is displayed.
 - Repeat the same operation to hide the cycle time display.
4.1.2.2 Operation Cycle

There are three types of manipulator operation cycles:

- **AUTO**: Repeats a job continuously.
- **1 CYCLE**: Executes a job once. If there is a called job during execution, it is performed, after which the execution processing returns to the original job.
- **1 STEP**: Executes one step (instruction) at a time.

The operation cycle can be changed as follows:
1. Select {JOB} under the main menu, and then select {CYCLE}.
2. Select the operation cycle to be changed.
 - The operation cycle is changed.
Automatic Setting for Operation Cycle

Automatic setting of the operation cycle can be changed by the following operation.

This can be done in the management mode only.

1. Select (SETUP) under the main menu.
2. Select (OPERATE COND).
 - The OPERATING CONDITION window appears. Use the cursor to scroll the screen.

3. Select the desired operation.
 - The selection dialog box appears.

"NONE" setting

The operation cycle is not changed when "NONE" is set. For example, if the setting is "CYCLE SWITCH IN PLAY MODE = NONE", the operation cycle is maintained even after switching to the play mode.

<table>
<thead>
<tr>
<th>OPERATE CONDITION SETTING</th>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED DATA INPUT FORM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLE SWITCH IN TEACH MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLE SWITCH IN PLAY MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLE SWITCH IN LOCAL MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYCLE SWITCH IN REMOTE MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET CYCLE ON POWER ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECURITY MODE WHEN POWER ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOB STEP WHEN POWER ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL BUT KEEP WHEN POWER ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Automatic Setting for Operation Cycle**
- **Setup under the main menu**
- **Select (OPERATE COND)**
 - The OPERATING CONDITION window appears. Use the cursor to scroll the screen.

3. **Select the desired operation**.
 - The selection dialog box appears.

"NONE" setting

The operation cycle is not changed when "NONE" is set. For example, if the setting is "CYCLE SWITCH IN PLAY MODE = NONE", the operation cycle is maintained even after switching to the play mode.
4. Select a cycle.
 – The operation cycle when switching modes is set.
4.2 Playback

4.2.1 Playback Operation

Playback is the operation by which the taught job is played back. Follow the procedures below to start the playback operation.

- Programming pendant (start button)
- Peripheral device (external start input)

Which is used to start playback is specified by the mode switch on the programming pendant.

<table>
<thead>
<tr>
<th>Mode Switch on Programming Pendant</th>
<th>Job is started up by</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PLAY]</td>
<td>[START] button on programming pendant</td>
</tr>
<tr>
<td>[REMOTE]</td>
<td>Peripheral device</td>
</tr>
</tbody>
</table>

For playback using the programming pendant, follow the procedures below.

4.2.1.1 Selecting the Start Device

1. Set the mode switch on the programming pendant to “PLAY”.
 - The remote mode is disabled and the play mode is enabled so the machines are to be started up by the programming pendant.

4.2.1.2 Servo On

1. Press [Servo ON Ready].
 - DX100 servo power is ON and the Servo ON lamp on the programming pendant lights.

4.2.1.3 Start Operation

1. Press [START].
 - The start button lamp lights and the manipulator begins operation.
4.2.2 Special Playback Operations

The following special operations can be performed during playback:

- Low speed operation
- Limited speed operation
- Dry run speed operation
- Machine lock operation
- Check mode operation

Two or more special operations can be performed at the same time. If multiple operations are selected, the speed during playback is limited to the speed of the slowest operation. Settings for special operations are done in the SPECIAL PLAY window.

When the PLAYBACK window is displayed, move the cursor to the menu area and select (UTILITY) → (SETUP SPECIAL RUN). The SPECIAL PLAY window appears.

4.2.2.1 Low Speed Operation

The manipulator moves at low speed during the first step after starting. After the operation of this step, the manipulator stops regardless of the selection of the operation cycle and then low speed operation is canceled.

Even if the manipulator is stopped its motion during the low speed operation, the low speed status would not be canceled before it reaches the first step.

After one step operation, pressing [START] allows the manipulator to move at the taught speed.

1. Select “LOW SPEED START” on the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.
4.2.2.2 Limited Speed Operations

The manipulator operates within the limited speed for the teach mode. Usually, the limited speed is set to 250mm/s. However, operation is performed at actual playback speeds for steps in which the set speed is under this limit.

1. Select “SPEED LIMIT” under the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.

4.2.2.3 Dry-run Speed Operations

The dry-run speed is a constant speed that is independent of the teaching speeds. The manipulator executes all the steps at a constant speed, which is convenient for quick check of a job consisting of slow operations. The dry-run speed is 10% of maximum speed.

1. Select the “DRY-RUN SPEED” under the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.

Fig. 4-1: Safety Speed and Dry-run Speed

Be careful of steps programmed at lower speeds than the dry-run speed, because they are executed at greater speeds than programmed.
4.2.2.4 Machine Lock Operation

A job is played back without moving the manipulator to check the status of input and output.

1. Select “MACHINE LOCK” under the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.

NOTE

- The setting of “MACHINE LOCK” is maintained even after the mode is switched: If the machine lock is set to “VALID” in the teach mode, it is still “VALID” after switching to the play mode. The same applies when the mode is switched from the play mode to the teach mode.
- Note that the machine lock becomes “INVALID” if the following operation is performed.
 - Execution of “CANCEL ALL SELECT” in the SPECIAL PLAY window.
 - Turning off the main power.

4.2.2.5 Check Mode Operation

The machine runs without issuing work instructions, such as the ARCON instruction. It is used primarily to check the path of the program.

1. Select “CHECK-RUN” under the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.

4.2.2.6 Weaving Prohibit Setting during Check Mode Operation

The weaving operation is not executed in the weaving section of the job.

1. Select “WEAV PROHIBIT IN CHK-RUN” under the SPECIAL PLAY window.
 - The setting alternates between “VALID” and “INVALID”.
2. Select “COMPLETE”.
 - The window returns to the PLAYBACK window.
4.2.2.7 Cancel All Special Operations

All special operations are disabled by the following operation.

1. Select {EDIT} from the menu.
2. Select “CANCEL ALL SELECT”.
 - The message “All special functions canceled” appears.

NOTE Special operations are also automatically cancelled if the main power is shut OFF.
4.3 Stop and Restart

The manipulator stops in the following conditions:

- Hold
- Emergency stop
- Stop by alarm
- Others

4.3.1 Hold

Hold operation causes the manipulator to stop all motion.

[HOLD] lamp lights while it is held down. At the same time, [START] lamp goes OFF.

4.3.1.1 Using the Programming Pendant

- **Hold**
 1. Press [HOLD] on the programming pendant.
 2. The manipulator stops. The [HOLD] lamp lights while the [HOLD] button is held down.

- **Release**
 1. Press [START] on the programming pendant.
 2. The manipulator restarts its operation from the position where it was stopped.

4.3.1.2 Using an External Input Signal (System Input)

- **Hold**
 1. Turn ON the hold signal from an external input (system input).
 - The manipulator stops temporarily.
 - The output signal “HOLD” turns ON.
 - The programming pendant [HOLD] lamp lights.

- **Release**
 1. Turn off the hold signal from an external input (system input).
 - Hold is released.
 - To continue the operation, press [START] or turn ON the external input signal (system input). The manipulator restarts its operation, beginning from the position where it was stopped.
4.3.2 Emergency Stop

At an emergency stop, the servo power supply that drives the manipulator is turned OFF and the manipulator stops immediately. An emergency stop can be performed by using either of the following:

- Button on the Front Door of the DX100
- Programming pendant
- External input signal (system input)

Emergency Stop

1. Press the emergency stop button .
 - The servo power turns OFF and the manipulator stops immediately.
 - On the front door of the DX100:
 - On the programming pendant:

Using the Emergency Stop Button on the Programming Pendant

Using the External Input Signal (System Input)

Release

1. Turn the emergency stop button in the direction of the arrows.
 - On the front door of the DX100:
 - On the programming pendant:
 - To turn ON the servo power supply again, press [SERVO ON READY] and then grip the Enable switch of the programming pendant.
4.3.2.1 Restart After Emergency Stop

CAUTION

- Prior to restarting after an emergency stop, confirm the position for the next operation and make sure there is no interference with the workpiece or fixture.
- The application of an emergency stop during high speed operations on continuous steps can result in the manipulator stopping two or three steps prior to the step that is being displayed. There is a risk of interference with the workpiece or fixture when the manipulator is restarted under such conditions.
4.3 Stop and Restart

4.3.3 Stop by Alarm

If an alarm occurs during operation, the manipulator stops immediately and the ALARM window appears on the programming pendant indicating that the machine was stopped by an alarm.

- If more than one alarm occurs simultaneously, all alarms can be viewed on the window. Scroll down the viewing area of the window when necessary.

The following operations are available in the alarm status: window change, mode change, alarm reset, and emergency stop. To display the ALARM window again when the window is changed during alarm occurrence, select {SYSTEM INFO} and then {ALARM HISTORY}.

■ Releasing Alarms

<Minor Alarms>

1. Press [SELECT].
 - Select “RESET” under the ALARM window to release the alarm status.
 - When using an external input signal (system input), turn ON the “ALARM RESET” setting.

<Major Alarms>

1. Turn OFF the main power supply and remove the cause of the alarm.
 - If a severe alarm such as hardware failure alarm occurs, the servo power is automatically shut off and the manipulator stops. If releasing does not work, turn OFF the main power and correct the cause of the alarm.
4.3.4 Others

4.3.4.1 Temporary Stop by Mode Change

When the play mode is switched to the teach mode during playback, the manipulator stops immediately.

![Stopped by switching mode]

To restart the operation, return to the play mode and perform a start operation.

4.3.4.2 Temporary Stop by the PAUSE Instruction

When the PAUSE instruction is executed, the manipulator stops operating.

![Robot stops by execution PAUSE command]

To restart the operation, perform a start operation. The manipulator restarts from the next instruction.
4.4 Modifying Play Speed

4.4.1 Speed Override

Speed modifications using the speed override have the following features:

- Speed can be modified during playback. The job can be played back at various speeds until the play speed is properly adjusted.
- Speed can be increased or decreased by a ratio of the current play speed. The ratio settings range from 10% to 150% in increments of 1%. Therefore, it is convenient when, for example, all play speed settings are to be increased by 150% at the same time.

The operation flow is shown below.
4.4 Modifying Play Speed

4.4.1.1 Setting Speed Overrides

1. Select {UTILITY} under the menu in the PLAYBACK window.

2. Select {SPEED OVERRIDE}.
 - The PLAYBACK window shows the speed override status.

3. Select “ON” or “OFF”.
 - Each time [SELECT] is pressed, “ON” and “OFF” alternate.
 - Select “ON” to modify the registered play speed during playback.
 - When “OFF” is selected, the registered play speed is not modified.
 To change the play speed temporarily (for example, to experiment with various speeds), select “OFF”.

4. Line up the cursor with the override ratio and move the cursor up and down to change the ratio.
 If you want to input the ratio number directly, move the cursor to the override ratio and press [SELECT].
 - The number input line appears. Input the override ratio using the Numeric keys.
4.4 Modifying Play Speed

4.4.1.2 Modifying Play Speed

1. Set speed override.
2. Playback the manipulator.
 - The play speed is increased or decreased in the set ratio.
 - When setting “MODIFY” to “ON”, the step’s play speed is modified when each step is reached.
 - When one cycle is completed by the END instruction, the speed override setting is canceled.

- Assuming that the manipulator moves from step 1 to step 2, the play speed of step 2 is not modified if the speed override is canceled before reaching step 2.
- The play speed after the modification by the speed override is limited by the maximum and the minimum speed of manipulator.
- When the safety speed operation is commanded with the setting of “MODIFY: ON”, the manipulator operates at the safety speed. However, the play speed in memory is modified as set by the speed override.
- Play speed set by the SPEED instruction is not modified.

4.4.1.3 Canceling Speed Override Settings

1. Select {UTILITY} under the menu in the PLAYBACK window.
2. Select {SPEED OVERRIDE}.
 - The setting of the speed override ratio is canceled.
 - If canceled, the speed ratio setting is not displayed on the PLAYBACK window.

The speed override settings are automatically canceled in the following cases:

- When dry-run speed operation is set.
- When the mode is changed to any mode other than the play mode.
- When an alarm or error occurs.
- When one cycle operation is completed with the END instruction.
- When the power supply is turned OFF.
4.5 Playback with Reserved Start

4.5.1 Preparation for Reserved Start

In the reserved start function, jobs registered at different stations are played back in the reserved order using the start buttons on the stations.

For example, in the case where three stations handle three different workpieces, as shown in the illustration above, the jobs would be registered as follows:

- Job 1 is registered to process workpiece 1 at Station 1
- Job 2 is registered to process workpiece 2 at Station 2
- Job 3 is registered to process workpiece 3 at Station 3

To play back the jobs, prepare workpiece 1 and press the start button on Station 1. The manipulator executes Job 1. Prepare workpieces 2 and 3 while Job 1 is being executed, and press the start buttons on Stations 2 and 3. Even if Job 1 is being executed at that time, jobs on different stations are reserved in the order that the start buttons have been pressed, and will be executed in that order. During playback, the status of the reservation can be checked on the start reservation window.
4.5.1.1 Enabling Reserved Start

The start button on the station is operative when the reserved start function is enabled, and the following start operations are disabled.

- [START] on the programming pendant
- Start operation from external input signal (system input)

NOTE: The OPERATING CONDITION window is shown only when the security mode is management mode.

1. Select {SETUP} under the main menu.
2. Select {OPERATE COND}.
 - The OPERATING CONDITION window appears.
 - The screen is scrolled up/down by the cursor key when it locates at the top/bottom of the items.

3. Select “RESERVED START”.
 - Each time [SELECT] is pressed, “PERMIT” and “PROHIBIT” alternate. Select “PERMIT”.

[Diagram of OPERATING CONDITION window]
When the reserved start is enabled, the external start and the programming pendant start are prohibited even if setting is "PERMIT". Regardless of the operation cycle selected, it is automatically set to 1 CYCLE.
4.5.1.2 Registering Reserved Start I/O Signal

Register the start I/O signal as a preparation to perform the start operation from the station.

This operation can be done only when the operation mode is the teach mode and the security mode is the management mode, and only when the setting of “RESERVED START JOB CHANGE” is “PERMIT” in the OPERATING CONDITION window.

1. Select {SETUP} under the main menu.
2. Select {RES. START(CNCT)}.
 – The RESERVED START (CNCT) window appears.
 3. Select “START IN” or “START OUT” for each station.
 – The number can now be entered.

 ![Reserved Start I/O Signal Window]

 ![Reserved Start I/O Signal Table]
4. Input signal number and press [ENTER].
 - The input/output signal number is registered.
4.5.1.3 Registering Jobs to Stations

Register the starting job of each station.

This operation can be done only when the operation mode is the teach mode and the setting of “RESERVED START JOB CHANGE” is “PERMIT” in the OPERATING CONDITION window.

1. Select {JOB} under the main menu.
2. Select {RES. START(JOB)}.

 - The RESERVED START (JOB) window appears.
 - ● indicates that the input/output number is registered.
 - ○ indicates that the input/output number is not registered.

3. Select the job name for each station.

 - The selection dialog box appears.

4. Select “SETTING START JOB”.

 - The JOB LIST window appears.
4. Playback
4.5 Playback with Reserved Start

5. Select a job.
 - The starting job is registered.
4.5.1.4 Deleting Registered Jobs from Stations

Delete the registered job of each station.

This operation can be done only when the operation mode is the teach mode and the setting of “RESERVED START JOB CHANGE” is “PERMIT” in the operation condition display.

1. Select {JOB} under the main menu.
2. Select {RES. START(JOB)}.
 - The RESERVED START (JOB) window appears.
3. Select the job name of the station to be deleted.
 - The selection dialog box appears.
4. Select “CANCEL START JOB”.
 - The registered job is deleted.
4.5 Playback with Reserved Start

4.5.2 Playback from Reserved Start

4.5.2.1 Start Operation

1. Set the mode switch to “PLAY”.
2. Press start button on the station.
 - The job registered for the station starts up and the manipulator performs one cycle operation.

 • While the job is being executed, the start button lamp on the station lamps.
 • If the workpiece must be prepared at the station, prepare it before pressing the start button.
 • During the execution of a job for one station, if the start button of another station is pressed, the job of the latter station is reserved and prepared to start. Jobs are reserved and executed in the order that the start buttons have been pressed.
 • When a job is reserved, the start button lamp on the station blinks.
 • No station job is reserved when it is being executed even if its start button is pressed.
 • To suspend a job being executed, perform the Hold operation.

 Reservations are canceled when the start button is pressed again during the job reservation operation.
4.5.2.2 Checking Job Reservation Status

The job reservation status during playback can be checked.

1. Select {JOB} under the main menu.
2. Select {RES. STATUS}.

 – The RESERVATION STATUS window appears.

A. STATUS

Reservation status is displayed.

STARTING: Indicates the station currently working.

STOP: Indicates any station where work has been temporarily stopped by a hold operation.

RESERVE1, RESERVE2, ...: Indicates the order in which jobs have been reserved for start.

B. START IN

Input signal status is displayed.

“●”: Input signal ON

“○”: Input signal OFF
4.5 Playback with Reserved Start

4.5.2.3 Resetting Job Reservation

NOTE: If “STARTING” is displayed, the job cannot be reset.

1. Select {JOB} on the RESERVATION STATUS window.
2. Select {RESET RESERVATION} or {RESET ALL}.
 - When {RESET RESERVATION} is selected, job reservation stated to “RESERVE” is reset.
 - When {RESET ALL} is selected, job reservation stated to “STOP” and “RESERVE” is reset.

 ![Screen shot of RESERVATION STATUS window](image)

 - The confirmation dialog box appears.

3. Select “YES”.

 ![Confirmation dialog box](image)

All job reservations are reset automatically in the following conditions:

- When the reserved start sets to “PROHIBIT”. (When “RESERVED START” is set to “PROHIBIT” on the OPERATING CONDITION window.)
- When another job is called or an edit operation is performed.
4.5.3 Hold Operation

Hold operation causes the manipulator to stop all motion. It can be performed by the following buttons or signal.

- [HOLD] on the programming pendant
- External Input Signal (system input)
- Hold button for the station axis

4.5.3.1 [HOLD] on the Programming Pendant

Hold

1. Press [HOLD] on the programming pendant.
 - The manipulator stops temporarily.
 - The [HOLD] lamp lights while the [HOLD] button is held down.

Release

1. Press the start button on the suspended station.
 - The manipulator restarts its operation from the position where it was stopped.

4.5.3.2 Hold by External Input Signal (System Input)

Hold

1. Input ON signal to the external input (system input) specified for the hold operation.
 - The manipulator stops temporarily.
 - The hold lamp for the external output signal lights.
 - The [HOLD] lamp on the programming pendant lights and the [START] lamp turns OFF.

Release

1. Input OFF signal to the external input (system input) specified for the hold operation.
 - Hold is released.
2. To continue the operation, press the start button on the suspended station.
 - The manipulator restarts its operation from the position where it was stopped.
4.5.3.3 Hold at the Station

- **Hold**

 1. Press the hold button on the station.
 - The manipulator stops temporarily.

- **Release**

 1. Press the hold button on the suspended station.
 - Hold is released.
 - Press the start button on the station, then the manipulator restarts its operation from the position where it was stopped.

Pressing the start button on a station that is not in the Hold status does not start manipulator operation. The job registered for the station is reserved or the reservation, if it has been made, is canceled.
4.6 Displaying Job Stack

During the execution of the series of jobs that combined with CALL or JUMP instructions, the job stack can be displayed to check where the current job is and how many jobs are left.

1. Select {DISPLAY} under the menu on the PLAYBACK window.
 - The pull-down menu appears.
2. Select {JOB STACK}.

- The job stack status dialog box appears.
- To close the job stack status dialog box, select {DISPLAY} and then {JOB STACK} under the menu again.

- For above example, the playback of Job C is being executed and the Job C is called from Job B. Also, the Job B is called from Job A.
This section explains how to manage the jobs without moving the manipulator. Copying, deleting, and modifying of the jobs can be done only in the teach mode. Other operations can be done in any mode.

NOTE

Edit operations are restricted when the edit lock is applied.

Editing Move Instructions

See chapter 3 "Teaching" for basic information on editing move instructions.

- It is not possible to add, delete, or modify move instructions which have position data. See section 3.4 “Modifying Steps” on page 3-29 for details.
- The following MOV instruction edit operations are explained in this section:

 - **For move instructions:**
 - Insertion, deletion, or modification of additional items
 - Modification of interpolation type or play speed for move instructions
 - Setting, modification, or deletion of UNTIL statements (interruption conditions based on input signals)
 - Setting and deletion of NWAIT instructions
 - For move instructions using position variables:
 - Insertion and deletion of move instruction.

NOTE

Refer to section 1.2.6 “Character Input Operation” on page 1-18 for the character input operation.
5.1 Copying Jobs

This operation is used to copy registered jobs and use them to create new jobs. It can be done using either the JOB CONTENT window or the JOB LIST window.

5.1.0.1 Copying Jobs on the JOB CONTENT Window

On the JOB CONTENT window, the current edit job becomes the copy source job.

1. Select (JOB) under the main menu.
2. Select (JOB).
 - The JOB CONTENT window appears.

3. Select (JOB) → (COPY JOB) under the pull-down menu.

4. Input the job name.
 - Input the new job name.
 - The name of the copy source job is displayed on the input area. It is possible to partially change this name to enter a new name.
5. Press [ENTER].
 - The confirmation dialog box appears.
 - If "YES" is selected, the job is copied and the new job appears.
 - If "NO" is selected, the job copy is not executed, and the process is canceled.

5.1.0.2 Copying Jobs on the JOB LIST Window

On the JOB LIST window, select the copy source job from the registered jobs and specify the copy destination directory.

1. Select {JOB} \(\rightarrow\) {SELECT JOB} under the main menu.
 - The JOB LIST window appears.

2. Move the cursor to the copy source job.

3. Select {JOB} \(\rightarrow\) {COPY JOB} under the pull-down menu.

See section 1.2.6 "Character Input Operation" on page 1-18 for information on letter input operations.
5 Editing Jobs
5.1 Copying Jobs

4. Input the job name.
 – Input the new job name.
 – The name of the copy source job is displayed on the input area. It is possible to partially change this name to enter a new name.

5. Press [ENTER].
 – The confirmation dialog box appears.
 – If “YES” is selected, the job is copied and the new job appears.
 – If “NO” is selected, the job copy is not executed, and the process is canceled.

See section 1.2.6 “Character Input Operation” on page 1-18 for information on letter input operations.
5.2 Deleting Jobs

This operation is used to delete jobs that are registered on the DX100. It can be performed in either the JOB CONTENT window or the JOB LIST window.

5.2.0.1 Deleting Jobs on the JOB CONTENT Window

On the JOB CONTENT window, the current edit job is deleted.

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
3. Select {JOB} ➔ {DELETE JOB} under the pull-down menu.

4. Press “YES”.
 - The confirmation dialog box appears.
 - When “YES” is selected, the edit job is deleted. When deletion is completed, the JOB LIST window appears.
 - When “NO” is selected, the job deletion is canceled.
5.2.0.2 Deleting Jobs on the JOB LIST Window

On the JOB LIST window, select the job to be deleted from the list of the registered jobs.

1. Select \{JOB\} \rightarrow \{SELECT JOB\} under the main menu.
 - The JOB LIST window appears.

2. Move the cursor to the job to be deleted.

3. Select \{JOB\} \rightarrow \{DELETE JOB\} under the pull-down menu.

4. Press “YES”.
 - The confirmation dialog box appears.
 - When “YES” is selected, the selected job is deleted. When deletion is completed, the JOB LIST window appears.
 - If “NO” or [CANCEL] is selected, the job deletion is canceled and the JOB LIST window appears.

To select all the registered jobs at a time, select \{EDIT\} from the menu and then select “SELECT ALL”.
5.3 Modifying Job Names

This operation is used to modify the name of a job that is registered. The operation can be performed in either the JOB CONTENT window or the JOB LIST window.

5.3.0.1 Modifying Job Names on the JOB CONTENT Window

1. Select {JOB} under the main menu.
2. Select {JOB}.
 – The JOB CONTENT window appears.
3. Select {JOB} → {RENAME JOB} under the pull-down menu.
4. Input the job name.
 – Input the new job name.
 – The name of the source job is displayed on the input area. It is possible to partially change this name to enter a new name.

See section 1.2.6 “Character Input Operation” on page 1-18 for information on letter input operations.
5. Press [ENTER]:

- The confirmation dialog box appears.
- When “YES” is selected, the job name is changed and a new job name is displayed.
- When “NO” is selected, the job name is not changed, and the process is canceled.
5.3 Modifying Job Names

5.3.0.2 Modifying Job Names on the JOB LIST Window

On the JOB LIST window, select the job whose name is to be modified from the list of the registered jobs.

1. Select (JOB) \rightarrow (SELECT JOB) under the main menu.
 - The JOB LIST window appears.

2. Move the cursor to the name to be changed.

3. Select (JOB) \rightarrow (RENAME JOB) under the pull-down menu.

4. Input the job name.
 - Input the new job name.
 - The name of the source job is displayed on the input area. It is possible to partially change this name to enter a new name.

5. Press [ENTER].
 - The confirmation dialog box appears.
 - When "YES" is selected, the job name is changed and a new job name is displayed.

SUPPLEMENT
See section 1.2.6 "Character Input Operation" on page 1-18 for information on letter input operations.
5.3 Modifying Job Names

- When “NO” is selected, the job name is not changed, and the process is canceled.
5.4 Editing Comments

Comments of up to 32 characters can be added to each job to identify each job more specifically. Comments are displayed and edited on the JOB HEADER window.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Select {DISPLAY} under the pull-down menu.
4. Select {JOB HEADER}.
 – The JOB HEADER window appears.

5. Select “COMMENT”.
 – The window for character input appears.
6. Input comments.
 – Input comments.
 – For the jobs that are already registered, comments are displayed on the input area. It is possible to partially change comments to enter new comments.

See section 1.2.6 “Character Input Operation” on page 1-18 for information on letter input operations.
7. Press [ENTER].

- The comment on the input area is registered and is displayed on the “COMMENT” area in the JOB HEADER window.
5.5 Setting Edit Lock on Individual Job Units

In order to prevent inadvertent changes in the registered jobs or data, it is possible to set the edit lock to each job. When the edit lock is ON, the job cannot be edited or deleted.

The edit lock can be set and canceled on the JOB HEADER window.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Select {DISPLAY} under the pull-down menu.
4. Select {JOB HEADER}.
 - The JOB HEADER window appears.

5. Select “EDIT LOCK” and set the edit prohibit.
 - Each time [SELECT] is pressed, the setting alternates between “ON” (edit disabled) and “OFF” (edit enabled).
5 Editing Jobs

5.6 Enabling the Modification of Position Data Only

Even in the edit-locked job, the position data can be modified.

1. Select (SETUP) under the main menu.

2. Select (TEACHING CONDITION SETTING).

 – The TEACHING CONDITION SETTING window appears.

3. Select “STEP ONLY CHANGING” and press [SELECT].

 – Each time [SELECT] is pressed, the setting alternates between “PROHIBIT” and “PERMIT”.

SUPPLEMENT

TEACHING CONDITION SETTING window is shown only when the security mode is edit mode or management mode.
6 Convenient Functions

6.1 One-touch Operation “Direct Open”

The direct open function immediately shows the JOB CONTENT window or condition file contents of a job called by the CALL instruction. Move the cursor to the desired job name or condition file name and simply press the direct open key \[\text{DIRECT OPEN} \] to display the contents of the file. This function can be used for the following window:

- JOB CONTENT window for a job name directly specified by a CALL instruction
- CONDITION FILE window for a file name directly specified by a work instruction
- COMMAND POS window for a move instruction
- I/O window with an I/O instruction (when I/O numbers are specified)

Example Example Using Direct Open

![Diagram showing direct open function with example using direct open](image)
6 Convenient Functions
6.1 One-touch Operation “Direct Open”

1. In the JOB CONTENT window, move the cursor to the job name or the condition file for which the window is to be displayed.

2. Press the direct open key.
 - This key lamp lights and the JOB CONTENT window or the condition file window appears.
 - When the direct open key is pressed once again, the key lamp turns OFF, and the window returns to the former JOB CONTENT window.

 • The direct open function cannot be used again while a directly opened window is shown.

 • If another window is selected while the direct open function is effective, the function is automatically cancelled and the lamp on the direct open key goes out.

 • Once another JOB CONTENT window is opened by the direct open function, the former job cannot be continuously operated. (Stopped until the opened JOB CONTENT window is closed.)
6.2 Job Edit Function During Playback

6.2.1 Function

Jobs can be edited during playback, including during the play mode.

Editable: user job

Not Editable: macro job and system job

6.2.2 Job Edit During Playback

6.2.2.1 Basic Operation

The job edit operation during playback is described below.

1. During playback, select the main menu (JOB), then select the submenu (SELECT JOB).
 - JOB LIST display appears.

2. Select (EDITING) under the pull-down menu (JOB).
6 Convenient Functions

6.2 Job Edit Function During Playback

3. Select the job to be edited from JOB LIST.

- The selected job will be registered in the display of the submenu “PLAY EDIT JOB LIST”.

4. Edit the selected job.

- Edit the job selected in the above step in the same manner as the teach mode.

- Regarding restrictions on editing, refer to section 6.2.2.2 “Editing” on page 6-6.
5. Select {WRITING} under the pull-down menu {JOB} to reflect the edited data.

- If the job to be written to is listed in “JOB LIST”, a confirmation dialog “Overwrite?” appears. Select “YES” to reflect the edited data. Refer to the “SUPPLEMENT” on the next page.

- If the job with the same name is not listed in “JOB LIST”, the job to be written to will be added to “JOB LIST”. Refer to the “SUPPLEMENT” on the next page.
6.2.2.2 Editing

The data of the selected job (see the step 4 of section 6.2.2.1 “Basic Operation” on page 6-3) can be edited in the same manner as the normal teach mode. However, the functions that affect the manipulator motion are restricted as follows:

- Position teaching cannot be edited.
- The pull-down menu during editing is restricted as shown in Fig. 6-1 “Pull-down Menu (EDIT) * Cursor Is on Line No.” to Fig. 6-4 “Pull-down Menu (UTILITY)” on page 6-7.

Fig. 6-1: Pull-down Menu (EDIT) * Cursor Is on Line No.

If data is reflected during playback, the message “Requesting playback edit JOB writing” appears, and the status becomes a write request. To write the job, execute the instruction “LATESTJOB” in the write request status or end playback. If data is reflected in the play mode but not during playback, the job will be written immediately.

However, if the job to be written to is being executed (including jobs in the call stack), “Error 5240: Cannot write in the JOB in execution.” appears, and the edited data will not be reflected.

If a job in the call stack is written to in the play mode but not during playback, “Error 5241: Cannot write in the JOB in JOB STACK.” appears, and the edited data will not be reflected.

If data is reflected during teaching, the job will be written immediately.
6 Convenient Functions
6.2 Job Edit Function During Playback

In addition to the job edit operation described above, {CREATE NEW JOB}, {RENAME JOB}, {COPY JOB}, and {DELETE JOB} under the pull-down menu (JOB) are also available.

All of the above operations are performed for the jobs listed in "PLAY EDIT JOB LIST".
6 Convenient Functions
6.2 Job Edit Function During Playback

To reflect the edited data in the job listed in JOB LIST, {WRITING} must be done.

Regarding {DELETE JOB}, only the jobs listed in “PLAY EDIT JOB LIST” can be deleted. The jobs in "JOB LIST" will not be deleted.

The above {WRITING}, {DELETE JOB}, {RENAME JOB}, and {COPY JOB} can be done in the same manner on the "PLAY EDIT JOB LIST" display.

6.2.2.3 Editing Multiple Jobs

The procedure to delete or write multiple jobs at once on the PLAY EDIT JOB LIST display is described below.

■ Deleting Multiple Jobs

1. Select the main menu {JOB}, then select the submenu {PLAY EDIT JOB LIST}.

2. Select the job to be deleted by [SHIFT] + [SELECT].
 - “●” appears on the left of the selected job.
3. Select {DELETE JOB} under the pull-down menu {JOB}.
 - A confirmation dialog box appears for each selected job. Select “YES" to delete the job from the PLAY EDIT JOB LIST display.

Writing to Multiple Jobs

1. Select the main menu {JOB}, then select the submenu {PLAY EDIT JOB LIST}.

2. Select the job to be written to by [SHIFT] + [SELECT].
 - “●” appears on the left of the selected job.
3. Select {WRITING} under the pull-down menu {JOB}.

- If the job to be written to is listed in JOB LIST, a confirmation dialog “Overwrite?” appears. Select “YES” to reflect the edited data. If “NO” is selected, the edited data will not be reflected. To cancel writing, press [CANCEL] while the confirmation dialog appears. If the job with the same name is not listed in “JOB LIST”, the job to be written to will be added to “JOB LIST”. Refer to the “SUPPLEMENT” below.

If data is reflected during playback, the message “Requesting playback edit JOB writing” appears, and the status becomes a write request. To write the job, execute the instruction “LATESTJOB” in the write request status or end playback. If data is reflected in the play mode but not during playback, the job will be written immediately.

However, if the job to be written to is being executed (including jobs in the call stack), “Error 5240: Cannot write in the JOB in execution.” appears, and the edited data will not be reflected.

If a job in the call stack is written to in the play mode but not during playback, “Error 5241: Cannot write in the JOB in JOB STACK.” appears, and the edited data will not be reflected.

If data is reflected during teaching, the job will be written immediately.

SUPPLEMENT

3. Select {WRITING} under the pull-down menu {JOB}.

- If the job to be written to is listed in JOB LIST, a confirmation dialog “Overwrite?” appears. Select “YES” to reflect the edited data. If “NO” is selected, the edited data will not be reflected. To cancel writing, press [CANCEL] while the confirmation dialog appears. If the job with the same name is not listed in “JOB LIST”, the job to be written to will be added to “JOB LIST”. Refer to the “SUPPLEMENT” below.

If data is reflected during playback, the message “Requesting playback edit JOB writing” appears, and the status becomes a write request. To write the job, execute the instruction “LATESTJOB” in the write request status or end playback. If data is reflected in the play mode but not during playback, the job will be written immediately.

However, if the job to be written to is being executed (including jobs in the call stack), “Error 5240: Cannot write in the JOB in execution.” appears, and the edited data will not be reflected.

If a job in the call stack is written to in the play mode but not during playback, “Error 5241: Cannot write in the JOB in JOB STACK.” appears, and the edited data will not be reflected.

If data is reflected during teaching, the job will be written immediately.
6.2.2.4 Canceling Write Request

The procedure to cancel a write request is described below.

Canceling Write Request

1. Select the main menu {JOB}, then select the submenu {PLAY EDIT JOB LIST},
or
 select the main menu {JOB}, then select the submenu {JOB EDIT (PLAY)}.

2. Select {WRITING CANCEL} under the pull-down menu {JOB}.
6.2 Job Edit Function During Playback

CAUTION

- When the mode switch is changed to the teach mode during job editing
 Even if the mode switch is changed to the teach mode without reflecting or canceling the edited data, the changed data will be saved. In this case, select the main menu (JOB), then select the submenu (SELECT JOB) or (PLAY EDIT JOB LIST) to edit data in the same manner as in the play mode. However, position teaching cannot be done.

 Regarding the job edited in the play mode, even after the mode is changed to the teach mode, the edited data will not be reflected if (WRITING) is not done.

- Writing a job
 (WRITING) operates differently depending on the status of the robot.
 Select (JOB), then select (WRITING) to reflect the edited data in the job. The data is reflected as described below depending on whether the job is being executed or not.
 1. When the job is NOT being executed: The data is reflected immediately.
 2. When the job is being executed: The data is reflected when the instruction “LATESTJOB” is executed or when the job execution is completed.

 “Requesting playback edit JOB writing” appears while waiting for reflect operation (during a write request).

 - The executing job cannot be written to even by the instruction “LATESTJOB”.
 - If a power failure occurs during a write request, the write request will be canceled upon restarting, and the job will not be reflected.

- During a file transfer
 (WRITING) cannot be done during file transfer (i.e. external memory operation or data transmission).
 In addition, a file cannot be transferred during a write request.

- During a write request
 Editing is inhibited during a write request (while “Requesting playback edit JOB writing” appears).
 To edit data, wait for the writing to be completed or cancel the write request.
6.3 Parallel Shift Function

6.3.1 Function Overview

Parallel shift refers to the shifting of an object from a fixed position in such a way that all points within the object move an equal distance. In the model for parallel shift shown in the following, the shift value can be defined as the distance L (three-dimensional coordinate displacement). The parallel shift function is relevant to the actual operation of the manipulator because it can be used to reduce the amount of work involved in teaching by shifting a taught path (or position).

In the example in the figure below, the taught position A is shifted in increments of the distance L (this is actually a three-dimensional XYZ displacement that can be recognized by the robot) in order to enable the operation that was taught at position A to also be performed at positions B through G.
6.3.1.1 Parallel Shift of Step

The block from the SFTON to the SFTOF instructions is subject to the shift operation.

<table>
<thead>
<tr>
<th>Line (Step)</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
</tr>
<tr>
<td>0001(001)</td>
<td>MOVJ VJ=50.00</td>
</tr>
<tr>
<td>0002(002)</td>
<td>MOVL V=138</td>
</tr>
<tr>
<td>0003</td>
<td>SFTON P U# (1)</td>
</tr>
<tr>
<td>0004(003)</td>
<td>MOVL V=138</td>
</tr>
<tr>
<td>0005(004)</td>
<td>MOVL V=138</td>
</tr>
</tbody>
</table>

Shifted block

6.3.1.2 Parallel Shift of Job

When shifting an entire series of operations, the range to be shifted by the shift instruction can be set using the method indicated above, but the method shown in the following, in which just the part to be shifted is made into a separate job, can also be used.

SFTON P

CALL JOB:

Job to perform the shifting
6.3.2 Setting the Shift Value

6.3.2.1 Coordinate Systems

The shift value for parallel shift is X, Y, and Z increment in each coordinate. There are four coordinates: base coordinates, robot coordinates, tool coordinates, and user coordinates. In systems with no servo track, the base coordinates and robot coordinates are the same.

6.3.2.2 Setting the Shift Value

When setting the shift value for the position variables, use the current position (coordinates) of the manipulator in the window.

![Diagram showing coordinate systems and shift process]

Teaching position

Position to be shifted

(Move the manipulator using the programming pendant.)

Differences are assumed to be shift amounts.
The shift value is the X, Y, and Z difference between the shift position and teaching position and the difference in angular displacement RX, RY, and RZ (normally set at “0”). If shifting is executed at equal pitch intervals, for example for palletizing, find the difference between the teaching position and the final shift position, then divide by the number of pitch intervals (number of divisions) to calculate the shift value per pitch.

The posture of the wrist is defined by the angular displacement of the coordinates of the wrist axes. Consequently, if the shift value is specified with X, Y, and Z only (RX, RY, RZ=0), the wrist is shifted while maintaining the same posture as at the teaching point. Since shifting is normally performed without changing the posture, there is no need to specify an angular displacement for the wrist. The motion when a parallel shift is performed is shown in the following:

The shift value is calculated on the position data window for the coordinates in which the shift is performed. Since this is normally performed in the user coordinates, the position data window for the user coordinates is used.
6.3.3 Registering Shift Instructions

To register the instruction, move the cursor to the address area in the JOB CONTENT window during teach mode as follows:

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
3. Move the cursor to the address area.
6.3.3.1 SFTON Instruction

This is the instruction that starts a parallel shift.

1. Move the cursor to the line immediately before where the SFTON instruction is to be registered.

 Line immediately before where SFTON instruction is to be registered.

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>MOVJ VJ=50.00</td>
</tr>
<tr>
<td>0002</td>
<td>MOVL V=138</td>
</tr>
<tr>
<td>0003</td>
<td>MOVL V=138</td>
</tr>
</tbody>
</table>

2. Press [INFORM LIST].

 – The instruction list dialog box appears.

3. Select {SHIFT}.

4. Select the SFTON instruction.

 – The SFTON instruction is displayed in the input buffer line.

5. Modify the additional items or number values as required.

 – **<When Nothing is to be Changed>**
 Proceed to Step 6.

 – **<When Editing Additional Items>**
 • Adding or modifying additional items
 To change the position variable number, move the cursor to the position variable number and press [SHIFT] + the cursor key to increase or decrease the value.

   ```
   ⇒ SFTON P000
   ```

 To directly input the value using the Numeric keys, press [SELECT] to display the input buffer line.

   ```
   P =
   ⇒ SFTON
   ```

 After the number is input, press [ENTER] to modify the number value in the input buffer line.
• Adding the coordinate system in which the shift is performed
Move the cursor to the instruction in the input buffer line and press [SELECT]. The DETAIL EDIT window appears.

- Line up the cursor with "UNUSED" and press [SELECT]. The selection dialog box appears. Line up the cursor with the coordinate system to be added, and press [SELECT].

- After the coordinate system addition is completed, press [ENTER]. The DETAIL EDIT window closes and the JOB CONTENT window appears.

6. Press [INSERT] and then [ENTER].

- The instruction displayed in the input buffer line is registered.

Line where SFTON instruction is registered.

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0002</td>
<td>MOV L V=138</td>
</tr>
<tr>
<td>0003</td>
<td>SFTON PO00 BF</td>
</tr>
<tr>
<td>0004</td>
<td>MOV L V=138</td>
</tr>
</tbody>
</table>
6.3.3.2 SFTOF Instruction

This is the instruction that ends a parallel shift.

1. Move the cursor to the line immediately before where the SFTOF instruction is to be registered.

 Line immediately before where SFTOF instruction is to be registered.

2. Press [INFORM LIST].
 – The instruction list dialog box appears.

3. Select {SHIFT}.

4. Select the SFTOF instruction.
 – The SFTOF instruction is displayed in the input buffer line.

 `=> SFTOF`

5. Press [INSERT] and then [ENTER].
 – The SFTOF instruction is registered.

   ```
   0006  MOVL V=138
   0007  SFTOF
   0008  DOUT OT#(1) ON
   ```
6.3.3 MSHIFT Instruction

When a parallel shift of the wrist posture is attempted, the manipulator may not be shifted to the target posture in the following cases.

- Posture displacement (Rx, Ry, Rz) is specified to the shift value set by the user.
- When a displacement between two points is calculated using an INFORM operating instruction (ADD instruction, SUB instruction, etc.), and a posture displacement (Rx, Ry, Rz) is specified in the shift value.

In such cases, the MSHIFT instruction can be used to automatically calculate the optimum shift value for an operation to reach the target shift position and posture. With an MSHIFT instruction, the shift value between the reference position and the target position (shift position) when the parallel shift is performed is determined in the specified coordinate system, and set as the specified position variable.

1. Move the cursor to the line immediately before where the MSHIFT instruction is to be registered.

 Line immediately before where MSHIFT instruction is registered.

 0005 MOVJ V=138
 0006 GETS PX001 $PX000
 0007 DOUT OT#(1) ON

2. Press [INFORM LIST].
 - The instruction list dialog box appears.

3. Select (SHIFT).

4. Select the MSHIFT instruction.
 - The MSHIFT instruction is displayed in the input buffer line.

5. Change the number data or additional items as required.
 - <When Nothing is to be Changed>
 Proceed to Step 6.
 - <When Editing Additional Items>
 - Adding or modifying additional items
 To change the position variable number, move the cursor to the position variable number and press [SHIFT] + the cursor key to increase or decrease the value.
6 Convenient Functions

6.3 Parallel Shift Function

- To directly input the value using the Numeric keys, press [SELECT] to display the input buffer line.

- After the number is input, press [ENTER] to modify the number value in the input buffer line.

- Changing the coordinate system in which the shift is performed.

Move the cursor to the instruction in the input buffer line and press [SELECT]. The DETAIL EDIT window appears.

- Line up the cursor with “BF” and press [SELECT]. The selection dialog box appears. Line up the cursor with the coordinate system to be changed, and press [SELECT].

- After the coordinate system modification is complete, press [ENTER]. The DETAIL EDIT window closes and the JOB CONTENT window appears.

6. Press [INSERT] and then [ENTER].

- The instruction displayed in the input buffer line is registered.
6.3.4 Continuation of the Parallel Shift Function

CAUTION

- If the shift function is cancelled through a job editing operation after the execution of a parallel shift instruction, the job must be started again from the beginning.
- Because no shift is performed when the operation is restarted, there is a possibility of interference between the workpiece and fixture.

If any of the following operations are performed after executing a parallel shift instruction, the shift function is cancelled.

- Job editing operation (changing, deleting, adding)
- Job copy, job name change
- Registering a new job, deleting a job, or modifying a selected job
- Restart after the alarm occurs
- When control power is turned OFF

NOTE

With any operation other than those listed above, the parallel shift function remains in effect.
6.3.5 Examples of Use

6.3.5.1 Example of Use of Shift Addition/Subtraction

Table 6-1: Workpiece Stacking Operation

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>SET B000 0</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>SUB P000 P000</td>
<td>Make the first shift value zero.</td>
</tr>
<tr>
<td>0003</td>
<td>"A</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>MOVJ</td>
<td>Step 1</td>
</tr>
<tr>
<td>0005</td>
<td>MOVL</td>
<td>Step 2</td>
</tr>
<tr>
<td>0006</td>
<td>"Gripping workpiece</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>MOVL</td>
<td>Step 3</td>
</tr>
<tr>
<td>0008</td>
<td>MOVL</td>
<td>Step 4</td>
</tr>
<tr>
<td>0009</td>
<td>SFTON P000 UF#(1)</td>
<td>Shift start</td>
</tr>
<tr>
<td>0010</td>
<td>MOVL</td>
<td>Shift position Step 5</td>
</tr>
<tr>
<td>0011</td>
<td>"Releasing workpiece</td>
<td></td>
</tr>
<tr>
<td>0012</td>
<td>SFTOF</td>
<td>Shift end</td>
</tr>
<tr>
<td>0013</td>
<td>ADD P000 P001</td>
<td>Add the shift value for the next operation.</td>
</tr>
<tr>
<td>0014</td>
<td>MOVL</td>
<td>Step 6</td>
</tr>
<tr>
<td>0015</td>
<td>MOVL</td>
<td>Step 7</td>
</tr>
<tr>
<td>0016</td>
<td>INC B000</td>
<td></td>
</tr>
<tr>
<td>0017</td>
<td>JUMP "A IF B00<6</td>
<td></td>
</tr>
<tr>
<td>0018</td>
<td>SFTON P000 UF#(1)</td>
<td>Since the shift data is retained in memory, the same data can be used (with subtraction instead of addition) to perform a workpiece unloading operation.</td>
</tr>
</tbody>
</table>

Since the shift data is retained in memory, the same data can be used (with subtraction instead of addition) to perform a workpiece unloading operation.
6.3.5.2 Example of Use of MSHIFT Instruction

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>MOVJ VJ=20.00</td>
<td>Move the manipulator to the reference position.</td>
</tr>
<tr>
<td>0002</td>
<td>GETS PX000 $PX000</td>
<td>Set the reference position as position variable P000.</td>
</tr>
<tr>
<td>0003</td>
<td>MOVJ VJ=20.00</td>
<td>Move the manipulator to the target position.</td>
</tr>
<tr>
<td>0004</td>
<td>GETS PX001 $PX000</td>
<td>Set the target position as position variable P001.</td>
</tr>
<tr>
<td>0005</td>
<td>MSHIFT PX010 BF PX000 PX001</td>
<td>Set shift value and set it as position variable P010.</td>
</tr>
<tr>
<td>0006</td>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Parallel Shift Job Conversion Function

6.4.1 Function Overview

If the manipulator and base positions are moved after a job has been taught, the entire job has to be modified. The parallel shift conversion function shortens the modification time required in cases like this by shifting all steps of the job by the same value to create a new job.

When the parallel shift conversion is performed, all job steps are shifted by the same value.

Steps Outside the P-point Maximum Envelope
- "/OV" is displayed for the steps which result in a position outside the P-point maximum envelope of the manipulator. When the position is corrected, "/OV" display disappears.

Position Variable
- Position variables are not subject to the parallel shift job conversion.

Not Converted Job
- The following jobs cannot be converted. If conversion is attempted, no operation is performed.
 - Jobs without any group axes
 - Concurrent jobs (optional)

CAUTION
- If a job name after conversion is not specified when executing the parallel shift job conversion, the position data of the job is shifted and converted, then the data is overwritten with a new position data after the shift. Be sure to save the job in the external memory device or create the same job by copying before executing conversion.
6.4.2 Coordinate Systems for Conversion

When performing the parallel shift job conversion, it is necessary to specify the coordinate systems in which the conversion is to be performed. The coordinate system can be selected from the following:

- Base coordinates
- Robot coordinates
- Tool coordinates
- User coordinates (64 types)
- Master tool coordinates (R*+R* job)
- Pulse coordinates

In the case of an ordinary job for which group axes are registered, shift conversion is performed in accordance with the selected coordinate system. The relationship between group combinations and coordinates are shown in the following table.

1 to 4 in the table are followed by their explanations.

Table 6-2: Relationship Between Group Combinations and Coordinates at Conversion

<table>
<thead>
<tr>
<th>Group Combination in Job</th>
<th>Explanation</th>
<th>Usable Coordinate System</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Shift is performed on the basis of selected coordinates.</td>
<td>Base coordinates, robot coordinates, tool coordinates, user coordinates, pulse coordinates</td>
</tr>
<tr>
<td>R(B)</td>
<td>Shift is performed on the basis of selected coordinates.</td>
<td></td>
</tr>
</tbody>
</table>

1. **Base Coordinates**
 - The base axis is shifted by the specified amount and the TCP of the manipulator is shifted by the specified amount in the base coordinates.

2. **Robot Coordinates**
 - The base axis is shifted by the specified amount.
 - The TCP of the manipulator is shifted by the specified amount in the robot coordinates. These shifts are carried out independently.

3. **Tool Coordinates**
 - The base axis is shifted by the specified amount.
 - The TCP of the manipulator is shifted by the specified amount in the tool coordinates. These shifts are carried out independently.

4. **User Coordinates**
 - The base axis is shifted by the specified amount and the TCP of the manipulator is shifted by the specified amount in the user coordinates.

5. **Pulse Coordinates**
 - The taught position of each axis is shifted by the specified amount on the basis of pulse values.

S
- Shift is performed on the basis of pulse values regardless of the coordinates.
6 Convenient Functions
6.4 Parallel Shift Job Conversion Function

Table 6-2: Relationship Between Group Combinations and Coordinates at Conversion

| R+S | The manipulator is shifted in the selected coordinates.
The station axis is shifted on the basis of pulse values regardless
of the coordinates.
Base coordinates, robot coordinates, tool coordinates, user
coordinates, pulse coordinates |
|------|---|
| R(B)+S | The manipulator is shifted in the selected coordinates, as in
1 to 5 above.
The station axis is shifted on the basis of pulse values regardless
of the coordinates. |
| R+R | Two manipulators are shifted in the selected coordinates.
Base coordinates, robot coordinates, tool coordinates, user
coordinates, master tool coordinates ¹, pulse coordinates |
| R(B)+R(B) | Two manipulators are shifted in the selected coordinate system,
as in 1 to 5 above. Two base axes are also shifted. |

¹ In the master tool coordinates, conversion only occurs at the “slave” from the
standpoint of the SMOV instruction.

About 1 to 4 in the Table

1. Base Coordinates

The base axis is shifted by B and the TCP of the manipulator is shifted
by A in the base coordinates.
2. **Robot Coordinates**
The base axis is shifted by B. The TCP of the manipulator is shifted by A in the robot coordinates. These shifts are carried out independently.

3. **Tool Coordinates**
The base axis is shifted by B and the TCP of the manipulator is shifted by A in the tool coordinates. These shifts are carried out independently.

4. **User Coordinates**
The base axis is shifted by B and the TCP of the manipulator is shifted by A in the user coordinates. These shifts are carried out independently.
Converting R*+R* Jobs with Master Tool Coordinates

R*+R* coordinated jobs can be subjected to the parallel shift job conversion in the master tool coordinates. Only the steps taken at the “slave” from the standpoint of the SMOV instruction are subject to conversion (i.e. the steps of R2 in the figure below).

![Diagram showing R1 (Master) and R2 (Slave) with a motion path after conversion.](image)

0001 MOV +MOV
0002 MOV +MOV
0003 SMOV +MOV
0004 SMOV +MOV
0005 SMOV +MOV
0006 MOV +MOV

Motion path after conversion
6.4.3 Executing the Parallel Shift Job Conversion

6.4.3.1 Window Display

A. SOURCE JOB
Selects the job before conversion. The job which is shown in the JOB CONTENT window is set initially. To change the job, perform the following procedure.

Move the cursor to the job name and press [SELECT]. The JOB LIST window appears. Select the desired job.

B. STEP SECTION (Start Step → End Step)
Specifies the step section of the source job. All the steps are set initially. If there is no step in the source job, "***" is displayed. To change the section, perform the following procedure.

Move the cursor to the step section indication and press [SELECT]. The input buffer line appears. Input the step number and press [ENTER].

C. DESTINATION JOB
Specifies the converted job. If this is not specified ("***** ***" is displayed), the source job is overwritten with a job after conversion. If the converted job is specified, the source job is copied and converted. To change the job, perform the following procedure.

Move the cursor to the converted job name indication and press [SELECT]. The character input line appears. The source job name is displayed in the input line. To enter a job name without using the source job name, press [CANCEL] and then input a job name.

D. COORDINATES
Selects the conversion coordinates. Move the cursor to the coordinates name and press [SELECT]. The selection dialog box appears. Select the desired coordinates.

When the user coordinates are selected, the input buffer line appears. Input the desired user coordinate number and press [ENTER].

E. BASE POINT
Calculates the difference by the two teaching points as a shift value.
6 Convenient Functions
6.4 Parallel Shift Job Conversion Function

F. SHIFT VALUE

The axis shown is varied according to the setting of “4. coordinates” above.

Move the cursor to the input box and press [SELECT] to directly input the shift value.

If the shift value is calculated by the two teaching points, the difference is shown as a shift value.
6.3.2 Parallel Shift Job Conversion Operation

There are two methods for specifying the shift value.

- Directly input the shift value by numerical value.
- Calculate the shift value by teaching the original base point and converted base point.

The method using position variables by parameter setting is described in section 6.4.4 “Specifying the Shift Value by Position Variables” on page 6-39 other than above two methods.

The following are the operation procedures by each setting of shift value for parallel shift job conversion.

Numerical Value Input

1. Select {JOB} under the main menu.
2. Select {JOB}.
 - The JOB CONTENT window appears.
3. Select {UTILITY} under the pull-down menu.
4. Select {PARALLEL SHIFT JOB}.
 - The PARALLEL SHIFT JOB window appears.
5. Specify the conversion items.
 - Specify each item.
6. Select the shift value to be set.
 - The number can be entered.

7. Type the shift value using the Numeric keys.

8. Press [ENTER].
 - The shift value is set.

9. Display the PARALLEL SHIFT JOB window. Select “EXECUTE”.
 - The confirmation dialog box appears when the converted job is not specified. Select “YES” then the conversion is executed.
 - The JOB CONTENT window appears when the conversion is completed.
When “CANCEL” is selected, the display goes back to the JOB CONTENT window without executing conversion.

If an alarm occurs during conversion, conversion is suspended.
6 Convenient Functions
6.4 Parallel Shift Job Conversion Function

Calculation by Teaching

1. Select (JOB) under the main menu.
2. Select (JOB).
 - The JOB CONTENT window appears.
3. Select (UTILITY) under the pull-down menu.
4. Select (PARALLEL SHIFT JOB).
 - The PARALLEL SHIFT JOB window appears.
5. Specify the conversion items.
 - Specify each item.
6. Display the PARALLEL SHIFT JOB window. Select “TEACH SETTING” in the item of “BASE POINT”.
 - The BASE POINT window appears.
7. Select “BASE POINT(SRC)”.
8. Move the manipulator to the original base point by the axis keys.
9. Press [MODIFY] and [ENTER].
 - The original base point is set.

10. Select “BASE POINT(DEST)”.

11. Move the manipulator to the converted base point by the axis keys.

12. Press [MODIFY] and [ENTER].
 - The conversion base point is set.

13. Touch “EXECUTE”.
 - The difference is calculated by the two teaching points and set as a shift value.
14. Display the PARALLEL SHIFT JOB window. Select “EXECUTE”.

- The confirmation dialog box appears when the converted job is not specified. Select “YES” then the conversion is executed.
- The JOB CONTENT window appears when the conversion is completed.
- When “CANCEL” is selected, the display goes back to the JOB CONTENT window without executing conversion.

If an alarm occurs during conversion, conversion is suspended.
6.4.4 Specifying the Shift Value by Position Variables

The shift value can be specified using position variables by parameter settings.

Parameter S2C652: SHIFT VALUE FOR PARALLEL SHIFT JOB CONVERSION
0: Shift value by numeral/teaching (Initial setting)
1: Position variable shift value

6.4.4.1 Window Display

A. FILE NO.
 Specifies position variables.

B. SHIFT JOB NAME
 The job which was shown in the JOB CONTENT window is set initially. To change the job, perform the following procedure.
 Move the cursor to the conversion job name and press [SELECT]. The JOB LIST window appears. Move the cursor to the desired job and press [SELECT]. The PARALLEL SHIFT JOB window reappears, and the job name which was selected is shown.

C. MODE
 Specifies the conversion mode.
 SINGLE (INDEPENDENT JOB CONVERSION)
 Only the selected job is converted even if the selected job includes the jobs called by JUMP or CALL instructions. Related jobs are not converted.
 RELATIVE (RELATIVE JOB CONVERSION)
 Both the selected job and all the related jobs (the jobs called by JUMP or CALL instructions) are converted.
 For details of each conversion mode, refer to section 6.4.4.2 “Jobs Targeted for Conversion”.
D. COORDINATES
Selects the conversion coordinates. Move the cursor to the coordinates name and press [SELECT]. The selection dialog box appears. Select the desired coordinates. When the user coordinates are selected, the input buffer line appears. Input the desired user coordinate number and press [ENTER].

E. CONV. METHOD
Specifies the conversion methods of related jobs such as a coordinated job with two manipulators or the system with multiple stations.

COMMON (COMMON SHIFT)
All the manipulators (or all the bases, or all the stations) are converted by the same shift value.

EACH (INDIVIDUAL SHIFT)
Each manipulator (or each base, or each station) is converted separately by different shift values.

For details of each conversion method, refer to section 6.4.4.3 “Conversion of Coordinated Jobs” on page 6-42.
6.4.4.2 Jobs Targeted for Conversion

There are two ways to specify the job to be converted as described in the following:

- **Independent Job Conversion**
 Only the selected job is converted even if the selected job includes the jobs called by JUMP or CALL instructions. Related jobs are not converted.

- **Related Job Conversion**
 Both the selected job and all the related jobs (the jobs called by JUMP or CALL instructions) are converted.
6.4.4.3 Conversion of Coordinated Jobs

There are two ways to convert a related job such as a coordinated job with two manipulators or the system with multiple stations as described in the following:

- **Common Shift**
 All the manipulators (or all the bases, or all the stations) are converted by the same shift value.

 Coordinated job with R1+R2

 ![Common Shift Diagram](image)

 The system with multiple stations

 ![Multiple Stations Diagram](image)

- **Individual Shift**
 Each manipulator (or each base, or each station) is converted separately by different shift values.

 Coordinated job with R1+R2

 ![Individual Shift Diagram](image)
6 Convenient Functions
6.4 Parallel Shift Job Conversion Function

The system with multiple stations

- Variables used in an individual shift

Be sure to use the variables of which numbers are consecutive after the selected number. The variables of which numbers are not consecutive are unable to be selected.

Example 1) When selecting P010 for a coordinated job with R1 + R2:
Use P010 for R1.
Use P011 for R2.
Example 2) When selecting EX005 for multiple jobs with four stations:
Use EX005 for S1.
Use EX006 for S2.
Use EX007 for S3.
Use EX008 for S4.

- **Relation between variables and jobs for conversion in an individual shift**

- **In the case of independent job conversion:**
 - Coordinated job with R1 + R2
 Different shift values can be set for each manipulator and base.

- Job with R□ (S□)
 Use one variable for a job with one manipulator.
In the case of related job conversion:
- Different shift values can be set for each manipulator, base, and station.

6.4.4.4 Operation Procedure
The following is the operation procedure for the parallel shift job conversion using position variables.

1. Set the parameter.
 - Set the parameter S2C652 (SHIFT VALUE FOR PARALLEL SHIFT JOB CONVERSION) to 1 (Position variable shift value).

2. Set the position variable.
 - Specify a position variable in advance when setting a shift value by position variables.
 - For the setting of position variables, refer to section 3.9.4 “User Variables” on page 3-77.

3. Select {JOB} under the main menu.

4. Select {JOB}.
 - The JOB CONTENT window appears.

5. Select {UTILITY} under the pull-down menu.
6. Convenient Functions
6.4 Parallel Shift Job Conversion Function

6. Select {PARALLEL SHIFT JOB}.
– The PARALLEL SHIFT JOB window appears.

7. Specify the conversion items.
– Specify each item.

8. Select “EXECUTE”.
– Select “EXECUTE” then the parallel shift job conversion is executed. The JOB CONTENT window appears when the conversion is completed.
– When “CANCEL” is selected, the display goes back to the JOB CONTENT window without executing conversion.

NOTE
If an alarm occurs during conversion, conversion is suspended.

NOTE
Specify the position variable in advance when using the setting value as a shift value.
6.5 PAM Function

6.5.1 Function Overview

The function for position adjustment during playback (PAM: Position Adjustment by Manual) allows position adjustment by simple operations while observing the motion of the manipulator and without stopping the manipulator. Positions can be adjusted in both teach mode and play mode.

The following data can be adjusted by key input from the programming pendant.

- Teaching Point (Position)
- Teaching Point (Posture angle)
- Operation Speed
- Position Level

6.5.1.1 Input Ranges for Adjustment Data

The input ranges for adjustment data are indicated in the following table.

<table>
<thead>
<tr>
<th>Data</th>
<th>Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Steps for Adjustment</td>
<td>Up to 10 steps can be adjusted at the same time.</td>
</tr>
<tr>
<td>Position Adjustment Range</td>
<td>Unit: mm, valid to two decimal places, maximum ±10 mm</td>
</tr>
<tr>
<td>Posture Angle Adjustment Range</td>
<td>Unit: deg, valid to two decimal places, maximum ±10 deg</td>
</tr>
<tr>
<td>Speed Adjustment Range (V)</td>
<td>Unit: %, valid to two decimal places, maximum ±50%</td>
</tr>
<tr>
<td>PL Adjustment Range</td>
<td>0 to 8</td>
</tr>
<tr>
<td>Adjustment Coordinates</td>
<td>Robot coordinates, base coordinates, tool coordinates, user coordinates</td>
</tr>
<tr>
<td></td>
<td>(Default coordinates: robot coordinates)</td>
</tr>
</tbody>
</table>

The input ranges for adjustment data can be changed by the following parameters:

- S3C1098: Position adjustment range (unit: 0.001 mm)
- S3C1099: Speed adjustment range (unit: 0.01%)
- S3C1100: Adjustment coordinate specification
- S3C1102: Posture angle adjustment range (unit: 0.01 deg)

For details, refer to chapter 8 "Parameter".
• Base axis and station axis data cannot be adjusted.
• Adjustment when a TCP instruction is executed is performed by adjusting the data of the selected tool.
• When the coordinates for adjustment are user coordinates, an error occurs if teaching has not been performed in the user coordinates.
• If an attempt is made to adjust "PL" when there is no "PL" in the step subject to the adjustment, an error occurs.
• Position variable and reference point steps cannot be adjusted. An error occurs if adjustment is attempted.
• An attempt to adjust the speed at the step that has no speed tag causes an error.
6.5.2 Operating Methods

6.5.2.1 Setting Adjustment Data

1. Select {JOB} under the main menu.
2. Select {JOB}.
 – The JOB CONTENT window (in the teach mode) or the PLAYBACK window (in the playback mode) appears.
3. Select {UTILITY} under the pull-down menu.
4. Select {PAM}.
 – The PAM window appears.
5. Set adjustment data.
 – Set adjustment data.
 – **A. Job**
 Set the job name to be adjusted.
 Line up the cursor and press [SELECT] to display the JOB LIST window.
 Move the cursor to the desired job and press [SELECT] to set the adjusted job.
 – **B. Status**
 Shows the status of adjustment in the PAM function.
 “NOT DONE” appears when adjustment is not executed. “DONE” appears when the execution of adjustment is completed.
 – **C. Input Coord**
 Set the desired coordinates.
 Line up the cursor and press [SELECT] to display the selection dialog box.
 Move the cursor to the desired coordinate system and press [SELECT] to set the input coordinates.
 – **D. Step Number**
 Set the step number to be adjusted.
 Line up the cursor and press [SELECT] to display the number input buffer line.
 Input the step number and press [ENTER] to set the value.
 – **E. XYZ Coordinate Adjustment**
 Set the direction and amount of the X, Y, and Z coordinates.
 Line up the cursor with the data to be adjusted and press [SELECT]
6 Convenient Functions
6.5 PAM Function

to display the number input buffer line.
Input the number data and press [ENTER] to set the adjusted data.

- **F. Rx, Ry, Rz Coordinate Adjustment**
 Set the direction and amount of the Rx, Ry and Rz posture angles.
 Line up the cursor with the data to be adjusted and press [SELECT] to display the number input buffer line.
 Input the number data and press [ENTER] to set the adjusted data.

- **G. V Coordinate Adjustment**
 Set the speed.
 Line up the cursor and press [SELECT] to display the number input buffer line.
 Input the number data and press [ENTER] to set the adjusted data.

- **H. PL**
 The position level of the job to be adjusted for the step set in “4. Step Number” is displayed, and the data can be modified.
 When the position level is not decided, [-] is displayed, and cannot be set.
 To modify the position level, line up the cursor, press [SELECT], input the number value and press [ENTER].
6.5.2.2 Executing the Adjustment

Executing the Adjustment

1. Touch “COMPLETE” on the screen.
 - The confirmation dialog box appears.

2. Select “YES”.
 - In the teach mode, the job adjustment can be immediately executed. In the play mode, the job can be adjusted just before execution (move operation).
 - When the job adjustment is completed, the set data shown in the PAM window is cleared. However, if the step’s adjusted position exceeds the software limit, an error occurs, and the data in only that step cannot be cleared on the window.
Cancelling the Execution

In the play mode, during the adjustment wait status, "STOP" is displayed in the PAM window. To cancel the adjustment process, touch "STOP" on the screen. Also, if the following occurs before executing, the process is automatically cancelled.

- If the mode is changed
- If an alarm occurs
- If the power is turned OFF

Clearing Data

If there is a mistake made when adjusting the data, or if the adjustment of the step becomes unnecessary, the data can be cleared.

1. Move the cursor to the step of the data to be cleared.
2. Select {EDIT} under the pull-down menu.
3. Select {LINE CLEAR}.
 - The line data is cleared.
6 Convenient Functions
6.5 PAM Function

■ Copying Data

To input the same data as those set previously, perform the following operation.

1. Move the cursor to the line to be copied.
2. Select {EDIT} under the menu.
 - The pull-down menu appears.
3. Select {LINE COPY}.
4. Move the cursor to the line where the item is to be copied.
5. Select {EDIT} under the menu.
6. Select {LINE PASTE}.
 - The desired data is copied to the line.
 - However, if the line where the data is to be copied does not have a speed value or PL value, it cannot be copied.

■ Canceling the Adjustment

After the position adjustment in the PAM function, the job can be returned to the status before adjustment only during teaching. In this case, follow the procedures below.

Note that the job cannot be undone during playback.

1. Move the cursor to the line to be copied.
 - After the position adjustment, the status shows “DONE”.
2. Select \{EDIT\} under the menu.
 – The pull-down menu appears.

3. Select \{UNDO\} under the pull-down menu.
 – The confirmation dialog box appears.

4. Select “YES”
 – The status turns “NOT DONE” and the job is undone when selecting “YES”. The status does not change and the job is not undone when selecting “NO”.
6.6 Mirror Shift Function

6.6.1 Function Overview

With the mirror shift function, a job is converted to the job in which the path is symmetrical to that of the original job. This conversion can be performed for the specified coordinate among the X-Y, X-Z, or Y-Z coordinate of the robot coordinates and the user coordinates.

The mirror shift function is classified into the following three: the pulse mirror-shift function, the robot-coordinates mirror-shift function, and the user-coordinates mirror-shift function.
6.6.2 Pulse Mirror-shift Function

With the pulse mirror-shift function, the mirror shift is performed by reversing the sign (+/-) for the axes which are specified with the parameter in advance.

![Diagram of mirror shift function](image)

6.6.2.1 Parameter Setting

Using the following parameter, specify the axes for which the sign is to be reversed.

S1CxG065: Mirror Shift Sign Reversing Axis Specification

![Parameter settings diagram](image)

- The 1st axis (0: Not reversed, 1: Reversed)
- The 7th axis

6.6.2.2 Object Job

Jobs without group axes and relative jobs cannot be converted.

6.6.2.3 Group Axes Specification

When specifying the group axes for the converted job in a multiple group axes system, the group axes specified in the original and converted jobs must be the same.

- Robot Axis: Same model
- Base Axis: Same configuration
- Station Axis: Same configuration

6.6.2.4 Position Variables

Position variables are not converted by the mirror shift function.
6.6.3 Robot-coordinates Mirror-shift Function

With the robot-coordinates mirror-shift function, the mirror shift is performed on the X-Z coordinate of the robot coordinates.

6.6.3.1 Object Job

Jobs without group axes cannot be converted.

6.6.3.2 Group Axes Specification

When specifying the group axes for the converted job in a multiple group axes system, the group axes specified in the original and converted jobs must be the same.

- Robot Axis: Same model
- Base Axis: Same configuration
- Station Axis: Same configuration

6.6.3.3 Position Variables

Position variables are not converted by the mirror shift function.

• Mirror shift conversion for the base axis is not performed with the robot-coordinates mirror shift function.
• With the robot-coordinates mirror shift function, mirror shift conversion for the station axis is performed by reversing the sign for the axes specified with the parameter S1CxG065 "Mirror Shift Sign Reversing Axis Specification".
6.6.4 User-coordinates Mirror-shift Function

With the user-coordinates mirror-shift function, the mirror shift is performed on the X-Z, X-Y, or Y-Z coordinate of the specified user coordinates.

6.6.4.1 Object Job

Jobs without group axes cannot be converted.

6.6.4.2 Group Axes Specification

When specifying the group axes for the converted job in a multiple group axes system, the group axes specified in the original and converted jobs must be the same.

- Robot Axis: Same model
- Base Axis: Same configuration
- Station Axis: Same configuration

6.6.4.3 Position Variables

Position variables are not converted by the mirror shift function.

NOTE

With the user-coordinates mirror shift function, mirror shift conversion for the station axis is performed by reversing the sign for the axes specified with the parameter S1CxG065 "Mirror Shift Sign Reversing Axis Specification".
6.6.5 Notes on the Mirror Shift Function

For manipulators, such as a polishing wrist, whose center of S-axis rotation and T-axis rotation are offset in the X-coordinate direction, the mirror shift cannot correctly be performed by the pulse mirror-shift function. Be sure to use the robot-coordinates mirror-shift function or use the user-coordinates mirror-shift function with the user coordinates specified on the center of the T-axis rotation.

(1) Using the Robot-coordinates Mirror-shift Function
When the robot-coordinates mirror-shift function is performed, the mirror shift is performed on the X-Z coordinate of the robot coordinates. The path of the converted job is as follows:

Robot-coordinates Mirror-shift Conversion

(2) Using the User-coordinates Mirror-shift Function
To use the user-coordinates mirror-shift function, specify the user coordinates on the center of T-axis rotation in advance.

User-coordinates Mirror-shift Conversion
6.6.6 Operation Procedures

6.6.6.1 Calling Up the JOB CONTENT Window
Call up the JOB CONTENT window of the job to be converted as follows:

- For Current Job
 1. Select {JOB} under the main menu.
 2. Select {JOB}.

- For Another Job
 1. Select {JOB} under the main menu.
 2. Select {SELECT JOB}.
 - The JOB LIST window appears.
 3. Select the desired job.

6.6.6.2 Mirror Shift Conversion
1. Display the JOB CONTENT window.
2. Select {UTILITY} under the pull-down menu.
 - The MIRROR SHIFT window appears.
3. Select {MIRROR SHIFT}.
 - The MIRROR SHIFT window appears.
6.6.6.3 Explanation of the Mirror Shift Window

A. **SOURCE JOB**
Selects the conversion source job.
To select another job to be converted, move the cursor to the name and press [SELECT] to call up the list of jobs. Select the desired job and press [SELECT].

B. **SOURCE CTRL GROUP**
Displays the control group of the conversion source job.

C. **STEP SELECTION**
Specifies the steps to be converted. From the first step to the last step of the selected job are specified as initial value.

D. **DESTINATION JOB**
Specifies the converted job name. To enter the name, move the cursor to the name and press [SELECT]. The name of the conversion source job is displayed in the input line as initial value. When "***" is displayed, the name for the converted job is to be the same as that of the conversion source job.

E. **DEST CTRL GROUP**
Selects the control group for the converted job. When the destination job name is entered, the same control group as the conversion source job is automatically set. To change it, move the cursor to the control group and press [SELECT] to call up the selection dialog box.

F. **COORDINATES**
Specifies the coordinates used for conversion.
"PULSE": Executes the pulse mirror-shift conversion.
"ROBOT": Executes the mirror-shift conversion on the basis of the cartesian coordinates.
"USER": Executes the mirror-shift conversion on the basis of the specified user coordinates.
6 Convenient Functions
6.6 Mirror Shift Function

G. USER COORD NO.
Specifies the user coordinates number when "USER" is selected in "6. COORDINATES".
This item cannot be set when "PULSE" or "ROBOT" is selected in "6. COORDINATES".

H. TARGET
Specifies the coordinate where conversion is to be done when "ROBOT" or "USER" is selected in "6. COORDINATES". "XY", "XZ", or "YZ" can be selected. Always specify "XZ" for "ROBOT".

I. EXECUTE
Mirror shift conversion is executed when pressing "EXECUTE" or [ENTER]. A job is created with the name of conversion source job when a job after conversion is not entered.
6.7 Multi Window Function

6.7.1 Function Overview
Multi window function divides the general-purpose display area up to 4 windows and shows them simultaneously.

There are seven dividing patterns to be optionally choose as necessary.

6.7.2 Setting the Dividing Pattern of the General-Purpose Display Area
The dividing pattern of the general purpose display area can be changed in the window exclusive for setting.

Table 6-3: Display the dividing Pattern (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Number of the window</th>
<th>Dividing Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 2</td>
</tr>
<tr>
<td>3</td>
<td>1 2</td>
</tr>
<tr>
<td>4</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>
6.7 Multi Window Function

6.7.2.1 Calling Up and Operating Methods of the Display Dividing Pattern Setting Window

Call up the dividing pattern setting window.

1. Select [DISPLAY SETUP] - [CHANGE WINDOW PATTERN] under the main menu.

2. Dividing pattern setting window appears in the center of the display.

<table>
<thead>
<tr>
<th>Number of the window</th>
<th>Dividing Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3 windows</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 3 windows</td>
<td>1 2 3</td>
</tr>
<tr>
<td>7 4 windows</td>
<td>1 2 3 4</td>
</tr>
</tbody>
</table>

Table 6-3: Display the dividing Pattern (Sheet 2 of 2)
In the dividing pattern setting window, set the dividing pattern of the general-purpose display area.

1. **Key operation 1:**
 - When “Window Pattern” is focused in the window, the option of the dividing pattern shifts as cursor moves upper or lower.
 - Choose the desired dividing pattern from the “Window Pattern”.

2. **Key operation 2:**
 - Press Select key when “Window Pattern” is focused. The list of the dividing patterns appears. The list closes and a pattern is set after choosing the desired pattern and press “Select” key.
3. Touching operation:
 The desired pattern can be chosen by touching a pattern in the window.
 – Choose a pattern from the dividing pattern buttons.

4. Touch [OK] button or move the cursor to it and press [SELECT] key.
 – The dividing pattern setting window closes and the chosen pattern (chosen with the procedure either 1, 2 or 3) appears.
Cancel the setting

1. Touch [CANCEL] button or move the cursor to it and press [SELECT] key.
 – Dividing pattern setting window closes. The dividing pattern in the general-purpose display area doesn’t change.

 ![Diagram of dividing pattern setting window]

 The cursor moves by pressing [AREA] key in the dividing pattern setting window.
6.7.3 Displaying the Multi Window

6.7.3.1 Multi Window Mode and Single Window Mode

Specifying more than two-window pattern in the dividing pattern setting window shows plural windows simultaneously in the general-purpose display area.

This is called multi window mode.

On the other hand, a single active window can be displayed with pressing [SHIFT] + [MULTI] key operation.

This is called single window mode.

Pressing [SHIFT] + [MULTI] key operation switches the display from single window mode to multi window mode. The mode can be changed as necessary.

6.7.3.2 Displaying the Status of Plural (more than two) Window Dividing Pattern Setting

When more than two windows are displayed as a desired pattern, appears on the upper part of the window whereas it doesn't appear when a single window is displayed.
6.7.3.3 Displaying of Active Window and Non-Active Window

When a display is in the multi window mode, one window should be active and the rest is (are) non-active. The title of the active window is displayed in deep blue and non-active window is in light blue.

The active window is the subject of key operation. Also, the menu area or the operational buttons under the general-purpose displaying area are displayed for the operation of the active window.

6.7.3.4 Limited Matters in Multi Window Mode

The content of window when it is in multi window mode can be different from the same window when it is in single window mode because of its limited size. The content becomes normal when the window is displayed in the single window mode.

- The input buffer in the JOB window is displayed only when the window is active.
- No auxiliary window appears.
6.7.4 Operation of Multi Window

6.7.4.1 Switching of Multi Window Mode and Single Window Mode

When more than two windows are displayed as a dividing pattern of the multi window, it is possible to switch multi window mode to single window mode.

1. Set the mode of the general-purpose displaying area to multi window mode.

2. Press [SHIFT]+[MULTI] keys.
 - Active window is displayed under single window mode in the general-purpose window displaying area.
 - The general-purpose display area changes to already set pattern in multi window mode.
6.7.4.2 Switching of Active Window

Switch the active window in the multi window displaying mode.

1. Set the mode of the general-purpose displaying area to multi window mode.

2. Key Operation:
 Press [MULT] key
 – The window to be active shifts. The active window shifts in the order mentioned in section 6.7.2 “Setting the Dividing Pattern of the General-Purpose Display Area” on page 6-63.

3. Touching Operation:
 Touch the window to be active.
 – The touched window becomes active.
Switch the active window in the single window mode.

1. Set the mode of the general-purpose displaying area to single window mode.

2. Press [MULT] key

 - The following windows are displayed in the order mentioned in section 6.7.2 “Setting the Dividing Pattern of the General-Purpose Display Area” on page 6-63. (1 → 2 → 3 → 4 → 1 ·····)

 ![Diagram](image)

 During the period before menu is selected when alarm occurred, the active window cannot be switched if alarm window is displayed, direct open is ON or a window is displayed by key allocation operation.
6.7.5 **Switching the Axis Operation Control Group**

The appropriate control group for axis operation is automatically selected in accordance with the window status or its operation in the active window. Due to this function, when the general-purpose display area is in multi window mode, the control group for axis operation can vary depending on the window which is active at the time.

To avoid unexpected control group to function and for the better safeness, the change of the control group with the [MULTI] key operation or touching operation when switching the active window is notified to the user.

6.7.5.1 S2C540 “Choosing Method of Notifying the Change of Axis Operation Control Group when Switching the Active Window”

The method to notify the change of control group for axis operation due to the switch of active window can be changed with parameter.

- **Setting Value:** 0
 - Keep displaying the message in the human interface display area for three seconds.
 - Message “Control group switched by switching the active window” is displayed.

The change of the control group for axis operation due to other than [MULTI] key operation or touching operation; due to the switch of the window by selecting main menu, is not notified to the user.
6.7 Multi Window Function

- **Setting Value: 1**
 - Call up the confirmation dialog box to confirm the switch of the active window.
 - Message “Control group will be changed. Switch the active window?” is displayed.
 - “Yes” ······ After switching the window to be active, a message appears in the human interface display area.
 - “No” ······ Cancel the window to be active.

![Control group will be switched. Switch the active window?](image)

- **Setting Value: 2**
 - Do not notify the control group change.
6.8 Simple Menu Function ¹)

6.8.1 Simple Menu

This function enables users to create “USER DEFINITION” menu by registering the layouts (screen dividing patterns and screen to be displayed) on the general-purpose display area.

Eight layout patterns can be registered to the user definition menu at maximum.
The registered layout patterns can be easily called up with the buttons of simple menu.

¹ Simple menu function is available in DS1.50-00 version or later.
6.8.2 Registering the Layout Patterns to User Definition Menu

6.8.2.1 Register with {REGIST} Button

Register the layout patterns by using {RESIST} button which is in “USER DEFINITION” menu.

1. Press [SIMPLE MENU] key or select (Simple Menu) button on the display while the layout pattern to be registered is on the general-purpose display area.
 - “USER DEFINITION” menu appears.

2. Press {REGIST} button.
 - “USER DEFINITION” menu closes.
 - The message “Do you register a current layout?” appears in the confirmation dialog box.

3. Select {YES}.
 - The layout is registered and the dialog box closes.

*It will not be registered when {NO} is selected.
6.8.2.2 Register by Key Operation

Use the programming pendant keys to register the layout patterns to "USER DEFINITION" menu.

1. Press [SHIFT] + [SIMPLE MENU] keys while the layout pattern to be registered is on the general-purpose display area.

 - The message “Do you register a current layout?” appears in the confirmation dialog box.

2. Select {YES}.

 - The layout is registered and the dialog box closes.

*It will not be registered when {NO} is selected.
6.8.2.3 Conditions to Register the Layout

There are some cases that the layout patterns cannot be registered to “USER DEFINITION” menu.

Followings are the conditions and the messages that the layout is refused to register.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>when the layout is already registered. This layout is already registered.</td>
</tr>
<tr>
<td>2</td>
<td>when eight layouts are already registered. There is not an undefined domain.</td>
</tr>
<tr>
<td>3</td>
<td>When the registering layout includes the window which cannot be started up from the main menu. The screen which I cannot register is included [W1W2W3W4] (The number W1 to W4 indicates the windows which are actually displayed on the general-purpose display area, however, the highlighted numbered window cannot be registered. *For the layout of 1 to 4, refer to Table 6-3 “Display the dividing Pattern” on page 6-63.)</td>
</tr>
<tr>
<td>4</td>
<td>When a single window is displayed under the multi window mode. Cannot register at current operation mode.</td>
</tr>
</tbody>
</table>

The screens which cannot be started up from the main menu are impossible to register. Also, the layout of the screens that are called up from {FD/PC CARD} or ladder editor (optional function) cannot be registered.

6.8.2.4 The Displayed Layout Name

After a layout pattern is registered to “USER DEFINITION” menu, it is named in accordance with the status of the general-purpose display area when the layout pattern is created. Refer to the followings for the details.

<table>
<thead>
<tr>
<th>Status of general-purpose display area</th>
<th>Name registered to “USER DEFINITION” Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Single window mode</td>
<td>(Same as the sub menu in main menu)</td>
</tr>
<tr>
<td>2 Multi window mode</td>
<td>Layout -n ("n" should be a number from 0 to 7)</td>
</tr>
</tbody>
</table>

It is possible to change the name even after the name is registered. Refer to section 6.8.4.3 “Change the Name of Registered Layout Name” on page 6-84.
6.8.3 Calling Up of the Registered Layout

6.8.3.1 Calling up

Call up the registered layout with the following procedures.

1. Press [SIMPLE MENU] key or select {Simple Menu} button at the lower-left on the display.
 - “USER DEFINITION” menu appears.

2. Select and press a button on “USER DEFINITION” menu to display a layout to be called up.
 - “USER DEFINITION” menu closes.
 - The selected layout appears on the general-purpose display area.
6.8.3.2 Conditions when Calling Up the Layout

There are some cases where the layout cannot be called up depending on the conditions when calling up. Followings are the conditions and the messages that the layout is refused to be called up.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>When all the registered layout windows cannot be displayed due to security mode or its purpose of use.</td>
</tr>
</tbody>
</table>

| | There are no windows to display within the chosen layout. |

When undisplayed screen is included in the layout to be called up due to above mentioned reasons, the message, “Please selected a Main Menu” appears to the said screen.

6.8.4 Editing “USER DEFINITION” Menu

Editing procedures of “changing the registered name” and “deleting the registered item” are possible to the items registered to “USER DEFINITION MENU” window.

Those editions are executed on “USER DEFINITION MENU” window. Displaying of “USER DEFINITION MENU” window is possible in the operation mode or more and editing of this menu is possible in the editing mode or more.

6.8.4.1 Displaying “UNSER DEFINITION” Window

Displays “UNSER DEFINITION MENU” Window with (EDIT) button.

1. Press [SIMPLE MENU] key or select (Simple Menu) button at the lower-left on the display.

 - “USER DEFINITION MENU” menu appears.
2. Press {EDIT} button.
 - “USER DEFINITION” menu closes.
 - “USER DEFINITION MENU” window appears on the active window in the general-purpose display area.

6.8.4.2 Displaying “USER DEFINITION MENU” window Under Main Menu
Displays “USER DEFINITION MENU” window under main menu.

1. Select {SYSTEM INFO} under the main menu.
 - {SYSTEM INFO} sub menu appears.

2. Select {USER DEFINITION}.
“USER DEFINITION MENU” window appears on the active window in the general-purpose display area.
6.8.4.3 Change the Name of Registered Layout Name

The registered layout names can be changed.

1. Display "USER DEFINITION MENU" window.

 ![User Definition Menu Window]

2. Move the cursor key to the layout name to be changed and press [SELECT] key.
 - The software key pad for inputting letters appears.

 ![Software Key Pad for Inputting Letters]

 - Use the software key pad to input the new layout name.
 - Press the Enter key to confirm the new layout name.
3. Input the layout name, then press [ENTER] key or {ENTER} button.
 - The software key pad closes.
 - The name changes.

* If complete the software key pad operation with [CANCEL] key or {CANCEL} button, the name editing operation is also canceled.

When the bilingual function is valid, name in each language can be set.
6.8.4.4 Deleting the Layout

The layout registered to “USER DEFINITION” menu can be deleted.

1. Display “USER DEFINITION MENU” window.

2. Move the cursor key to the layout to be deleted and press [SHIFT] + [SELECT] keys. (multiple selection possible)
 - “●” mark is indicated at the head of the selected line.

3. Select {DATA} in the menu.
 - A pull down menu appears.
4. Select {DELETE MENU}.
 - The confirmation dialog box with a message “Delete? Layout -4 (layout name)” appears to the line marked with “●”.

5. Select {YES} in the dialog box.
 - The marked layout is deleted.

* The layout will not be deleted if {NO} in the dialog box is selected.
6.8.4.5 Delete All Layout

All layouts registered to "USER DEFINITION" menu can be deleted at a time.

1. Display "USER DEFINITION MENU" window.
2. Select {EDIT} in the menu.
 - A pull down menu appears.
3. Select {SELECT ALL}.
 - "●" mark is indicated to all the registered layouts.

![Diagram showing the "USER DEFINITION MENU" window with layouts selected and deselected.]

![Diagram showing the "USER DEFINITION MENU" window with all layouts deselected.]
4. Select {DATA} in the menu.
 – A pull down menu appears.

5. Select {DELETE MENU}.
 – The confirmation dialog box with a message “Delete? Layout -0 (layout name)” appears to the lines marked with “●”.

6. Select {YES} in the dialog box.
 – The marked layouts are deleted.

 * The layout will not be deleted if {NO} in the dialog box is selected.

Supplement:
Move the cursor to the line with “●” mark, and press [SHIFT] + [SELECT] keys to disappear “●” mark.
When select {EDIT} - {CANCEL SELECT} under the pull down menu to cancel select and “●” marks disappear.
6.8.5 **Save/Load (to external memory devices) the User Definition Menu Data**

The data registered to “USER DEFINITION” menu (user menu data) can be saved to and loaded from the external memory device.

In this case, the name of the file is “USERMENU.DAT”.

6.8.5.1 **Saving the Data**

User menu data can be saved at the security level of operation mode or more.

1. Select {EX. MOMORY} under the main menu.
 - {EX. MOMORY} sub menu appears.
2. Select {SAVE}.
 - {SAVE} window of external memory device appears.
3. Select {FILE/GENERAL DATA}.
 - {FILE/GENERAL DATA} window of external memory device appears.
4. Select {USER MENU DATA}.
 - “★” mark is indicated at the head of {USER MENU DATA}.

5. Press [ENTER].
 - The confirmation dialog box with a message “SAVE” appears.

6. Select {YES} in the dialog box.
 - {USER MENU DATA} is saved.

 * It will not be saved if {NO} in the dialog box is selected.
6.8.5.2 Loading the Data

User menu data can be loaded at the security level of editing mode or more.

1. Select {EX. MOMORY} under the main menu.
 - {EX. MOMORY} sub menu appears.

2. Select {LOAD}.
 - {LOAD} window of external memory device appears.

3. Select {FILE/GENERAL DATA}.
 - {FILE/GENERAL DATA} window of external memory device appears.
4. Select {USER MENU DATA}.

 - “★★” mark is indicated at the head of {USER MENU DATA}.

5. Press [ENTER].

 - The confirmation dialog box with a message “LOAD?” appears.

6. Select {YES} in the dialog box.

 - {USER MENU DATA} is loaded.

* It will not be loaded if {NO} in the dialog box is selected.
6.9 Parameter Setting Function

6.9.1 Parameter Setting Function

Among the parameters explained in chapter 8 "Parameter", frequently used parameters' settings can be changed from the exclusive windows. Those windows are sorted out depending on the parameters’ function as shown below.

- **TEACHING CONDITION SETTING**
 Teaching-relevant parameters are displayed.

- **OPERATE CONDITION SETTING**
 Mode switching/power-relevant parameters are displayed.

- **OERPERATE ENABLE SETTING**
 ON/OFF of the manipulator-relevant parameters are displayed.

- **FUNCTION ENABLE SETTING**
 Enable/unable of optional function-relevant parameters settings are displayed.

- **JOG CONDITION SETTING**
 Operation of the jog-relevant parameters are displayed.

- **PLAYBACK CONDITION SETTING**
 Playback operation-relevant parameters are displayed.

- **FUNCTIONAL CONDITION SETTING**
 Execution of each function-relevant parameters are displayed.

Select above mentioned menu from {SETUP} window under main menu.
Move the cursor key to select a menu, then the settings of the desired parameters can be changed by one of the following three methods according to its content.

- When there are two options. The options alternate every time the select key is pressed.

- When there are three or more options. A dialog box with the options appears. Select one to change the settings.

- When it requires to input a value. Input a value using the Numeric keys and press [ENTER] to change the settings.
6.9.2 Teaching Condition Setting

Select (SETUP) → (TEACHING CONDITION SETTING) to display the following window.

- **LANGUAGE LEVEL (S2C211)**
 Refer to section 8.3.0.13 “S2C211: LANGUAGE LEVEL” on page 8-16.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset</td>
<td>0</td>
</tr>
<tr>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>Expanded</td>
<td>2</td>
</tr>
</tbody>
</table>

- **INSTRUCTION INPUT LEARNING (S2C214)**
 Refer to section 8.3.0.14 “S2C214: INSTRUCTION INPUT LEARNING FUNCTION” on page 8-16.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>0</td>
</tr>
<tr>
<td>Invalid</td>
<td>1</td>
</tr>
</tbody>
</table>

- **MOVE INSTRUCTION SET POSITION (S2C206)**
 Refer to section 8.3.0.8 “S2C206: ADDITIONAL STEP POSITION” on page 8-13.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
</tr>
</tbody>
</table>
6.9 Parameter Setting Function

- **BUZZER WHEN POSITION TEACHING (S2C433)**
 Refer to section 8.3.0.43 “S2C433: POSITION TEACHING BUZZER” on page 8-28.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consider</td>
<td>0</td>
</tr>
<tr>
<td>Not Consider</td>
<td>1</td>
</tr>
</tbody>
</table>

- **STEP ONLY CHANGING (S2C203)**
 Refer to section 8.3.0.6 “S2C203: CHANGING STEP ONLY” on page 8-13.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **RECT/CYL INDRICAL (S2C196)**
 Refer to section 8.3.0.2 “S2C196: SELECTION OF CARTESIAN/CYLINDRICAL” on page 8-12.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyl.</td>
<td>0</td>
</tr>
<tr>
<td>Rectangle</td>
<td>1</td>
</tr>
</tbody>
</table>

- **TOOL NO. SWITCH (S2C431)**
 Refer to section 8.3.0.42 “S2C431: TOOL NO. SWITCHING” on page 8-28.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prohibit</td>
<td>0</td>
</tr>
<tr>
<td>Permit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **TOOL NO. INTERLOCK FOR STEP ENTRY(S2C234)**
 Refer to section 8.3.0.29 “S2C234: STEP REGISTRATION AT TOOL NO. CHANGE” on page 8-20.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **POS. TEACH ONLY JOG CONTROL GROUP (S2C320)**
 Refer to section 8.2.0.15 “S2C320: CONTROLLED GROUP JOB TEACHING POSITION CHANGE” on page 8-7.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prohibit</td>
<td>0</td>
</tr>
<tr>
<td>Permit</td>
<td>1</td>
</tr>
</tbody>
</table>
• JOB UNDELETE FUNCTION (S2C413)
 Refer to section 8.3.0.39 “S2C410: WORD REGISTRATION FUNCTION / WORD EDITING FUNCTION SPECIFICATION” on page 8-25.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>

• INDEPENDENT : MOTION OF NEXT/TEST (S2C231)
 Refer to section 8.6.0.3 “S2C231: OPERATION METHOD AT FWD/ BWD OPERATION OR TEST RUN BY INDEPENDENT CONTROL” on page 8-45.
 →This appears only when the independent control is valid.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>1</td>
</tr>
</tbody>
</table>

• BWD OPERATION NO GROUP AXIS (S2C688 d0 bit)
• BWD OPERATION CONCURRENT JOB (S2C688 d1 bit)
 Refer to section 8.6.0.10 “S2C688: EXECUTION OF “BWD” OPERATION” on page 8-48.
 →This appears only when the independent control is valid.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Bit Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

• STATION TWIN (S2C434)
 Refer to section 8.3.0.44 “S2C434: JOB LINKING DESIGNATION (When Twin Synchronous Function Used)” on page 8-28.
 →This appears only when the STATION TWIN SYNCHRONOUS JOB is valid.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>

• CLEARANCE TEACHING METHOD (S2C612)
 →This appears only when it is for motor gun use.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Tip</td>
<td>0</td>
</tr>
<tr>
<td>Lower Tip</td>
<td>1</td>
</tr>
<tr>
<td>Gun Close</td>
<td>2</td>
</tr>
</tbody>
</table>
6.9.3 Operation Condition Setting

Select (SETUP) → {OPERATE CONDITION SETTING} to display the following window.

- **SPEED DATA INPUT FORM (S2C221)**
 Refer to section 8.3.0.21 "S2C221: SPEED DATA INPUT FORM" on page 8-18.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/sec</td>
<td>0</td>
</tr>
<tr>
<td>cm/min</td>
<td>1</td>
</tr>
<tr>
<td>inch/min</td>
<td>2</td>
</tr>
<tr>
<td>mm/min</td>
<td>3</td>
</tr>
</tbody>
</table>

- **CYCLE SWITCH IN TEACH MODE (S2C313)**
 Refer to section 8.3.0.33 "S2C313: TEACH MODE FIRST CYCLE MODE" on page 8-21.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.9 Parameter Setting Function

• CYCLE SWITCH IN PLAY MODE (S2C314)
 Refer to section 8.3.0.34 “S2C314: PLAY MODE FIRST CYCLE MODE” on page 8-21.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>

• CYCLE SWITCH IN LOCAL MODE (S2C294)
 Refer to section 8.3.0.31 “S2C294: LOCAL FIRST CYCLE MODE” on page 8-20.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>

• CYCLE SWITCH IN REMOTE MODE (S2C293)
 Refer to section 8.3.0.30 “S2C293: REMOTE FIRST CYCLE MODE” on page 8-20.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>

• SET SYCLE ON POWER ON (S2C312)
 Refer to section 8.3.0.32 “S2C312: POWER ON FIRST CYCLE MODE” on page 8-20.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0</td>
</tr>
<tr>
<td>Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Auto</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>3</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.9 Parameter Setting Function

• SECURITY MODE WHEN POWER ON (S2C195)
Refer to section 8.3.0.1 “S2C195: SECURITY MODE WHEN CONTROL POWER SUPPLY IS TURNED ON” on page 8-12.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Mode</td>
<td>0</td>
</tr>
<tr>
<td>Editing Mode</td>
<td>1</td>
</tr>
<tr>
<td>Management Mode</td>
<td>2</td>
</tr>
</tbody>
</table>

• JOB STEP WHEN POWER ON (S2C215)
Refer to section 8.3.0.15 “S2C215: ADDRESS SETTING WHEN CONTROL POWER IS TURNED ON” on page 8-16.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power OFF</td>
<td>0</td>
</tr>
<tr>
<td>Initial</td>
<td>1</td>
</tr>
</tbody>
</table>

• GENERAL OUT KEEP WHEN POWER ON (S2C235)
Refer to section 8.5.0.1 “S2C235: USER OUTPUT RELAY WHEN CONTROL POWER IS ON” on page 8-40.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power OFF</td>
<td>0</td>
</tr>
<tr>
<td>Initial</td>
<td>1</td>
</tr>
</tbody>
</table>
6.9.4 Operate Enable Setting

Select (SETUP) → (OPERATE ENABLE SETTING) to display the following window.

- **EXTERNAL START (S2C219)**
 Refer to section 8.3.0.19 “S2C219: EXTERNAL START” on page 8-17.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **PP START (S2C220)**
 Refer to section 8.3.0.20 “S2C220: PROGRAMMING PENDANT START” on page 8-17.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **EXTERNAL MODE SWITCH (S2C225)**
 Refer to section 8.3.0.24 “S2C225: EXTERNAL MODE SWITCH” on page 8-18.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.9 Parameter Setting Function

• EXTERNAL CYCLE SWITCH (S2C227)
Refer to section 8.3.0.25 “S2C227: EXTERNAL CYCLE SWITCHING” on page 8-18.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

• PP CYCLE SWITCH (S2C228)
Refer to section 8.3.0.26 “S2C228: PROGRAMMING PENDANT CYCLE SWITCHING” on page 8-19.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

• EXTERNAL SERVO ON (S2C229 d0 bit)
• PP SERVO ON (S2C229 d1 bit)
• DSW SERVO ON (S2C229 d2 bit)
Refer to section 8.3.0.27 “S2C229: SERVO ON FROM EXTERNAL PP PROHIBITION” on page 8-19.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Bit Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>
6.9.5 Function Enable Setting

Select (SETUP) → (FUNCTION ENABLE SETTING) to display the following window.

- **MASTER JOB CHANGE (S2C207)**
 Refer to section 8.3.0.9 “S2C207: MASTER JOB CHANGING OPERATION” on page 8-14.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **RESERVED START (S2C222)**
 Refer to section 8.3.0.22 “S2C222: RESERVED START” on page 8-18.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **RESERVED START JOB CHANGE (S2C209)**
 Refer to section 8.3.0.11 “S2C209: RESERVED WORK JOB CHANGING OPERATION” on page 8-14.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.9 Parameter Setting Function

- JOB SELECT WHEN REMOTE OR PLAY (S2C224)
 Refer to section 8.3.0.23 "S2C224: JOB SELECTION AT REMOTE FUNCTION (PLAY MODE)" on page 8-18.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- I/O-VARIABLE CUSTOMIZE FUNCTION (S2C397)
 Refer to section 8.3.0.38 "S2C397: I/O VARIABLE CUSTOMIZE FUNCTION" on page 8-24.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>

- GENERAO I/O NAME DISP. ON JOB (S2C544)
 Refer to section 8.3.0.46 "S2C544: I/O NAME DISPLAY FUNCTION FOR JOB" on page 8-30.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>

- ANTICIPATION FUNCTION (S2C646)
 Refer to section 8.8.0.1 “S2C646: ANTICIPATOR FUNCTION” on page 8-51.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>

- ALL AXES ANGLE DISP FUNCTION (S2C684 d0 bit)
 Refer to section 8.3.0.47 “S2C684: ALL AXES ANGLE DISPLAY FUNCTION” on page 8-30.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>
6.9.6 Jog Condition Setting

Select (SETUP) \(\rightarrow\) (JOG CONDITION SETTING) to display the following window.

- **COORD SWITCH WHEN JOG OPERATION (S2C197)**
 Refer to section 8.3.0.3 “S2C197: COORDINATE SWITCHING PROHIBITED” on page 8-12.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool & User OK</td>
<td>0</td>
</tr>
<tr>
<td>Tool NG</td>
<td>1</td>
</tr>
<tr>
<td>User NG</td>
<td>2</td>
</tr>
<tr>
<td>Tool & User NG</td>
<td>3</td>
</tr>
</tbody>
</table>

- **MANUAL SPEED SAVE EVERY COORDS (S2C204)**
 Refer to section 8.3.0.7 “S2C204: MANUAL SPEED STORING FOR EACH COORDINATE” on page 8-13.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid</td>
<td>0</td>
</tr>
<tr>
<td>Valid</td>
<td>1</td>
</tr>
</tbody>
</table>
6.9.7 Playback Condition Setting

Select (SETUP) \(\rightarrow \) {PLAYBACK CONDITION SETTING} to display the following window.

- **CHECK/MACHINE LOCK (S2C208)**
 Refer to section 8.3.0.10 “S2C208: CHECK AND MACHINE-LOCK KEY OPERATION IN PLAY MODE” on page 8-14.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **MASTER CALLING UP (S2C210)**
 Refer to section 8.3.0.12 “S2C210: MASTER OR SUBMASTER CALL OPERATION IN PLAY MODE” on page 8-15.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>0</td>
</tr>
<tr>
<td>Prohibit</td>
<td>1</td>
</tr>
</tbody>
</table>

- **INITIAL MOVE SPEED OF ROBOT (S2C217)**
 Refer to section 8.3.0.17 “S2C217: INITIAL OPERATION OF MANIPULATOR” on page 8-17.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Play</td>
<td>0</td>
</tr>
<tr>
<td>Low Speed</td>
<td>1</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.9 Parameter Setting Function

• START METHOD AFTER ABSO OVER (S2C316)
 Refer to section 8.3.0.35 “S2C316: START CONDITION AFTER ALARM-4107 (“OUT OF RANGE (ABSO DATA)”)” on page 8-21.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos. Check</td>
<td>0</td>
</tr>
<tr>
<td>Low Speed</td>
<td>1</td>
</tr>
</tbody>
</table>

• SIGNAL NO. WHEN DROP VALUE OVER (S2C240)
 Refer to section 8.5.0.7 “S4C240: USER OUTPUT NO. WHEN MANIPULATOR DROP ALLOWABLE RANGE ERROR OCCURS” on page 8-44.
6.9.8 Functional Condition Setting

Select (SETUP) → {FUNCTIONAL CONDITION SETTING} to display the following window.

- COORDINATE (PAM) (S2C1100)
 Refer to section 8.2.0.24 "S3C1098 to S3C1102: POSITION CORRECTING FUNCTION DURING PLAYBACK" on page 8-11.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Parameter Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0</td>
</tr>
<tr>
<td>Robot</td>
<td>1</td>
</tr>
<tr>
<td>Tool</td>
<td>2</td>
</tr>
<tr>
<td>User #1</td>
<td>3</td>
</tr>
<tr>
<td>User #63</td>
<td>65</td>
</tr>
</tbody>
</table>

- POSITION ADJUST RANGE (PAM) (S2C1098)

- SPEED ADJUST RANGE (PAM) (S2C1099)

- POSTURE ANGLE ADJUST RANGE (PAM) (S2C1102)
 Refer to section 8.2.0.24 "S3C1098 to S3C1102: POSITION CORRECTING FUNCTION DURING PLAYBACK" on page 8-11.
6.10 Jog Key Allocation

6.10.1 Jog Key Allocation Function

This function enables to operate external axis without switching control groups by using operation keys of 7th-axis (E+, E-) and 8th-axis (8+, 8-) on the programing pendant after setting any external axis to them.

CAUTION

- Operation of external axis by using the allocated operation keys of 7th-axis and 8th-axis are valid only when operating a robot. In the case where operating external axes, operate them by using keys from the key for 1st-axis.
- Furthermore, when the robot is equipped with 7th and 8th axes, keys on the pendant are used to operate existing axes on a priority basis.
- For example, when the robot is equipped with 7 axes, E-axis will move even if the external axis operation is allocated to 7th-axis (E+, E-) operational key.

NOTE

This function can operate other control group than displayed in the upper part of the programming pendant (Status display area or the LED of [ROBOT] or [EX.AXIS] keys).

Also, the simultaneous operation of the robot and the external axes is possible by pressing several axis operational keys at a time. Please be careful to the axes movements when pressing them.
6.10.2 Jog Key Allocation Setting

6.10.2.1 Allocation of the Jog Key

CAUTION

- Allocation of the jog keys is valid only in the management mode while only confirmation of allocated axes is valid in the operation mode and edit mode.

The setup conditions are saved in the following parameters. Even if the same numbered external axes are allocated to a key (example: S1 for the 1st-axis), the value of the parameter to be saved varies depending on the composition of the control group of the system. In this consequence, when loading the parameter file (ALL.PRM or AC.PRM), please make sure to confirm the allocating status before executing the function.

Parameters for saving the setup conditions of jog key allocation.

- S2C739 7th-axis
- S2C740 8th-axis

1. Select {SETUP} under main menu.
2. Select {JOG KEY ALLOCATION}.

- Jog key allocation window appears.
3. Move the cursor key to “GROUP” and press down [SELECT] key.
 - The list of allocatable external axes appears.

4. Select an external axis to be allocated.
 - The selected external axis is indicated in “GROUP” and “1” is indicated in “AXIS NO”.

5. (In the cases where the external axis is composed of more than two axes and the axis from the 2nd-axis are operated)
 Move the cursor key to “AXIS NO”. and press down [SELECT] key.
 - The list of selected external axes appears.

6. Select a desired axis number.
 - The selected axis is indicated in “AXIS NO”.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>AXIS NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>7TH(-, +)</td>
<td>8TH(-, +)</td>
</tr>
<tr>
<td>7TH(-, +)</td>
<td>8TH(-, +)</td>
</tr>
<tr>
<td>7TH(-, +)</td>
<td>8TH(-, +)</td>
</tr>
</tbody>
</table>
6.10.2.2 Cancellation of Jog Key Allocation

1. Select {SETUP} under main menu.
2. Select (JOG KEY ALLOCATION).
 – Jog key allocation window appears.
3. Move the cursor key to “GROUP” and press down [SELECT] key.
 – The list of allocatable external axes appears.
4. Select “NONE”.
 – “******” is indicated in “GROUP” and “AXIS NO”.

![Diagram of Jog Key Allocation Window]
6.10.2.3 Operating Method of Allocated External Axis

CAUTION

- When the same external axis (same group and axis number) is allocated to 7th- and 8th-axis keys, it won’t move even both keys are pressed individually. In the case like this, the message “Check the setting of JOG KEY ALLOCATION(7th and 8th)” is indicated to alarm that the same external axis is allocated to two different keys. Please cancel the allocation setting or allocate another external axis to either of the key.

 - A mark of robot is indicated at the left side of the status area on the programming pendant, and this expresses that the robot is selected to be the object of operation. Also, the LED of [ROBOT] key lights.

2. Press 7th(E+, E-)-axis or 8th(8+, 8-)-axis operation key.
 - The allocated external axes moves if there are no 7th- and 8th-axes and the allocation setting was done properly.
6.11 Energy-Saving Function

6.11.1 Energy-Saving Function

Energy-saving function is a function to save power by halting the power to the robot after applying brake to the motor when robot’s all axes won’t move for a designated period of time while servo is turned ON in play mode. The initial designated period of time is 10 minutes.

This energy-saving function is valid when all the following condition met.
1. Energy-saving function is valid.
2. The system input signal (signal to prohibit on energy-saving mode #40580) is turned OFF.

Followings are the status of the robot while this function is valid.
1. The message “On energy saving mode” is indicated on the programming pendant.
2. The servo is turned ON.
3. The jobs under execution are continuously executed.
4. The system output signal (ENERGY-SAVING:SOUT#0576(#50727)) to indicate that it is in energy-saving status is turned ON while other signals won’t change.

CAUTION

This function is cancelled in the following cases.
– When the programming pendant mode is switched to teach mode.
– When the system input signal of external servo OFF(1,2,3) is input.
– When the axis, which belongs to the subject control group of the executing job, is about to move while energy-saving function is valid.
– In the cases where emergency stop or servo OFF is executed when alarming.

NOTE

This function will not be cancelled if the system input signal (signal to prohibit energy-saving #40580) is turned ON. This signal merely prohibits to shift the status to energy-saving status.
6.11.2 Energy-Saving Setting Method

6.11.2.1 Valid/Invalid of Energy-Saving Setting

CAUTION

- Valid/invalid of the energy-saving function is available only in the management mode while only confirmation of this function is available in the operation mode and edit mode.

1. Select {SETUP} under main menu.
2. Select {ENERGY SAVING FUNCTION}.
 - Energy-saving function window appears.
3. Move the cursor key to “ENERGY SAVING FUNCTION” and press [SELECT].

- Valid and invalid alternate at each press of select key.

Press [SELECT] key
6 Convenient Functions
6.11 Energy-Saving Function

4. Move the cursor key to (SETTING TIME) and press [SELECT] key.
 – Input the time you want to start energy-saving after the robot is stopped into (SETTING TIME) section (unit: min.). The initial value is set to 10 min. and the range of the inputting value is from 1 to 60.

6.11.2 Accumulated Energy-Saving Time Clearance

1. Select (SETUP) under main menu.
2. Select (ENERGY SAVING FUNCTION).
 – Energy-saving function window appears.
3. Move the cursor key to (ACCUMULTED ENERGY-SAVING TIME).
4. Move the cursor key to (DATA) and press [SELECT] key.
 – “CLEAR ACCUMULTED” appears in the pull-down menu.
5. Select {CLEAR ACCUMULATED}
 – The confirmation dialog box appears.

6. Select “YES” on the dialog box,
 – The accumulated energy-saving time is cleared.
6.11.3 Energy-Saving Status Confirmation Method

6.11.3.1 Confirmation by the accumulated energy-saving time

1. Select {SETUP} under main menu.
2. Select {ENERGY SAVING FUNCTION}.
 - Energy-saving function window appears.
 - The accumulated energy-saving time is being counted up while the status is in the energy-saving mode.

6.11.3.2 Confirmation by System Signal Output

1. Select {IN/OUT} under main menu.
2. Select {SPECIFIC OUTPUT}.
 - The specific output window appears.
 - The system output status during the energy-saving status is indicated.
 - This signal is turned ON while in the energy-saving mode.

 – This signal is turned OFF after the energy-saving mode is released.
6.12 Instruction Displaying Color Setting Function

6.12.1 Setting the Instruction Displaying Color on the Job Window

With this function, each instruction can be displayed on a color to color basis on the job window.

The following instructions are the subject of this function.

- Move instruction
- DEVICE instruction
- Comment instruction
- Label instruction
- Macro instruction (when the macro function is effective)
- I/O instruction
- All the instructions other than listed above

The color of each instruction in the job window can be set on the DISPLAY COLOR CONDITION SETTING window.

1. Select {SETUP} under the main menu.

2. Select {DISPLAY COLOR CONDITION SETTING}.

 The display color condition setting window appears.

1 Instruction displaying color setting function on the job window is available from version DS2.00-00.
6 Convenient Functions

6.12 Instruction Displaying Color Setting Function

3. Move the cursor to the instruction to be changed and press [SELECT].
 – The list of the candidate colors for the instruction is displayed.

4. Select a color.
 – The color of each instruction is fixed.

5. Select JOB window.
 – Each instruction is displayed in the selected colors on the job window.
6.13 Present Manipulator Position Output Function

6.13.1 Outline
Output the present manipulator’s cartesian position (base coordinate) to the specified register.

6.13.2 Parameters
The following parameters specify the function and output register number.

<table>
<thead>
<tr>
<th>S1CxG</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 208 | Specify a function which outputs a specified value of the present cartesian position (base coordinate) to the register
 | 0: invalid
 | 1: Valid |
| 209 | Specify the output size to the register
 | 0: 2 bytes output
 | 1: 4 bytes output |
| 210 | Cartesian position (command value) X register number of output destination |
| 211 | Cartesian position (command value) Y register number of output destination |
| 212 | Cartesian position (command value) Z register number of output destination |
| 213 | Cartesian position (command value) Rx register number of output destination |
| 214 | Cartesian position (command value) Ry register number of output destination |
| 215 | Cartesian position (command value) Rz register number of output destination |
| 216 | Cartesian position (command value) Re register number of output destination |
| 217 | Specify a function which outputs a FB value of the present cartesian position (base coordinate) to the register
 | 0: invalid
 | 1: Valid |
| 218 | Specify the output size to the register
 | 0: 2 bytes output
 | 1: 4 bytes output |
| 219 | Cartesian position (FB value) X register number of output destination |
| 220 | Cartesian position (FB value) Y register number of output destination |
| 221 | Cartesian position (FB value) Z register number of output destination |
| 222 | Cartesian position (FB value) Rx register number of output destination |
| 223 | Cartesian position (FB value) Ry register number of output destination |
| 224 | Cartesian position (FB value) Rz register number of output destination |
| 224 | Cartesian position (FB value) Re register number of output destination |
6 Convenient Functions
6.13 Present Manipulator Position Output Function

(Example 1)

<table>
<thead>
<tr>
<th>S1C1G</th>
<th>Setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>1</td>
</tr>
<tr>
<td>209</td>
<td>0</td>
</tr>
<tr>
<td>210</td>
<td>10</td>
</tr>
<tr>
<td>211</td>
<td>11</td>
</tr>
<tr>
<td>212</td>
<td>12</td>
</tr>
<tr>
<td>213</td>
<td>13</td>
</tr>
<tr>
<td>214</td>
<td>14</td>
</tr>
<tr>
<td>215</td>
<td>15</td>
</tr>
<tr>
<td>216</td>
<td>16</td>
</tr>
</tbody>
</table>

When setting the parameter as above, the manipulator’s present cartesian position is output to the registers as follows.

M010 = Manipulator’s present cartesian position (command value) X [unit: mm]
M011 = Manipulator’s present cartesian position (command value) Y [unit: mm]
M012 = Manipulator’s present cartesian position (command value) Z [unit: mm]
M013 = Manipulator’s present cartesian position (command value) Rx [unit: deg]
M014 = Manipulator’s present cartesian position (command value) Ry [unit: deg]
M015 = Manipulator’s present cartesian position (command value) Rz [unit: deg]
M016 = Manipulator’s present cartesian position (command value) Re [unit: deg]
When setting the parameter as above, the manipulator’s present cartesian position is output to the registers as follows:

<table>
<thead>
<tr>
<th>S1C1G</th>
<th>Setting value</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
<td>1</td>
</tr>
<tr>
<td>218</td>
<td>1</td>
</tr>
<tr>
<td>219</td>
<td>10</td>
</tr>
<tr>
<td>220</td>
<td>12</td>
</tr>
<tr>
<td>221</td>
<td>14</td>
</tr>
<tr>
<td>222</td>
<td>16</td>
</tr>
<tr>
<td>223</td>
<td>18</td>
</tr>
<tr>
<td>224</td>
<td>20</td>
</tr>
<tr>
<td>225</td>
<td>22</td>
</tr>
</tbody>
</table>

M010 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) X [unit: µmm]
M011 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) X [unit: µmm]
M012 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Y [unit: µmm]
M013 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Y [unit: µmm]
M014 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Z [unit: µmm]
M015 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Z [unit: µmm]
M016 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Rx [unit: 0.001deg]
M017 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Rx [unit: 0.001deg]
M018 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Ry [unit: 0.001deg]
M019 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Ry [unit: 0.001deg]
M020 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Rz [unit: 0.001deg]
M021 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Rz [unit: 0.001deg]
M022 = Lower 2 bytes of the manipulator’s present cartesian position (FB value) Re [unit: 0.001deg]
M023 = Upper 2 bytes of the manipulator’s present cartesian position (FB value) Re [unit: 0.001deg]
6 Convenient Functions
6.13 Present Manipulator Position Output Function

- When validating the command value register output function (S1CxG208=1), never fail to set the output register number (S1CxG210 to 216) of each coordinate value.

- When validating the FB value register output function (S1CxG217=1), never fail to set the output register number (S1CxG219 to 225) of each coordinate value.

- In case 2 bytes is set as the register output size (S1CxG209=1 or S1CxG218=1), the unit of X, Y and Z-axes coordinate value becomes “mm” and that of Rx, Ry, Rz and Re coordinate value becomes “deg”. In both cases, only the lower 2 bytes are output.

- When setting 4 bytes to the register output size (S1CxG209=1 or S1CxG218=1), the unit of X, Y and Z-axes coordinate value becomes “µmm” and that of Rx, Ry, Rz and Re coordinate value becomes “0.0001deg”.

- When setting 4 bytes to the register output size (S1CxG209=1 or S1CxG218=1), upper byte of the coordinate value is output to the following register number to the specified output register number. In this consequence, confirm the register’s status of use before setting the output size to the register.
6.14 Softlimit Setting Function

6.14.1 About the Softlimit Setting Function

The softlimit setting function is a function to set the softlimit to limit the range of the manipulator motion in software.

6.14.2 The Softlimit Setting Screen

1. Select {ROBOT} in the main menu.
2. Select {SOFTLIMIT SETTING}.
 - The softlimit setting screen is displayed.
3. Set the control group as desired.

- Switch to the desired control group by the page key or the selection dialog.
- As for the selection dialog, select [PAGE] on the screen and move the cursor to desired control group. Press [SELECT].

6.14.3 Setting the Softlimit by Numerical Value Input

1. Move the cursor to the desired axis of the softlimit (+) or the softlimit (-), and press [SELECT].

2. Enter the values of the softlimit (+)/the softlimit (-), and press [ENTER].

- The softlimit is set.
6.14.4 Set the Current Value to the Softlimit

1. Move the manipulator by the axis key.
 – Move the manipulator to the position of which value is maximum number or minimum number of the softlimit by the axis key.

2. Move the cursor to the desired axis of the softlimit (+) or the softlimit (–).
 – When change the maximum number of the first softlimit, move the cursor to the first axis of the softlimit (+).
 – When change the minimum number of the first softlimit, move the cursor to the first axis of the softlimit (–).

3. Press [MODIFY].
 – The message [Update the data with <ENTER>] appears.

 ![Image of the Softlimit Setting Screen]

 – If perform the one of the following operations, the modify operation will be canceled.
 • Press [MODIFY] key.
 • Press [SELECT] key.
 • Press the one of [↑][↓][←][→] keys.
 • Press [PAGE] key.
 • Press [DIRECT OPEN] key.
 • Press a ten key.
 • Select the reserved display.
 • Switch the screen.
 • Switch the mode.
6 Convenient Functions

6.14 Softlimit Setting Function

– The message [Update operation with <CHANGE> was canceled.] appears.

4. Press [ENTER].
– The current position is set as the softlimit.
6.14.5 Set the Softlimit (+) / the Softlimit (-) to the Initial Maker Value

1. Select {DATA} in the pull-down menu.
 - {Initial Maker Value} appears.

2. Select {Initial Maker Value}.
 - The confirmation dialog appears.

3. Select [YES].
 - The initial maker value is set for all displayed axes.
 - The operation is canceled when select [NO].

 The initial maker value limits the range of the mechanical motion of the manipulator, and it varies according to the model of the robot.

 It is different from the motion range which was set to add the base station axis.
6.14.6 Change the Coordinate Display of the Softlimit (+) / the Softlimit (-)

1. Select {DISPLAY} in the pull-down menu.
 - {Coordinate Change} appears.

2. Select {Coordinate Change}.
 - When the displaying coordinate is a pulse, the robot axis is changed to the angle display; the base axis is changed to the distance display; and the station axes is changed for each axis by the value of the station axis display parameter (S2C265 to 288).

When the first bit is OFF, the first axis is changed to the angle display.
When the second bit is ON, the second axis is changed to the distance display.
When the display coordinate is angle/distance, the all axes are changed to the pulse display.

- When the display of the softlimit value is the angle display, the pulse display and the sign may be different.
- Be sure to confirm the motion range by the jog operation after changing the softlimit value.
6.15 Analog Output Function Corresponding to Speed

6.15.1 Overview

The analog output function corresponding to speed changes the analog output value automatically, according to the manipulator operating speed. This function does not need resetting of the analog output value according to the operating speed, so that the time required for job teaching can be reduced.

For example, when the thickness of sealing or painting should be constant, the discharged amount of seals or paints can be controlled by the manipulator operating speed.

For the analog output function corresponding to speed, the following board is needed.

- Analog output expansion board: JANCD-YEW02-E
6.15.2 Instructions

6.15.2.1 Instructions for Analog Output Function Corresponding to Speed

The instructions, ARATION and ARATIOF, are used for the analog output function corresponding to speed.

ARATION

The analog output function corresponding to speed is performed after executing ARATION instruction. This instruction is valid during circular interpolation, linear interpolation or spline interpolation. It is executed only at playback or FWD key operation; it is not executed during axis operation.

This instruction is also used when each set value for the analog output function corresponding to speed is to be changed.

ATORY AO#(1) BV=10.00 V=200.0 OFV=2.00

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Output port number
General analog output port to execute the analog output corresponding to speed
Setting range: 1 to 40

Basic voltage
Voltage to be output at the speed set with the basic speed.
Setting range: -14.00 to +14.00V

Basic speed
Operating speed which becomes the basis for when the set voltage is output.
Setting range: 0.1 to 1500.0mm/sec 1 to 9000cm/min

Offset voltage
Analog voltage when the operating speed is 0.
Setting range: -14.00 to +14.00V
According to the set value of the ARATION instruction, the output characteristics for the relation between the operating speed and the analog voltage are calculated. The analog output function corresponding to speed is executed depending on these output characteristics.

The following graph shows the output characteristics.

Fig. 6-5: Output Characteristics When Analog Output Function Corresponding to Speed is Used

![Graph showing output characteristics](image)

NOTE

When the analog output value exceeds ± 14.00 V because of the operating speed, the value is limited within ± 14.00 V.

ARATIOF

When the ARATIOF instruction is executed, the analog output corresponding to speed is completed, and the set offset voltage becomes the fixed output.

ARATIOF AO#(1)

①

Output port number

General analog output port to end the analog output corresponding to speed

Setting range: 1 to 40
6 Convenient Functions
6.15 Analog Output Function Corresponding to Speed

6.15.2.2 Registration of Instructions

The instructions can be registered when the cursor is in the address area on the job content display in teach mode. Perform the following operations before registering an instruction.

1. Select {JOB} under the main menu
2. Select {JOB CONTENT}
3. Move the cursor to the address area

- **ARATION**
 1. Move the cursor to one line above the place to register the ARATION instruction
 2. Press [INFORM LIST]
 3. Select [IN/OUT]
 - The instruction list dialog appears.
 - The ARATION instruction is indicated in the input buffer line.

4. Select “ARATION”
 - The ARATION instruction is indicated in the input buffer line.
5. Change any additional items and numerical values

- <Register without changes>

 To register without changes, perform operation of step 6.

- <Register with addition or change of the additional items>

 • To change the output port number

 In case of using [SHIFT] and the cursor key, move the cursor to the output port number, and then press [SHIFT] and the cursor key simultaneously, to change the output port number.

 In case of using the number keys, move the cursor to the output port number, and press [SELECT] to display an input buffer line. Enter the number, and then press [ENTER] to change the number displayed.

 • To change the basic voltage, the speed, and the offset voltage

 Move the cursor to the instruction in the input buffer line, and then press [SELECT]. The detail edit display is shown.

 ![Detail Edit Display]

 Move the cursor to “UNUSED” of the additional item to be changed, and then press [SELECT]. The selection dialog is displayed.

 Move the cursor to the additional item to be changed, and press [SELECT].

 ![Selection Dialog]
6 Convenient Functions
6.15 Analog Output Function Corresponding to Speed

When the additional item is changed, press [ENTER]. The detail edit window closes, and the job content window appears.

6. Press [INSERT] and [ENTER]
– The instruction indicated in the input buffer line is registered.

- ARATIOF
 1. Move the cursor to one line above the place to register ARATIOF instruction

- The line above the place to register ARATIOF instruction

- Press [INFORM LIST]
- Select [IN/OUT]
– The instruction list dialog appears.

- Select “ARATIOF”
– The ARATIOF instruction is indicated in the input buffer line.

- Press [INSERT] and [ENTER]
– The ARATIOF instruction is registered.
6.15.2.3 Analog Output Display

The current settings can be confirmed on the analog output window.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>General analog output port</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT (V)</td>
<td>Indicates the voltage which is currently output.</td>
</tr>
<tr>
<td>BASIC (V)</td>
<td>Indicates the basic voltage used for the analog output corresponding to speed. This value is used until a new value is set by ARATION instruction.</td>
</tr>
<tr>
<td>TRAIT</td>
<td>Indicates the current output characteristics of the output port. SP RAT : during execution of the analog output corresponding to speed STATIC : fixed output status</td>
</tr>
<tr>
<td>OFFSET (V)</td>
<td>Indicates the offset voltage used for the analog output corresponding to speed. This value is used until a new value is set by ARATION instruction.</td>
</tr>
<tr>
<td>BASIC SPD</td>
<td>Indicates the basic speed used for the analog output corresponding to speed. This value is used until a new value is set by ARATION instruction.</td>
</tr>
<tr>
<td>ROBOT</td>
<td>Indicates the manipulator number for the analog output corresponding to speed.</td>
</tr>
</tbody>
</table>

1. Select {IN/OUT} from the main menu
2. Select {ANALOG OUTPUT}
 - The analog output window appears.

The output terminal numbers which follow the AOUT4 can be switched and displayed by pressing the page key.
6.15.3 Examples

6.15.3.1 Examples of Output Characteristics

The graph below shows the change in the output characteristics when the following job is done.

```
MOVJ VJ=50.00
ARATION AO#(1) BV=7.00 V=150.0 OFV=-10.00  7.00
MOVL V=50.0           -4.33
MOVC V=100.0          1.33
MOVC V=100.0          1.33
MOVC V=100.0          1.33
MOVL V=200.0          12.67
```

![Graph showing output characteristics](image)
6.15.3.2 Example of Variation of Operating Speed and Analog Output Value

The following graph shows the change of the analog output according to the speed variation.

MOV L V=200.0⋯①
ARA TION AO#(1) BV=10.00 V=200.0 OFV=-2.00
MOV C V=150.0⋯②
MOV C VR=20.0⋯③ (When the tool center point speed is 100 mm/s)
MOV C V=150.0⋯④
MOV L V=180.0⋯⑤
MOV L ⋯⑥ (When the tool center point speed is 180 mm/s)
AOUT AO#(1) 10.00⋯⑦

Fig. 6-6: Analog Voltage according to Speed

- Since the analog output corresponding to speed is made for the calculated speed, there may be little difference from the actual operating speed of the manipulator.
- When a posture speed is specified, the analog output corresponding to speed is made for the operating speed at the tool center point with the posture speed.
6 Convenient Functions

6.15 Analog Output Function Corresponding to Speed

6.15.4 Filter Process

In the analog output function corresponding to speed, the output analog signal can be filtered by setting a filter constant at the parameters.

6.15.4.1 When Parameter is Set to “0”

The analog signal according to the speed reference (the speed determined by a path operation) is output.

6.15.4.2 When Parameter is Set to Values Other Than "0"

The analog signal according to the speed of filtered speed reference is output. By the filter process, the output signal can be close to the manipulator’s actual speed.

6.15.4.3 Parameter Setting

Adjust the settings of parameters during actual operations.

Table 6-4: Parameter (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Analog Output</th>
<th>Content</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3C1111</td>
<td>Analog output No.1</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1112</td>
<td>Analog output No.1</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1113</td>
<td>Analog output No.2</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1114</td>
<td>Analog output No.2</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1115</td>
<td>Analog output No.3</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1116</td>
<td>Analog output No.3</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1117</td>
<td>Analog output No.4</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1118</td>
<td>Analog output No.4</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1119</td>
<td>Analog output No.5</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1120</td>
<td>Analog output No.5</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1121</td>
<td>Analog output No.6</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1122</td>
<td>Analog output No.6</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1123</td>
<td>Analog output No.7</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1124</td>
<td>Analog output No.7</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1125</td>
<td>Analog output No.8</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1126</td>
<td>Analog output No.8</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
</tbody>
</table>
Table 6-4: Parameter (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Analog Output</th>
<th>Content</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3C1127</td>
<td>Analog output No.9</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1128</td>
<td>Analog output No.9</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1129</td>
<td>Analog output No.10</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1130</td>
<td>Analog output No.10</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1131</td>
<td>Analog output No.11</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1132</td>
<td>Analog output No.11</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1133</td>
<td>Analog output No.12</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1134</td>
<td>Analog output No.12</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1135</td>
<td>Analog output No.13</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1136</td>
<td>Analog output No.13</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1137</td>
<td>Analog output No.14</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1138</td>
<td>Analog output No.14</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1139</td>
<td>Analog output No.15</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1140</td>
<td>Analog output No.15</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1141</td>
<td>Analog output No.16</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1142</td>
<td>Analog output No.16</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1143</td>
<td>Analog output No.17</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1144</td>
<td>Analog output No.17</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1145</td>
<td>Analog output No.18</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1146</td>
<td>Analog output No.18</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1147</td>
<td>Analog output No.19</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1148</td>
<td>Analog output No.19</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1149</td>
<td>Analog output No.20</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1150</td>
<td>Analog output No.20</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1151</td>
<td>Analog output No.21</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1152</td>
<td>Analog output No.21</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1153</td>
<td>Analog output No.22</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1154</td>
<td>Analog output No.22</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1155</td>
<td>Analog output No.23</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1156</td>
<td>Analog output No.23</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1157</td>
<td>Analog output No.24</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1158</td>
<td>Analog output No.24</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1159</td>
<td>Analog output No.25</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1160</td>
<td>Analog output No.25</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1161</td>
<td>Analog output No.26</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1162</td>
<td>Analog output No.26</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1163</td>
<td>Analog output No.27</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1164</td>
<td>Analog output No.27</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1165</td>
<td>Analog output No.28</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1166</td>
<td>Analog output No.28</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1167</td>
<td>Analog output No.29</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1168</td>
<td>Analog output No.29</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1169</td>
<td>Analog output No.30</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1170</td>
<td>Analog output No.30</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1171</td>
<td>Analog output No.31</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1172</td>
<td>Analog output No.31</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1173</td>
<td>Analog output No.32</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1174</td>
<td>Analog output No.32</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1175</td>
<td>Analog output No.33</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1176</td>
<td>Analog output No.33</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
</tbody>
</table>
6 Convenient Functions
6.15 Analog Output Function Corresponding to Speed

The standard parameter settings are as follows.

- For small capacity robot with a payload 6 kg and 16 kg
 Primary filter constant: 50 msec
 Secondary filter constant: 50 msec

- For large capacity robot with a payload 60 kg and 130 kg
 Primary filter constant: 100 msec
 Secondary filter constant: 100 msec

Table 6-4: Parameter (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Parameter Number</th>
<th>Analog Output</th>
<th>Content</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3C1177</td>
<td>Analog output No.34</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1178</td>
<td>Analog output No.34</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1179</td>
<td>Analog output No.35</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1180</td>
<td>Analog output No.35</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1181</td>
<td>Analog output No.36</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1182</td>
<td>Analog output No.36</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1183</td>
<td>Analog output No.37</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1184</td>
<td>Analog output No.37</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1185</td>
<td>Analog output No.38</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1186</td>
<td>Analog output No.38</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1187</td>
<td>Analog output No.39</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1188</td>
<td>Analog output No.39</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1189</td>
<td>Analog output No.40</td>
<td>Primary filter constant</td>
<td>[msec]</td>
</tr>
<tr>
<td>S3C1190</td>
<td>Analog output No.40</td>
<td>Secondary filter constant</td>
<td>[msec]</td>
</tr>
</tbody>
</table>
6.15.5 Precautions

6.15.5.1 When Analog Output Corresponding to Speed is Interrupted

If the manipulator is stopped for some reason and the editing operation is performed, the analog output corresponding to speed is interrupted. This interruption is performed in all output terminals, and the analog voltage fixed immediately before the interruption is output to each output terminal. The analog output corresponding to speed is not interrupted in any other cases.

6.15.5.2 When More than One Manipulator is Used

The attribute of the job where the instruction is executed determines the manipulator where the analog output corresponding to speed is performed.

For a coordinated job, the analog output corresponding to speed is performed at the operating speed of the manipulator at the slave side.
7 External Memory Devices

7.1 Memory Devices

The following memory devices can be used in the DX100 to save and load data such as jobs and parameters.

<table>
<thead>
<tr>
<th>Device</th>
<th>Function</th>
<th>Media (destination of saved/ loaded data)</th>
<th>Optional function requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF: Pendant</td>
<td>Standard</td>
<td>Compact Flash Card (CF card)</td>
<td>No requirement. Programming pendant is equipped with a slot.</td>
</tr>
<tr>
<td>USB: Pendant</td>
<td>Standard</td>
<td>USB Memory Stick</td>
<td>No requirement. Programming pendant is equipped with a slot.</td>
</tr>
<tr>
<td>FC1</td>
<td>Optional</td>
<td>2DD floppy disk, personal computer (FC1 emulator)</td>
<td>“FC1” or personal computer with “FC1 emulator”</td>
</tr>
<tr>
<td>FC1 (DX)</td>
<td>Optional</td>
<td>Personal computer (FC1 emulator)</td>
<td>Personal computer with “FC1 emulator”</td>
</tr>
<tr>
<td>FC2</td>
<td>Optional</td>
<td>2DD floppy disk, 2HD floppy disk</td>
<td>“FC2”</td>
</tr>
<tr>
<td>PC</td>
<td>Optional</td>
<td>Personal computer (MOTOCOM32 host)</td>
<td>Via RS-232C: “Data transmission function” and “MOTOCOM32” Via Ethernet: “Ethernet function” plus above two requirements</td>
</tr>
<tr>
<td>FTP</td>
<td>Optional</td>
<td>FTP server such as personal computer</td>
<td>“Data transmission function”, “MOTOCOM32”, and “FTP function”</td>
</tr>
</tbody>
</table>

1 For the operation, refer to instruction manuals for each optional function.
7.1.1 **Compact Flash (CF Cards)**

The programming pendant is equipped with CF card slot. Use the FAT16 or FAT32 formatted Compact Flash.

7.1.1.1 **Recommended Compact Flash Cards**

Refer to section 9.1.2 “Device” in “DX100 INSTRUCTIONS (RE-CTO-A215)” for the recommended products used for external memory of DX100. Model numbers are subject to be updated due to termination of product and new addition. Contact Yaskawa representative when necessary.

7.1.1.2 **Notes on handling Compact Flash**

- Do not drop or bend exerting any shock or strong force to the Compact Flash.
- Keep away from water, oil, organic solvent, dust, and dirt.
- Do not use or keep the Compact Flash in places where strong static electricity or electronic noise may occur.
- Do not insert or remove the Compact Flash or turn OFF the power when accessing the Compact Flash (writing-in or reading-out the Compact Flash data).
- To protect the data, back up the data regularly on other media. Damages or loss of data due to operation errors or accidents can be minimized.

*Compact Flash has a limited life span.

The life span differs depending on products or status of use. However, normal use of Compact Flash as an external memory device for the DX100 does not adversely affect the Compact Flash. For details, refer to instruction manuals for each medium.
7.1.1.3 Inserting a Compact Flash

When inserting a Compact Flash, take note of insertion direction.

With the notch and clip of the Compact Flash downward, insert the Compact Flash slowly into the slot of the programming pendant of which display faces up.

Forcible insertion may result in damage to the Compact Flash or CF card slot.

After inserting the card, be sure to close the cover of the slot before starting operation.

Fig. 7-1: Using a Compact Flash Card
7.1.2 USB Memory Stick

The programming pendant is equipped with a USB connector. Use the FAT16 or FAT32 formatted USB memory stick.

7.1.2.1 Recommended USB Memory Stick

Refer to section 9.1.2 “Device” in “DX100 INSTRUCTIONS (RE-CTO-A215)” for the recommended products used for external memory of DX100. Model numbers are subject to be updated due to termination of product and new addition. Contact Yaskawa representative when necessary.

7.1.2.2 Notes on handling USB Memory Stick

- Do not drop or bend exerting any shock or strong force to the Compact Flash.
- Keep away from water, oil, organic solvent, dust, and dirt.
- Do not use or keep the Compact Flash in places where strong static electricity or electronic noise may occur.
- Do not insert or remove the Compact Flash or turn OFF the power when accessing the Compact Flash (writing-in or reading-out the Compact Flash data).
- To protect the data, back up the data regularly on other media. Damages or loss of data due to operation errors or accidents can be minimized.

*USB memory stick has a limited life span.

The life span differs depending on products or status of use. However, normal use of USB memory stick as an external memory device for the DX100 does not adversely affect the USB memory stick. For details, refer to instruction manuals for each medium.
7.1.2.3 Inserting a USB Memory Stick

When inserting a USB memory stick, take note of insertion direction.

With the USB memory stick face-up and the connector upwards, insert the stick slowly into the slot of the programming pendant of which display face-down.

Forcible insertion may result in damage to the USB memory stick or USB connector.

After inserting the stick, be sure to close the cover of the connector before starting operation.

Fig. 7-2: Using a USB Memory Stick

Note

When a USB memory stick is used, the waterproofing of programming pendant cannot be maintained.

If the USB memory stick is always set in the programming pendant, the stick may fall out of the pendant.

If it is impossible to maintain the waterproofing of programming pendant or to prevent the USB memory stick from falling out of the programming pendant, use a Compact Flash card instead.
7.2 Handling Data

7.2.1 Data Classification

For the DX100, data that can be saved online are classified into eight categories.

1. JOB
2. FILE/GENERAL DATA
3. BATCH USER MEMORY*1
4. PARAMETER*2
5. SYSTEM DATA
6. I/O DATA
7. BATCH CMOS*3
8. ALL CMOS AREA*4

Data saved on the external memory device can be loaded again into the DX100.

Each data in the eight categories varies depending on applications or options.

When the device is set to “PC” and “FTP”, data cannot be handled other than “1. JOB” and “2. FILE/GENERAL DATA”.

Also, the “1. JOB” whose name consists of more than nine letters cannot be handled at “FC1” and “FC2”.

*1: “3. BATCH USER MEMORY” includes “1. JOB” and “2. FILE/GENERAL DATA”.

*2: “PARAMETER BATCH” includes all “P4. PARAMETER”.

*4: “ALL CMOS AREA” data cannot be loaded in edit mode and management mode.

NOTE

PARAMETER, I/O DATA, SYSTEM DATA, PARAMETER BATCH, BATCH CMOS, and ALL CMOS AREA are used for backup.

If those data are loaded by other controllers, unintended data overwriting, unexpected operation, or abnormal system startup may occur.

Do not load those backup data into other controllers.

If two controllers are loaded with the same job, paths of the two manipulators are different due to the home positions or mechanical error of the component parts.

Be sure to check the operation instruction before operation.

The data such as variable data, user coordinate data, job data, parameter data and each condition file data should not be changed during saving the ALL CMOS AREA, SYSTEM DATA and BATCH USER MEMORY.

Changing the those data may cause incorrect saving as well as during the playback.
Table 7-1: Data List (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Data Classification</th>
<th>File Name (Saved Data)</th>
<th>Save OPN</th>
<th>Save EDIT</th>
<th>Save MAN</th>
<th>Load OPN</th>
<th>Load EDIT</th>
<th>Load MAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. ALL CMOS AREA</td>
<td>ALCMSxx.HEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. BATCH CMOS</td>
<td>CMOSxx.HEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. BATCH USER MEMORY</td>
<td>JOBxx.HEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. JOB</td>
<td>JOBNAME.JBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JOBNAME.JBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FILE/GENERAL DATA</td>
<td>Tool data TOOL.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weaving data WEAV.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>User coordinate data UFRAME.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variable data VAR.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arc start condition data ARCSRT.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arc end condition data ARCEND.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Welding condition auxiliary data ARCSUP.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power source characteristic data WELDER.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power source characteristic definition data WELDUDEF.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shock detection level data SHOCKLVL.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor gun pressure power data SPRESS.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor gun dry spot pressure data SPRESSCL.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot gun characteristic data SGUN.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot welding power source characteristic data SWELDER.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short/Full open position data STROKE.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot I/O allocation data SPOTIO.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airgun condition data AIRGUN.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spot welding condition data SPOTWELD.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clearance data CLEARANCE.DAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interference area file CUBEINTF.CND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PARAMETER BATCH</td>
<td>ALL.PRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. PARAMETER</td>
<td>Robot matching parameter RC.PRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System definition parameter SD.PRM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-1: Data List (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Data Classification</th>
<th>File Name (Saved Data)</th>
<th>Save</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OPN</td>
<td>EDIT</td>
</tr>
<tr>
<td>8. 7. 4. PARA-METER</td>
<td>Coordinate home position parameter</td>
<td>RO.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>System matching parameter</td>
<td>SC.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>CIO parameter</td>
<td>CIO.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Function definition parameter</td>
<td>FD.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Application parameter</td>
<td>AP.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Transmission (general) parameter</td>
<td>RS.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Sensor parameter</td>
<td>SE.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Servo parameter</td>
<td>SV.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Servomotor parameter</td>
<td>SVM.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Operation control parameter</td>
<td>AMC.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Servo power block parameter</td>
<td>SVP.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Motion function parameter</td>
<td>MF.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>SERVOPACK parameter</td>
<td>SVS.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Converter parameter</td>
<td>SVC.PRM</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Robot control expand parameter</td>
<td>RE.PRM</td>
<td>O</td>
</tr>
<tr>
<td>5. I/O DATA</td>
<td>CIO program</td>
<td>CIOPRG.LST</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>I/O name data</td>
<td>IONAME.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Pseudo input signals</td>
<td>PSEUDOIN.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>External I/O name data</td>
<td>EXIONAME.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Register name data</td>
<td>IOMUXNAME.DAT</td>
<td>O</td>
</tr>
<tr>
<td>6. SYSTEM DATA</td>
<td>User word register name</td>
<td>UWORD.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>SV monitor signals</td>
<td>SVMON.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Variable name</td>
<td>VARNAME.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Second home position</td>
<td>HOME2.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Alarm history data</td>
<td>ALMHIST.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Home position calibrating data</td>
<td>ABSO.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>System information</td>
<td>SYSTEM.SYS</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Work home position data</td>
<td>OPEORG.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>I/O message history data</td>
<td>IOMSGHST.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Function key allocation data</td>
<td>KEYALLOC.DAT</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>Arc monitor data</td>
<td>ARCMON.DAT</td>
<td>O</td>
</tr>
</tbody>
</table>

* OPN: Operation Mode, EDIT: Edit Mode, MAN: Management Mode
 O: Can be done, X: Cannot be done
7.2.2 File Existence

The following data categories show whether the same file name as a file that is going to be saved is in the external memory device or not.

- **JOB**
 - No mark appears when the selected folder has the file of the same name.
 - The asterisk (*) appears when the folder does not have the same name file.

- **FILE/GENERAL DATA, PARAMETER, SYSTEM DATA, I/O DATA**
 - Black circle (●) appears when the selected folder has the file of the same name.
 - White circle (○) appears when the folder does not have the same name file.

Whether the job after editing is saved or not can be judged by checking “TO SAVE TO FD” in the JOB HEADER window. However, the status of “TO SAVE TO FD” does not change after saving “3. BATCH USER MEMORY” and “7. BATCH CMOS”.

![Fig. 7-3: Example of JOB](image1)

![Fig. 7-4: Example of FILE/GENERAL DATA](image2)
7.2.2.1 Saving by Overwriting

“3. BATCH USER MEMORY”, “7. BATCH CMOS”, and “8. ALL CMOS AREA” can be overwritten.

As for “1. JOB”, “2. FILE/GENERAL DATA”, “4. PARAMETER”, “5. SYSTEM DATA”, and “6. I/O DATA”, those data cannot be overwritten. Delete the target file in the device before the saving operation. If Compact Flash is used as the device, the file does not need to be deleted because another folder can be created to save the data.
7.3 Operation Flow

The following description is the operation flow for external memory devices.

- **SELECT DEVICE**
 Select {FD/PC CARD} -->(DEVICE), and the destination device for saving.
 The device selected is valid after turning the power supply ON again.
 *1: Sub menu {FORMAT} appears when selecting FC1 or FC2.

- **SELECT FOLDER**
 Select {FD/PC CARD} -->(DEVICE), and the destination folder for saving.
 The folder selected is invalid after turning the power supply ON again.
 *2: {FOLDER} appears when using the Compact Flash as a device.
 *3: The settings of {CREATE NEW FOLDER}, {DELETE FOLDER}, and {ROOT FOLDER} can be set.

- **SELECT SUB MENU**
 Select an operation to be performed from {LOAD}, {SAVE}, {VERIFY}, and {DELETE}.

- **SELECT DATA CATEGORY**
 Select the target data category.

- **SELECT DATA**
 Select the target data.
 “3. BATCH USER MEMORY”, “7. BATCH CMOS”, and “8. ALL CMOS AREA” do not require this operation.
 4: Individual selection, batch selection, marker () selection, and canceling selection can be performed.

- **EXECUTE**
 Select [ENTER] or {EXECUTE}.

![Diagram](image-url)
7.3.0.1 Operating a Folder

Folders can be used in order to classify and sort out the data such as jobs and condition files when using the Compact Flash. The folders can be created in hierarchical structure positioning a root folder at the top.

- **Restrictions**
 Folder name: Up to 8 one-byte characters + 3 characters for extension
 *Long folder names cannot be used such as the name that exceeds the restricted number of characters mentioned above as created in PC, etc.

 Maximum path length: 42 one-byte characters
 “ERROR 3360: INVALID FOLDER” appears when selecting the folder of which name exceeds the maximum path length.

- **Selecting a Folder**

 1. Select {FD/PC CARD} under the main menu.
 2. Select {FOLDER}.
 - The FOLDER LIST window appears.
 3. Move the cursor to a folder and press [SELECT].
 - A folder can be selected.
 4. To move the hierarchy from a child folder to a parent folder, move the cursor to [..] and press [SELECT].
7.3 Operation Flow

 Creating a Folder

1. Change the security to management mode. Select {FD/PC CARD} under the main menu.
2. Select {FOLDER}.
 - The FOLDER LIST window appears.
3. Move the cursor to a folder and press [SELECT].
 - Select the higher-level folder where a new folder to be created should be contained.
 - When creating a folder in top-level, this step is unnecessary.
4. Select {DATA} --> {CREATE NEW FOLDER} under the pull-down menu. Input folder name using the keyboard on the screen and press [ENTER].
 - A folder is created.

Deleting a Folder

1. Change the security to management mode. Select {FD/PC CARD} under the main menu.
2. Select {FOLDER}.
 - The FOLDER LIST window appears.
3. Move the cursor to a folder and press [SELECT].
 - Select the higher-level folder where a folder to be deleted is contained.
 - When deleting a folder in top-level, this step is unnecessary.
4. Delete the files and subfolders beforehand inside the folder that is to be deleted.
 - A folder cannot be deleted if the folder contains files or subfolders inside.

 Move the cursor to the folder to be deleted.
5. Select {DATA} --> {DELETE FOLDER} under the pull-down menu.
7 External Memory Devices
7.3 Operation Flow

- **Initial Folder Setting**
 The folder that is contained in a deep hierarchy can be selected in a shortened operation.

 When selecting {LOAD}, {SAVE}, {VERIFY}, or {DELETE} from the sub menu of (FD/PC CARD), the folder that has been set as an initial folder becomes a current folder.

1. Change the security to management mode. Select {FD/PC CARD} under the main menu.
2. Select {FOLDER}.
 - The FOLDER LIST window appears.
3. Move the cursor to a folder and press [SELECT].
 - Select a folder that is to be set as a root folder.
4. Select {DISPLAY} --> {ROOT FOLDER} under the pull-down menu.
 - The INITIAL FOLDER SETTING window appears.

 ![INITIAL FOLDER SETTING](image)

 - A folder currently selected appears in "CURRENT FOLDER" and the initial folder appears in "ROOT FOLDER".

 ![CURRENT FOLDER AND ROOT FOLDER](image)
5. Select {EDIT} --> {SETUP FOLDER} under the pull-down menu. Move the cursor to “AUTO CHANGE” and press [SELECT].

– The initial folder is set in “ROOT FOLDER”.

– “AUTO CHANGE” shows “ON” and the initial folder setting becomes valid. Subsequently, every time {FD/PC CARD} --> {FOLDER} is selected, the initial folder that has been set becomes a current folder.

When the initial folder is missing due to exchange of the Compact Flash, etc., “ERROR 3360: INVALID FOLDER” appears when selecting {LOAD}, {SAVE}, {VERIFY}, {DELETE} or {FOLDER} menu from {FD/PC CARD}, and simultaneously the initial folder becomes invalid. Set “ON” in “AUTO CHANGE” when the initial folder setting needs to be valid.
7.3.0.2 Saving Data

To download data from the memory of the DX100 to the external memory device, perform the following procedure.

- **Saving a Job**

 1. Select {FD/PC CARD} under the main menu.
 2. Select {SAVE}.
 - The following window appears.

 ![Image of data selection window]

 Data such as PARAMETER, SYSTEM DATA, I/O DATA, and the batch data such as PARAMETER BATCH, BATCH CMOS, ALL CMOS AREA, that include PARAMETER, SYSTEM DATA, I/O DATA, contain the information specific to each robot controller.

 Those data are prepared as backup data for reloading into the controller used for saving.

 Loading the data from other controller may result in destruction or loss of critical system information.

 Take extra care for the saved data.

 - The following window appears.

 ![Image of job list window]

 3. Select {JOB}.
 - The JOB LIST window appears.
4. Select a job to be saved.
 – The selected job is marked with “★”.

5. Press [ENTER].
 – The confirmation dialog box appears.

6. Select “YES”.
 – The selected job is saved.
7. Saving a Condition File or General Data

1. Select (FD/PC CARD) under the main menu.
2. Select (SAVE).
 - The following window appears.
 - The content of the display varies in accordance with applications and options.
3. Move the cursor to (FILE/GENERAL DATA) and select.
 - The selection window appears.
 - The content of the display varies in accordance with applications and options.
4. Select condition files or general data to be saved.
 - The selected files are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected files are saved.
Saving a Parameter

1. Select (FD/PC CARD) under the main menu.
2. Select (SAVE).
 - The following window appears.

3. Move the cursor to (PARAMETER) and select.
 - The selection window for parameters appears.

4. Select parameters to be saved.
 - The selected parameters are marked with "★".
7.3 Operation Flow

5. Press [ENTER].
 – The confirmation dialog box appears.

6. Select “YES”.
 – The selected parameters are saved.
7 External Memory Devices
7.3 Operation Flow

Saving I/O Data

1. Select {FD/PC CARD} under the main menu.
2. Select {SAVE}.
 - The following window appears.

3. Move the cursor to {I/O DATA} and select.
 - The selection window for I/O data appears.

4. Select I/O data to be saved.
 - The selected I/O data are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected I/O data are saved.
7-23

7. External Memory Devices
7.3 Operation Flow

- Saving System Data

1. Select {FD/PC CARD} under the main menu.
2. Select {SAVE}.

 - The following window appears.

3. Move the cursor to {SYSTEM DATA} and select.

 - The selection window for system data appears.
4. Select system data to be saved.
 – The selected system data are marked with “★”.

5. Press [ENTER].
 – The confirmation dialog box appears.

6. Select “YES”.
 – The selected system data are saved.

“BATCH USER MEMORY”, “BATCH CMOS”, and “ALL CMOS AREA” can be overwritten.
As for “JOB”, “FILE/GENERAL DATA”, “PARAMETER”, “SYSTEM DATA”, and “I/O DATA”, the data cannot be overwritten. In this case, delete the file of the same name in the folder beforehand or create a new folder so that the data can be stored inside.
7.3 Operation Flow

■ Saving All User’s Programs

1. Select {FD/PC CARD} under the main menu.
2. Select {SAVE}.
 – The following window appears.

3. Move the cursor to {BATCH USER MEMORY} and select.
4. Select “EXECUTE”.
 – The confirmation dialog box appears.

5. Select “YES”.
 – All user’s programs are saved.
7.3 Operation Flow

- **Saving All CMOS Data**

1. Select (FD/PC CARD) under the main menu.
2. Select (SAVE).
 - The following window appears.

 ![External Memory Devices](image_url)

3. Move the cursor to (BATCH CMOS) and select.
4. Select “EXECUTE”.
 - The confirmation dialog box appears.

 ![Confirmation Dialog](image_url)

5. Select “YES”.
 - All CMOS data are saved.
Saving All Data in CMOS Area

1. Select {FD/PC CARD} under the main menu.
2. Select {SAVE}.
 – The following window appears.

3. Move the cursor to {ALL CMOS AREA} and select.
4. Select “EXECUTE”.
 – The confirmation dialog box appears.

5. Select “YES”.
 – All data in CMOS area are saved.
7.3.0.3 Loading Data

To upload data from the external memory device to the memory of the DX100, follow the procedure in the following.

Data such as PARAMETER, SYSTEM DATA, I/O DATA, and the batch data such as PARAMETER BATCH, BATCH CMOS, ALL CMOS AREA, that include PARAMETER, SYSTEM DATA, I/O DATA, contain the information specific to each robot controller.

Those data are prepared as backup data for reloading into the controller used for saving.

Loading the data from other controller may result in destruction or loss of critical system information.

Take extra care for the saved data.

Loading a Job

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 - The following window appears.

3. Select {JOB}.
 - The job selection window appears.
4. Select a job to be loaded.
 – The selected jobs are marked with “★”.

5. Press [ENTER].
 – The confirmation dialog box appears.

6. Select “YES”.
 – The selected jobs are loaded.
Loading a Condition File or General Data

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 – The following window appears.

3. Move the cursor to {FILE/GENERAL DATA} and select.
 – The selection window for condition file or general data appears.

4. Select a condition file or general data to be loaded.
 – The selected files are marked with "★★".

DX100

7 External Memory Devices
7.3 Operation Flow
5. Press [ENTER].
 - The confirmation dialog box appears.
 ![Confirmation Dialog Box](image)

6. Select “YES”.
 - The selected files are loaded.

Loading a Parameter

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 - The following window appears.
 ![Parameter Loading Window](image)

3. Move the cursor to {PARAMETER} and select.
 - The selection window for parameters appears.
 ![Parameter Selection Window](image)
4. Select parameters to be loaded.
 - The selected parameters are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected parameters are loaded.
section

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 - The following window appears.

3. Move the cursor to {I/O DATA} and select.
 - The selection window for I/O data appears.

4. Select I/O data to be loaded.
 - The selected I/O data are marked with "★".

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select "YES".
 - The selected I/O data are loaded.
7 External Memory Devices

7.3 Operation Flow

Loading System Data

1. Select {FD/PC CARD} under the main menu.

2. Select {LOAD}.

 – The following window appears.

3. Move the cursor to {SYSTEM DATA} and select.

 – The selection window for system data appears.

4. Select system data to be loaded.

 – The selected system data are marked with “✩”.

Diagram:

- Diagram showing the selection process for system data.
5. Press [ENTER].
 – The confirmation dialog box appears.

 ![dialog box image]

6. Select “YES”.
 – The selected system data are loaded.
Loading All User’s Programs

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 - The following window appears.

3. Move the cursor to {BATCH USER MEMORY} and select.
4. Select “EXECUTE”.
 - The confirmation dialog box appears.

5. Select “YES”.
 - All user’s programs are loaded.
Loading All CMOS Data

1. Select {FD/PC CARD} under the main menu.
2. Select {LOAD}.
 - The following window appears.
 ![External Memory Devices](image)
3. Move the cursor to {BATCH CMOS} and select.
4. The confirmation dialog box appears.
 ![Confirmation Dialog Box](image)
5. Select “YES”.
 - All CMOS data are loaded.
7.3.0.4 Verifying Data

Follow the procedure below to verify data in the memory of the DX100 with data saved in the external memory device.

NOTE

This function cannot be executed with “BATCH USER MEMORY”, “BATCH CMOS”, or “ALL CMOS AREA” specified.

■ Verifying a Job

1. Select {FD/PC CARD} under the main menu.
2. Select {VERIFY}.
 – The following window appears.

3. Select {JOB}.
 – The job selection window appears.
4. Select a job to be verified.
 - The selected jobs are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected jobs are verified.
Verifying a File

1. Select (FD/PC CARD) under the main menu.
2. Select (VERIFY).
 - The following window appears.

3. Select the group of the file to be verified.
4. Select a file to be verified.
 - The selected files are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected files are verified.
7.3.0.5 Deleting Data

Follow the procedure below to delete a file or files on an external memory device.

- Deleting a Job

1. Select {FD/PC CARD} under the main menu.
2. Select {DELETE}.
 - The following window appears.
3. Select {JOB}.
 - The job selection window appears.
4. Select a job to be deleted.
 - The selected jobs are marked with “∗”.
5. Press [ENTER].
 - The confirmation dialog box appears.
6. Select “YES”.
 - The selected jobs are deleted.
Deleting a File

1. Select {FD/PC CARD} under the main menu.
2. Select {DELETE}.
 - The following window appears.

3. Select the group of the file to be deleted.

4. Select a file to be deleted.
 - The selected files are marked with “★”.

5. Press [ENTER].
 - The confirmation dialog box appears.

6. Select “YES”.
 - The selected files are deleted.
7 External Memory Devices
7.3 Operation Flow

7.3.0.6 Job Selection Mode

The method of selecting a job and various data files when loading, saving, verifying, and deleting are described in the following:

- **Individual Selection**
 Jobs and data files are selected individually one at a time.

- **Batch Selection**
 Jobs and data files are selected all at one time.

- **Marker (*) Selection**
 Loading: selects the files in the external memory device.
 Saving: selects the files in the memory of the DX100.
 Verifying: selects both the files in the external memory device and in the memory of the DX100.

Using Individual Selection

1. In either the external memory JOB LIST window or the file selection window, move the cursor to a job or a file to be selected.

2. Press [SELECT].
 Move the cursor to a file needed and press [SELECT] again.
 *To cancel the selected items, select {EDIT} and then {CANCEL SELECT}.

 - The selected jobs are marked with “★”.

Diagram:

- External Memory Device
- Job List Window
- File Selection Window
- Selected Job Marked with “★”
Using Batch Selection

1. In either the external memory JOB LIST window or the file selection window, select {EDIT} under the menu.
 - The pull-down menu appears.

2. Select {SELECT ALL}.
 *To cancel the selected items, select {EDIT} and then {CANCEL SELECT}.
 - All jobs are selected.
7. External Memory Devices

7.3 Operation Flow

- Using Marker (*) Selection

1. In either the external memory JOB LIST window or the file selection window, select {EDIT} under the menu.
 - The pull-down menu appears.

2. Select {SELECT MARKER (*).}
 *To cancel the selected items, select {EDIT} and then {CANCEL SELECT}.
8 Parameter

8.1 Parameter Configuration

The parameters of DX100 can be classified into the following seven:

Motion Speed Setting Parameter
 Determines the manipulator motion speed for jog operation at teaching,
test operation, or playback operation.

Mode Operation Setting Parameter
 Makes the setting for various operations in the teach mode or remote
mode.

Parameter according to Interference Area
 Limits the P-point maximum envelope of the manipulator or sets the
interference area for axis interference or cubic interference.

Parameter according to Status I/O
 Sets the parity check or I/O setting for user input/output signals.

Parameter according to Coordinated or Synchronized Operation
 Makes the settings for coordinated or synchronized operations between
manipulators or between manipulators and stations.

Parameter for Other Functions or Applications
 Makes the settings for other functions or applications.

Hardware Control Parameter
 Makes the hardware settings for fan alarm or relay operation, etc.

S1CxG Parameters
 The initial setting of S1CxG parameters depends on the
manipulator model.

For a system in which two manipulators are controlled, the
following two types of parameters are used: S1C1G type
and S1C2G type.
8.2 Motion Speed Setting Parameters

These parameters set the manipulator motion speed for jog operation at teaching, test operation, or playback operation.

8.2.0.1 S1CxG000: IN-GUARD SAFE OPERATION MAX. SPEED
Units: 0.01%

The upper speed limit is set for in-guard safe operation. While the in-guard safe operation command signal is being input, the TCP speed is limited to the TCPmax speed.

8.2.0.2 S1CxG001: DRY-RUN SPEED
Units: 0.01%

This is a dry-run operation speed setting value used when checking the path. Take safety into consideration when setting changes are unnecessary.

8.2.0.3 S1CxG002 to S1CxG009: JOINT SPEED FOR REGISTRATION
Units: 0.01%

The value set in these parameters is registered as the joint speed for each speed level when teaching the position data with the programming pendant. The percentage corresponding to the set value at each level is registered as 100% of the value set in the playback speed limit. Values greater than those set as speed limit values cannot be set.

S1CxG002: Level 1
S1CxG003: Level 2
S1CxG004: Level...
S1CxG009: Level 8
8.2.0.4 S1CxG010 to S1CxG017: LINEAR SPEED FOR REGISTRATION
Units: 0.1mm/s
The value set in these parameters is registered as the linear speed for each speed level when teaching the position data with the programming pendant. Values greater than those set as playback speed limit cannot be set.

S1CxG010: Level 1
S1CxG011: Level 2
·
·
S1CxG017: Level 8

8.2.0.5 S1CxG018 to S1CxG025: POSITION ANGLE SPEED
Units: 0.1°/s
The value set in these parameters is registered as the position angle speed for each speed level when teaching the position data with the programming pendant. Values greater than those set as playback speed limit cannot be set.

S1CxG018: Level 1
S1CxG019: Level 2
·
·
S1CxG025: Level 8

8.2.0.6 S1CxG026 to S1CxG029: JOG OPERATION ABSOLUTE VALUE SPEED
Units: 0.1mm/s
These are setting values of jog operation speed set by the programming pendant. Values greater than those set as jog operation speed limit value cannot be set.

S1CxG026 Low level : Jog operation speed when “LOW” manual speed is specified.
S1CxG027 Medium level : Jog operation speed when “MEDIUM” manual speed is specified.
S1CxG028 High level : Jog operation speed when “HIGH” manual speed is specified.
S1CxG029 High-speed-level : Jog operation speed when [HIGH SPEED] is pressed.
8.2.0.7 S1CxG030 to S1CxG032: INCHING MOVE AMOUNT

These parameters specify the amount per move at inching operation by the programming pendant. The referenced parameter differs according to the operation mode at inching operation.

- S1CxG030: Joint Operation (Unit: 1 pulse)
- S1CxG031: Cartesian/cylindrical (Unit: 0.001 mm)
- S1CxG032: Motion about TCP (Unit: 0.001 degree)

If the value set for S1CxG031 or S1CxG032 is too small, the inching operation does not proceed.

NOTE

Note that the units of S1CxG031 and S1CxG032 are smaller than those for the NX100.

8.2.0.8 S1CxG033 to S1CxG040: POSITIONING ZONE

This parameter value will be referenced when positioning is specified with the "MOVE" instruction: MOVJ (joint movement) or MOVL (linear movement).

Example

MOVL V=100.0 PL=1

Positioning level

Positioning specification

The value set in this parameter specifies the range to enter in relation to the teaching point for that step positioning. After entering the specified positioning zone, the manipulator starts moving to the next step. The system is also set up so inward turning operation is carried out in the moving section when moving to the next path; speed changeover is smooth.

- S1CxG033: Positioning level 1
- S1CxG034: Positioning level 2
- ...
- S1CxG040: Positioning level 8
Since operation will be turning inward during playback, as shown in the following diagram, use setting values taking safety aspects into consideration.

This process becomes effective when change in direction of steps is between 25° and 155°.

Position Level

Position levels are divided into nine stages of 0 to 8 with the “MOV” instruction.

e.g. MOVL V=500 PL=1 (PL:Position Level)

The functions at each level are as follows:

0: Complete positioning to the target point
1 to 8: Inward turning operation

Following are explanations of the respective processing details and their relations with the parameter.

• Level 0
 Determines positioning completion when the amount of deviation (number of pulses) to the target point of each axis comes within the position set zone specified by the parameter.
 After the positioning completes, the instruction system starts instruction to the next target point.

• Level 1 to 8
 Recognizes virtual positioning before the target point. The distance of the virtual target position from the target point is specified at the positioning level.
 Distance data corresponding to each level are set in the parameter. Determination of the virtual target position is carried out in the instruction system.
 Set zone: The zone of each positioning level set in the parameter. (µm)
8.2.0.9 S1CxG044: LOW-SPEED START
Units: 0.01%
This parameter specifies max. speed at low speed start. Specify the starting method for “initial operation speed of manipulator” (S2C217).

8.2.0.10 S1CxG045 to S1CxG048: JOG OPERATION LINK SPEED
Units: 0.01%
These parameters prescribe the link speed at jog operation by the programming pendant. Specify the percentage (%) for the jog operation speed limit, the joint max. speed.
S1CxG045: Jog operation link speed at level “LOW”
S1CxG046: Jog operation link speed at level “MEDIUM”
S1CxG047: Jog operation link speed at level “HIGH”
S1CxG048: Jog operation link speed at level “HIGH SPEED”

8.2.0.11 S1CxG056: WORK HOME POSITION RETURN SPEED
Units: 0.01%
This parameter specifies the speed for returning to work home position against the maximum speed.

8.2.0.12 S1CxG057: SEARCH MAX. SPEED
Units: 0.1mm/s
This parameter specifies the max. speed for searching.

8.2.0.13 S2C201: POSTURE CONTROL AT CARTESIAN OPERATION OF JOG
This parameter specifies whether or not posture control is performed at cartesian operation of “JOG” by the programming pendant. Use posture control unless a special manipulator model is used.

0 : With posture control
1 : Without posture control

8.2.0.14 S2C202: OPERATION IN USER COORDINATE SYSTEM (WHEN EXTERNAL REFERENCE POINT CONTROL FUNCTION USED)
This parameter specifies the TCP or reference point of motion about TCP when the external reference point control function is used and the user coordinate system is selected by the programming pendant.

Fig. 8-1: 0: When manipulator TCP is selected
8 Parameter
8.2 Motion Speed Setting Parameters

Fig. 8-2: When external reference point is selected

8.2.0.15 S2C320: CONTROLLED GROUP JOB TEACHING POSITION CHANGE
This parameter is used to change only the job teaching position of controlled group axis.

0 : Not changed
1 : Changed

8.2.0.16 S2C422: OPERATION AFTER RESET FROM PATH DEVIATION
8.2.0.17 S2C423: OPERATION AFTER JOB
These parameters specify the method of restarting the manipulator that has deviated from the normal path such as an emergency stop or jog operation.

0 : Move to the indicated step (initial setting).
1 : After moving back to the deviated position, move to the indicated step.
2 : Move back to the deviated position and stop.

Table 8-1: S2C422

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Movement When Restarting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Move to next step.</td>
</tr>
<tr>
<td></td>
<td>Emergency stop</td>
</tr>
<tr>
<td></td>
<td>Movement when restarting</td>
</tr>
<tr>
<td></td>
<td>Move to next step.</td>
</tr>
<tr>
<td>1</td>
<td>After moving back to the deviated position, move to the indicated step.</td>
</tr>
<tr>
<td></td>
<td>Emergency stop</td>
</tr>
<tr>
<td></td>
<td>Move back to the deviated position and stop. When restarting, move to the indicated step.</td>
</tr>
<tr>
<td>2</td>
<td>Emergency stop (Servo OFF)</td>
</tr>
<tr>
<td></td>
<td>Move back the deviated position and then move to the indicated step.</td>
</tr>
</tbody>
</table>
8.2.0.18 S2C424: DEVIATED POSITION

This parameter specifies whether deviated position is to be robot current (reference) position or feedback position.

0 : Return to the feedback position.
1 : Return to the current value (reference) position.

Table 8-2: S2C423

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Movement When Restarting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Move to the next step.</td>
</tr>
<tr>
<td></td>
<td> Move to next step.</td>
</tr>
<tr>
<td>1</td>
<td>After moving back to the deviated position, move to the indicated step.</td>
</tr>
<tr>
<td></td>
<td> Move back to the deviated position and then move to the indicated step.</td>
</tr>
<tr>
<td>2</td>
<td>Emergency stop (Servo OFF)</td>
</tr>
<tr>
<td></td>
<td> Move back to the deviated position and stop. When restarting, move to the indicated step.</td>
</tr>
</tbody>
</table>

- To the path deviated position, the manipulator moves in a straight line at low speed operation (SICxG044). It is linear movement. After resetting from deviation, the speed becomes the same as taught speed.
- The initial setting (prior to shipping) is 0: The manipulator moves in a straight line from the present position to the indicated step.
When emergency stop is applied during high-speed motion, the deviated position differs from the robot current value (reference) position and feedback position as shown in the following.

8.2.0.19 S2C425: CIRCULAR INTERPOLATION TOOL POSITION CONTROL

This parameter selects tool position control methods at circular interpolation operation.

0: Fixed angle position
- Interpolation is performed depending on the position change viewed from the base coordinate.
- As the figure below (left) shows, when tool position viewed from outside is not significantly changed and that position is mainly taught at teaching, this setting is required.

1: Rotating position by circular arc path
- Interpolation is performed depending on the position change corresponding to circular arc path.
- As the figure below (right) shows, when tool position corresponding to circular arc path (tool position viewed from the center of the circular arc) is not significantly changed, and that position is mainly taught at teaching, this setting is required.

8.2.0.20 S2C653: EMERGENCY STOP CURSOR ADVANCE CONTROL FUNCTION

This parameter specifies whether to use the cursor advance control function or not.

0: Not use

1: Use
8.2.0.21 S2C654: EMERGENCY STOP CURSOR ADVANCE CONTROL FUNCTION CONT PROCESS COMPLETION POSITION

Units: %

When the manipulator stops during moving inner corner by CONT process, this parameter specifies which position of the inner corner should be considered as the end of step.

8.2.0.22 S2C655: EMERGENCY STOP ADVANCE CONTROL FUNCTION WORK START INSTRUCTION STEP MOTION COMPLETION DELAY TIME

Units: ms

In order to recognize securely the completion of motion to the step of work start instruction (such as ARCON instruction), this parameter specifies the delay time for motion completion of the work start instruction step only.

8.2.0.23 S2C698: BASE AXIS OPERATION KEY ALLOCATION SETTING

<table>
<thead>
<tr>
<th>Coordinates/Parameter</th>
<th>S2C698= “0”</th>
<th>S2C698= “1”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint</td>
<td>Axis number order</td>
<td>Specified</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>Axis number order</td>
<td>Specified</td>
</tr>
<tr>
<td>Cartesian</td>
<td>Specified</td>
<td>Specified</td>
</tr>
<tr>
<td>Tool</td>
<td>Specified</td>
<td>Specified</td>
</tr>
<tr>
<td>User</td>
<td>Specified</td>
<td>Specified</td>
</tr>
</tbody>
</table>

Axis number order: X: First axis, Y: Second axis, Z: Third axis
8.2.0.24 S3C1098 to S3C1102: POSITION CORRECTING FUNCTION DURING PLAYBACK

These parameters specify the necessary data for position correcting function (PAM) during playback operation.

- **S3C1098** Specifies the limit of position correcting range (Units: \(\mu m \))
- **S3C1099** Specifies the limit of speed correcting range (Units: 0.01%)
- **S3C1100** Specifies the correcting coordinates

 - 0 : Base
 - 1 : Robot
 - 2 : Tool
 - 3 : User 1
to
 - 26:User 24

- **S3C1102** Specifies the limit of posture angle adjustment range (Units: 0.01°)
8.3 Mode Operation Setting Parameters

These parameters set various operations in the teach mode or remote mode. Some parameters can be set through \(\text{SETUP} \rightarrow \text{(TEACHING COND)}\) or \(\text{OPERATE COND}\).

8.3.0.1 S2C195: SECURITY MODE WHEN CONTROL POWER SUPPLY IS TURNED ON

The operation level when the control power supply is turned ON is set.

- 0 : Operation Mode
- 1 : Editing Mode
- 2 : Management Mode

8.3.0.2 S2C196: SELECTION OF CARTESIAN/CYLINDRICAL

This parameter specifies whether the cartesian mode or cylindrical mode is affected when cartesian/cylindrical mode is selected by operation (coordinate) mode selection at axis operation of programming pendant. This specification can be done on the TEACHING CONDITION window.

- 0 : Cylindrical mode
- 1 : Cartesian mode

8.3.0.3 S2C197: COORDINATE SWITCHING PROHIBITED

This parameter prohibits switching coordinates during JOG operation by the programming pendant.

- 0 : Switching permitted for tool coordinates and user coordinates
- 1 : Switching prohibited for tool coordinates
- 2 : Switching prohibited for user coordinates
- 3 : Switching prohibited for tool coordinates and user coordinates

8.3.0.4 S2C198: EXECUTION UNITS AT “FORWARD” OPERATION

This parameter specifies the execution units at step mode of “FORWARD” operation by the programming pendant.

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Operation Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MOVL, DOUT, TIMER, DOUT, MOVL</td>
</tr>
<tr>
<td>1</td>
<td>MOVL, DOUT, TIMER, DOUT, MOVL</td>
</tr>
</tbody>
</table>
8.3.0.5 **S2C199: INSTRUCTION (EXCEPT FOR MOVE) EXECUTION AT “FORWARD” OPERATION**

This parameter specifies the method of instruction (except for move) execution at “FORWARD” operation by the programming pendant.

- 0: Executed by pressing [FWD] + [INTERLOCK]
- 1: Executed by pressing [FWD] only
- 2: Instruction not executed

8.3.0.6 **S2C203: CHANGING STEP ONLY**

This parameter specifies whether to permit only step changes in an editing-prohibited job. When permitted, only position data can be changed but additional data such as speed cannot be changed. This specification can be done on the TEACHING CONDITION window.

- 0: Permitted
- 1: Prohibited

8.3.0.7 **S2C204: MANUAL SPEED STORING FOR EACH COORDINATE**

This parameter specifies whether to assign different manual speeds for the joint coordinates and other coordinates. If “NOT STORED” is selected, manual speed is not affected by changing the coordinates. If “STORED” is selected, manual speeds can be selected separately for the joint coordinates and other coordinates.

- 0: Not stored
- 1: Stored

8.3.0.8 **S2C206: ADDITIONAL STEP POSITION**

This parameter designates either “before next step” or “after the cursor position (between instructions)” as additional step position. This specification can be done on the TEACHING CONDITION window.

Fig. 8-3: <Example>

<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>MOVL V=100</td>
</tr>
<tr>
<td>11</td>
<td>TIMER T=1.00</td>
</tr>
<tr>
<td>12</td>
<td>DOUT OT# (1) ON</td>
</tr>
<tr>
<td>13</td>
<td>MOVL V=50</td>
</tr>
</tbody>
</table>

Cursor position
8.3 Mode Operation Setting Parameters

Fig. 8-4: S2C206-0 (Before the Next Step)

```
Line   Instruction
  10   MOVL V=100
  11   TIMER T=1.00
  12   DOUT OT#(1) ON
  13   MOVL V=100
  14   MOVL V=50
```

Fig. 8-5: S2C206-1 (Between Instructions)

```
Line   Instruction
  10   MOVL V=100
  11   TIMER T=1.00
  12   MOVL V=100
  13   DOUT OT#(1) ON
  14   MOVL V=50
```

8.3.0.9 S2C207: MASTER JOB CHANGING OPERATION

This parameter specifies whether to permit or prohibit master job changing operation. If “PROHIBIT” is specified, the master job cannot be changed (or registered) easily. The specification can be done on the OPERATING CONDITION window.

- 0 : Permitted
- 1 : Prohibited

8.3.0.10 S2C208: CHECK AND MACHINE-LOCK KEY OPERATION IN PLAY MODE

This parameter specifies whether to permit or prohibit in play mode to change the operation that changes the operation condition. Even if an error occurs because of the operation with the keys, the manipulator does not stop. The specification can be done on the OPERATING CONDITION window.

- 0 : Permitted
- 1 : Prohibited

8.3.0.11 S2C209: RESERVED WORK JOB CHANGING OPERATION

This parameter specifies whether to permit reserved work job changing operation.

The designation can be done on the OPERATING CONDITION window.

- 0 : Permitted
- 1 : Prohibited
This parameter specifies whether the master or submaster call operation in play mode is permitted or not. When the independent control function is valid, the master job for sub-task is specified at the same time. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited
8.3.0.13 S2C211: LANGUAGE LEVEL
This parameter specifies the level of the robot language (INFORM III). The levels simplify the instruction registering operation. With the DX100, all robot instructions can be executed regardless of specification of instruction sets. The specification can be done on the TEACHING CONDITION window.

0: Contracted Level
Only frequently used robot instructions are selected to reduce the number of instructions to be registered. Robot instructions displayed on the instruction dialog box are also reduced so that specification is simplified.

1: Standard Level
2: Expanded Level
All the robot instructions are available in standard and expanded levels. The two levels are distinguished by the number of additional information items (tags) that can be used with robot instructions. At the expanded level, the following functions are available.

- Local Variables and Array Variables
- Use of Variables for Tags (Example: MOVJ VJ=I000)
 The above functions are not available at the standard level, however, which reduces the number of data required to register instructions, thereby simplifying the operation.

8.3.0.14 S2C214: INSTRUCTION INPUT LEARNING FUNCTION
This parameter specifies whether to set a line of instructions that has been input on the input buffer line when pressing the first soft key for each instruction. If “PROVIDED” is selected, the instructions are set.

0 : Without learning function
1 : With learning function

8.3.0.15 S2C215: ADDRESS SETTING WHEN CONTROL POWER IS TURNED ON
This parameter specifies the processing of the job name, step No., and line No. that are set when the control power supply is turned ON.

0 : Reproduces the address when power supply is turned ON.
1 : Lead address (Line”0”) of the master job.

8.3.0.16 S2C216: JOB LIST DISPLAY METHOD AT JOB SELECTION
These parameters specify the displaying method on the JOB LIST window at job selection.

0 : Order of Names
1 : Order of Date
8.3.0.17 S2C217: INITIAL OPERATION OF MANIPULATOR

This parameter specifies the operation speed level of the first section when starting. Specify the operation speed with the low-speed start (S1CxG044). When starting at low-speed, the manipulator stops after reaching the indicated step regardless of the cycle setting. Once the manipulator is paused during the low-speed operation, it moves at teaching speed when restarted.

0 : Specified on the SPECIAL PLAY window. Operates at low speed only when low speed start is set. Operates at taught speed when not instructed.
1 : Starts at low speed after editing regardless of soft key instructions.

8.3.0.18 S2C218: PLAYBACK EXECUTION AT CYCLE MODE “1-STEP”

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Operation Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MOVL DOUT TIMER DOUT MOVL Stops at every instruction</td>
</tr>
<tr>
<td>1</td>
<td>MOVL DOUT TIMER DOUT MOVL Stops at move instruction</td>
</tr>
</tbody>
</table>

When operating “FORWARD” by the programming pendant, the units for execution are set in another parameter (S2C198).

8.3.0.19 S2C219: EXTERNAL START

This parameter specifies whether a start instruction from external input is accepted or not. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited

8.3.0.20 S2C220: PROGRAMMING PENDANT START

This parameter specifies whether a start instruction from the programming pendant is accepted or not.

0 : Permitted
1 : Prohibited
8.3.0.21 S2C221: SPEED DATA INPUT FORM

This parameter specifies the units for speed data input and display.

- mm/s : in units of 0.1 mm/s
- cm/min : in units of 1 cm/min
- inch/min : in units of 1 inch/min
- mm/min : in units of 1 mm/min

The specification can be done on the OPERATING CONDITION window.

0 : mm/sec
1 : cm/min
2 : inch/min
3 : mm/min

8.3.0.22 S2C222: RESERVED START

This parameter specifies whether a reserved start instruction from the programming pendant is accepted or not. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited

8.3.0.23 S2C224: JOB SELECTION AT REMOTE FUNCTION (PLAY MODE)

This parameter specifies whether a job selection in play mode at remote function is prohibited or not.

0 : Permitted
1 : Prohibited

8.3.0.24 S2C225: EXTERNAL MODE SWITCH

This parameter specifies whether mode switching from the outside is accepted or not. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited

8.3.0.25 S2C227: EXTERNAL CYCLE SWITCHING

This parameter specifies whether cycle switching from the outside is accepted or not. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited
8.3.0.26 S2C228: PROGRAMMING PENDANT CYCLE SWITCHING
This parameter specifies whether cycle switching from the programming pendant is accepted or not. The specification can be done on the OPERATING CONDITION window.

0 : Permitted
1 : Prohibited

8.3.0.27 S2C229: SERVO ON FROM EXTERNAL PP PROHIBITION
This parameter specifies whether a servo ON instruction is accepted or not. More than one instruction can be specified. For example, to permit the servo ON instruction from an external input only, set “2”. In this case, servo ON instruction from the programming pendant is not accepted. The specification can be done on the OPERATING CONDITION window.

8.3.0.28 S2C230: PROGRAMMING PENDANT OPERATION WHEN “IO” IS SELECTED FOR REMOTE MODE
This parameter specifies whether each operation of the following is valid when “IO” is selected for remote function selection. IO and command are available for remote function selection: “IO” is set prior to shipping. “Command” is valid when transmission function (optional) is specified.
8.3.0.29 S2C234: STEP REGISTRATION AT TOOL NO. CHANGE
The registration of the step when the tool number is changed allows the setting to be made as prohibited.
If this parameter is set to “1” (prohibited), the following operations are prohibited.
- Modification of a step
 When the tool number of the teaching step differs from the currently-selected tool number, the step cannot be modified.
- Deletion of a step
 Even if the teaching step position coincides with the current position, the step cannot be deleted when the tool number of the teaching step differs from the currently-selected tool number.
- Addition of a step
 When the tool number of the teaching step indicated by the cursor differs from the currently-selected tool number, the step cannot be added.

8.3.0.30 S2C293: REMOTE FIRST CYCLE MODE
This parameter sets the cycle that changes from the local mode to the remote mode.
The setting can be made on the OPERATING CONDITION window.
0 : Step
1 : 1 cycle
2 : Continuous
3 : Setting retained

8.3.0.31 S2C294: LOCAL FIRST CYCLE MODE
This parameter sets the cycle that changes from the remote mode to the local mode.
The setting can be made on the OPERATING CONDITION window.
0 : Step
1 : 1 cycle
2 : Continuous
3 : Setting retained

8.3.0.32 S2C312: POWER ON FIRST CYCLE MODE
This parameter sets the first cycle mode for when the power is turned ON.
The setting can be made on the OPERATING CONDITION window.
0 : Step
1 : 1 cycle
2 : Continuous
3 : Setting retained
8.3.0.33 S2C313: TEACH MODE FIRST CYCLE MODE
This parameter sets the cycle that changes from the play mode to the teach mode. The setting can be made on the OPERATING CONDITION window.

0 : Step
1 : 1 cycle
2 : Continuous
3 : Setting retained

8.3.0.34 S2C314: PLAY MODE FIRST CYCLE MODE
This parameter sets the cycle that changes from the teach mode to the play mode. The setting can be made on the OPERATING CONDITION window.

0 : Step
1 : 1 cycle
2 : Continuous
3 : Setting retained

8.3.0.35 S2C316: START CONDITION AFTER ALARM-4107 (“OUT OF RANGE (ABSO DATA)"
This parameter specifies the activating method after the alarm 4107 (“OUT OF RANGE (ABSO DATA)"") occurs.

0 : Position check operation required
1 : Low-speed start up
S2C395: SIGNAL NAME ALIAS FUNCTION

On the JOB CONTENT window, the name registered to the user input/output signal number can be displayed as alias instead of the signal number itself.

Table 8-4: S2C395

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Valid/Invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function invalid</td>
</tr>
<tr>
<td>1</td>
<td>Function valid</td>
</tr>
</tbody>
</table>

1. With this function valid, the confirmation dialog box “Register by name (alias)?” is displayed when a signal (IN#(), OT#(), IG#(), OG#(), IGH#(), OGH#()) is selected on the DETAIL EDIT window.

2. Select “YES” and the signal select window appears. Then select the target signal of number and press [ENTER], and the registered name is displayed instead of the signal number. However, if the signal number’s name is not yet registered, it is displayed by number as usual.

<Example> Registration of the name of user output OUT#0001 as “OUTPUT 1”

In the case of DOUT instruction:

S2C395=0 : DOUT OT#(1) ON
S2C395=1 : DOUT OT#(OUTPUT 1) ON

Select {IN/OUT} → {UNIVERSAL INPUT/OUTPUT} to edit signal names on the window. Up to 16 characters can be entered as a signal name. However, when this function is valid, if the content below is entered, the error message shows and the name cannot be registered.

- The name already registered
- Letters beginning with a number
- Letters including the signs below: (), [], =, <, >, space, comma
- Letters beginning with “alphabets representing variables” + “number”

<Example> B0..., I0..., BP1..., LEX2...

When the name begins with “ ’ “, it is regarded as a comment and the same comment can be registered for two or more signals. In this case, although this function is valid, the number is displayed on the JOB CONTENT window instead of the name.

<Example> Registration of the name of user output OUT#0002 as “OUTPUT 2”

S2C395=0 : DOUT OT#(2) ON
S2C395=1 : DOUT OT#(OUTPUT 2) ON
S2C396: VARIABLE NAME ALIAS FUNCTION

On the JOB CONTENT window, the name registered to the variable (including local variables) can be displayed as alias instead of the variable number.

Example
Registration of the byte type variable B000 as “WORK KIND”

In the case of SET instruction

S2C396=0 : SET B000 128
S2C396=1 : SET WORK KIND 128

Table 8-5: S2C396

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Valid/Invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function invalid</td>
</tr>
<tr>
<td>1</td>
<td>Function valid</td>
</tr>
</tbody>
</table>

1. With this function valid, the confirmation dialog box “Register by name (alias) ?” is displayed when you select the variable on the DETAIL EDIT window.

2. Select “YES” and the variable select window appears. Then select the target variable of number and press [ENTER], and the registered name is displayed instead of the variable number. However, if the variable number’s name is not yet registered, it is displayed by number as usual.

Example
Registration of the byte type variable B001 as “WORKNUM”

S2C396=0 : SET B001 10
S2C396=1 : SET B001 10

Select {VARIABLE} from the menu to select each variable and edit the variable name. Up to 16 characters can be entered as a variable name. However, when this function is valid, if the content below is entered, the error message shows and the name cannot be registered.

- The name already registered
- Letters beginning with a number
- Letters including the signs below: (,), [,], =, <, >, space, comma
- Letters beginning with “alphabets representing variables” + “number”

Example
B0..., I0..., BP1..., LEX2...

When the name begins with “ ’ “, it is regarded as a comment and the same comment can be registered for two or more variables. In this case, although this function is valid, the number is displayed on the JOB CONTENT window instead of the name.

Example
Registration of the byte type variable B001 as “WORKNUM”

S2C396=0 : SET B001 10
S2C396=1 : SET B001 10
8.3.0.38 S2C397: I/O VARIABLE CUSTOMIZE FUNCTION

This function enables registration of any particular input/output signal/variable. Reference and editing of signals/variables are possible on the same window.

Table 8-6: S2C397

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Valid/Invalid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Function Invalid</td>
</tr>
<tr>
<td>1</td>
<td>Function Valid</td>
</tr>
</tbody>
</table>

With this function valid, the sub-menu {I/O-VARIABLE CUSTOMIZE} opens under the main menu {ARC WELDING}, {SPOT WELDING}, {GENERAL}, {HANDLING} (differs by application). Select {I/O-VARIABLE CUSTOMIZE}, and the I/O-VARIABLE CUSTOMIZE window appears as follows.

Fig. 8-6: I/O VARIABLE CUSTOMIZE Window

On the I/O-VARIABLE CUSTOMIZE window, any of the input/output signals/variables can be selected and registered (up to 32 items). Registrable signals/variables are as follows:

Table 8-7: Registrable Items on the I/O-VARIABLE CUSTOMIZE Window

<table>
<thead>
<tr>
<th>Input/Output Signals</th>
<th>USER INPUT SIGNAL</th>
<th>USER OUTPUT SIGNAL</th>
<th>PSEUDO INPUT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>BYTE TYPE VARIABLE (B VARIABLE)</td>
<td>INTEGER TYPE VARIABLE (I VARIABLE)</td>
<td>DOUBLE-PRECISION INTEGER TYPE VARIABLE (D VARIABLE)</td>
</tr>
</tbody>
</table>

The contents and names of the registered signals/variables can be checked and edited on this window.

In addition, the data list of registered signals/variables can be loaded, saved, verified or deleted with an external memory unit. Only when this function is valid, "I/O-VARIABLE CUSTOMIZE (file name: USRIOVAR.DAT)" is displayed and can be selected. To display the "I/O-VARIABLE CUSTOMIZE (file name: USRIOVAR.DAT)", select {FD/CF} → {LOAD} {SAVE} {VERIFY} {DELETE} → {SYSTEM DATA}.
8.3.0.39 S2C410: WORD REGISTRATION FUNCTION / WORD EDITING FUNCTION SPECIFICATION

Specifies the valid or invalid to edit the words while inputting the characters.

0 : Invalid
1 : Valid

*It is able to edit the words when the security mode is the edit mode or the management mode.

8.3.0.40 S2C413: JOB UNDELETE FUNCTION

This function doesn’t completely delete a job from its memory when deleting the job, but saves the data so that the job can be restored as needed.

This parameter can be set on {TEACHING CONDITION} window.

If a job is deleted while this function is valid, the job disappears from the JOB LIST window. In this case, {TRASH JOB LIST} is newly displayed to {JOB} on the main menu and the deleted job is listed on it.

The job will not be listed on the trash job list and will not be restored if it is deleted when this function is invalid.
On the trash job list, the deleted jobs are displayed.

On this window, the following operations are available with the same operations as job list window.

- Batch selection / canceling selection of the jobs
 ({EDIT} → {SELECT ALL} → {CANCEL SELECT})
- Job search ({EDIT} → {JOB SEARCH COND})
- Rearrange of the jobs in the order of date / order of name
 ({DISPLAY} → {DATE} {NAME})
- Job detailed information display ({DISPLAY} → {DETAIL})

Restoring the Job

Choose a job to be restored and select {UNDELETE JOB} from {JOB} on the pull down menu.

A dialog box to confirm restoring the selected job.

Select

[YES] to restore the job. The restored job is deleted from the trash job list and newly listed to the job list.

[NO] to cancel restoring the job.
Deleting the Job Completely
Delete a job from the memory. The job will not be restored after this operation. Choose a job to be completely deleted, then select (DELETE JOB) from (JOB) on the pull down menu.

A dialog box to confirm deleting the selected job.

Select
[YES] to delete the job completely. The deleted job is deleted from the trash job list.
[NO} to cancel deleting the job.

NOTE
The job data remains until it is completely deleted and the capacity of the memory becomes less as long as this function is valid. Delete unnecessary data to keep enough job capacity.

8.3.0.41 S2C415 to S2C419: TIME RESET
These parameters specify whether resetting operation of the specified times is permitted or not.

S2C415 : CONTROL POWER ON TIME
S2C416 : SERVO POWER ON TIME
S2C417 : PLAYBACK TIME
S2C418 : WORK TIME
S2C419 : WEAVING TIME

0 : Prohibit Resetting
1 : Permit Resetting

"PERMIT" is set as the initial value for the work time and motion time.
8. Parameter
8.3 Mode Operation Setting Parameters

8.3.0.42 S2C431: TOOL NO. SWITCHING
This parameter specifies whether tool number switching is permitted or not.

0 : Prohibited (Only number “0” can be used.)
1 : Permitted (64 type of tools from number “0” to “63” can be used.)

8.3.0.43 S2C433: POSITION TEACHING BUZZER
This parameter specifies whether the buzzer sound at position teaching is used or not.

0 : With buzzer
1 : Without buzzer

8.3.0.44 S2C434: JOB LINKING DESIGNATION (When Twin Synchronous Function Used)
This parameter specifies whether the manipulator at the synchronizing side is to be linked when the manipulator and the station at the synchronized side are performing FWD/BWD or test run, by using the twin synchronous function.

0 : Not operating
1 : Linking

Fig. 8-7: 0 : Does not operate the synchronizing side while teaching the synchronized side.

Fig. 8-8: 1 : Links the synchronizing side while teaching the synchronized side.
8.3.0.45 S2C437: PLAYBACK OPERATION CONTINUATION FUNCTION

This function is used to decide where to resume the playback on the start operation after suspending the playback and moving the cursor or selecting other jobs.

0: Starts operation where the cursor is located in the job displayed at the moment.

1: The playback continuation window appears. Select “YES” and the playback resumes where the cursor has been located when the playback suspended. If “NO” is selected, the playback resumes where the cursor is located in the job displayed at the moment.

* When this function is valid (S2C437=1), a light blue cursor is displayed at the instruction section of step where the playback has been stopped. When “YES” is selected, the playback resumes where this cursor is located.

Table 8-8: S2C437

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Where the Playback Resumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Resumes where the cursor is located in the job displayed at the moment.</td>
</tr>
<tr>
<td>1</td>
<td>Resumes where the cursor has been located when the playback suspended OR where the cursor is located in the job displayed at the moment.</td>
</tr>
</tbody>
</table>

Example
Suspended at step 0003 during the playback of job A

Displays job B

Starts operation

On the playback operation continuation window

- When “YES” selected, the playback resumes from step 0003 of job A
- When “NO” selected, the playback resumes from the current position in job B

When a job has been edited or FWD/BWD/TEST RUN operation(s) have been executed, the playback cannot resume where it has suspended. Also this function is invalid if the reserved start function is set valid (S2C222=0).
8. Parameter
8.3 Mode Operation Setting Parameters

8.3.0.46 S2C544: I/O NAME DISPLAY FUNCTION FOR JOB

When a user input/output signal, whose name is already set, is used as a job, this function displays the signal name in the form of a comment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the specification of the signal is group specification (IG#, IGH#, OG#, OGH#), the name will not be displayed. Also, the name will not be displayed when the job is saved at external memory devices.</td>
<td></td>
</tr>
</tbody>
</table>

This parameter can be set on {FUNCTION ENABLE} window.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Invalid</td>
</tr>
<tr>
<td>1</td>
<td>Valid</td>
</tr>
</tbody>
</table>

8.3.0.47 S2C684: ALL AXES ANGLE DISPLAY FUNCTION

This function enables to change the display of manipulator position from pulse-formed to angle-formed on the specific window.

This function is valid in the following windows.

- Current value (however, it is invalid if the present displayed coordinate systems are "base", "robot" or "user").
- Command position
- Work home position
- Second work home position

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>Function Valid/Invalid</td>
</tr>
<tr>
<td>D0</td>
<td>Coordinated system Pulse/Angle</td>
</tr>
<tr>
<td></td>
<td>Data system when angle is specified Absolute/Ground</td>
</tr>
</tbody>
</table>

This function can be valid/invalid on {FUNCTION ENABLE} window.

Select {DISPLAY} on the pull down menu while this function is valid, then {PULSE}, {ABSOLUTE ANGLE} and {GROUND ANGLE} appear. Select one so that the presently displayed data can be changed to the selected data type.
8.3 Mode Operation Setting Parameters

PULSE
Indicates the pulse data of each axis.

ABSOLUTE ANGLE
Indicates the independent angle at every axes on the basis that the absolute value is 0[deg] when the pulse is 0.

GROUND ANGLE
Indicates the L- and U-axes angle according to the manipulator installation direction. The value of unoperated axes may vary depending on the manipulator’s posture.

NOTE
As for the servo track, angle is not indicated but distance (unit [mm]).

8.3.0.48 S2C713: CONTROL POINT OPERATION SETTING ON THE SERVO TRACK
This parameter specifies a motion system by which the manipulator’s control point is fixed while the servo track is in operation.
However, it is valid only when the selected control group is specified as a servo track and the servo track is operated by jog keys in the cartesian coordinates.

0 : Normal operation
1 : Control point operation setting on the servo track
8.4 Parameters According to Interference Area

These parameters limit the P-point maximum envelope of the manipulator or set the interference area for axis interference or cubic interference.

8.4.0.1 S1CxG400 to S1CxG415: PULSE SOFT LIMIT
Soft limit is set independently for each axis by pulse value setting. Set current value (pulse value) of the axis at the soft limit set up position.

8.4.0.2 S2C001: CUBE SOFT LIMIT CHECK
This parameter specifies whether to check the cube soft limit. More than one soft limit can be specified.

If "WITH CHECK" is selected, set up the following parameters.
Units: μm
Cube Soft Limit (Base Coordinates of Robot TCP)

S3C000: Robot 1: + side: X
S3C001: Robot 1: + side: Y
S3C002: Robot 1: + side: Z
S3C003: Robot 1: - side: X
S3C004: Robot 1: - side: Y
S3C005: Robot 1: - side: Z
S3C007: Robot 2: + side: X
S3C008: Robot 2: + side: Y
S3C009: Robot 2: + side: Z
S3C010: Robot 2: - side: X
S3C011: Robot 2: - side: Y
S3C012: Robot 2: - side: Z
S3C042: Robot 8: + side: X
S3C043: Robot 8: + side: Y
S3C044: Robot 8: + side: Z
S3C045: Robot 8: - side: X
S3C046: Robot 8: - side: Y
S3C047: Robot 8: - side: Z

Soft Limit

Soft limit is a software-type function to limit the range of movement of the manipulator.

If the TCP reaches the soft limit during operation, the manipulator automatically stops and no longer moves in that same direction. An alarm occurs if this soft limit is exceeded during playback. This soft limit is classified into two types.

- Cube Soft Limit
 Soft limit is set with the absolute value on the base coordinates.

- Pulse Soft Limit (Independent Axis Soft Limit)
 Refer to section 8.4.0.1 "S1CxG400 to S1CxG415: PULSE SOFT LIMIT" on page 8-32.
8.4.0.3 S2C002: S-AXIS INTERFERENCE CHECK

This parameter specifies whether to check for interference with each manipulator. If "WITH CHECK" is selected, set up the following parameters.

Units: Pulse

S3C048: S-axis Interference Area Robot 1 (+)
S3C049: S-axis Interference Area Robot 1 (-)
S3C050: S-axis Interference Area Robot 2 (+)
S3C051: S-axis Interference Area Robot 2 (-)
S3C063: S-axis Interference Area Robot 8 (-)
8.4 Parameters According to Interference Area

8.4.0.4 S2C003 to S2C066: CUBE/AXIS INTERFERENCE CHECK

1. Designation of checking
 These parameters specify the cube/axis interference to be used by bit.

 0 : Cube Interference/Axis Interference Not Used
 1 : Robot 1
 2 : Robot 2

 8 : Robot 8
 9 : Base Axis 1
 10 : Base Axis 2

 16 : Base Axis 8
 17 : Station Axis 1
 18 : Station Axis 2

 40 : Station Axis 24

2. Checking method
 Designates whether checking is performed by command or feedback.

<table>
<thead>
<tr>
<th>Designation of checking (data setting)</th>
<th>Checking method (bit setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Not used</td>
<td>0: Command, 1: Feedback</td>
</tr>
<tr>
<td>1: Robot 1, ----, 40: Station axis 24</td>
<td></td>
</tr>
</tbody>
</table>

Checking method

The checking method differs according to ON/OFF status of servo power supply.

<table>
<thead>
<tr>
<th>Checking Method Designation</th>
<th>Servo Power Supply ON</th>
<th>Servo Power Supply OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Command</td>
<td>Feedback</td>
</tr>
<tr>
<td>Feedback</td>
<td>Feedback</td>
<td>Feedback</td>
</tr>
</tbody>
</table>

During the servo float function operation, checking is performed by feedback regardless of the checking method designation.
Interference Area

It is possible to output whether the TCP during operation is inside or outside as a status signal, and to set the area to control the position by parameters S2C003 to S2C194. When the manipulator attempts to enter this area, the corresponding input signal (e.g., an “entrance prohibit signal”) is detected. The manipulator stops immediately if there is an input signal and goes into waiting status until this signal is cleared. This signal is processed in the I/O section. Three methods of interference area settings are prepared for manipulators and stations. For a system with one manipulator, use robot 1.

- **S-axis Interference Area**
 Position is controlled by the pulse value of the S-axis.

- **Cubic Interference Area**
 Up to 64 cubic areas can be set. The edges of the cubes are set parallel to the robot coordinates or the user coordinates.

- **Axis Interference Area**
 Up to 64 areas can be set. Each operation area maximum and minimum value are set for the robot, base axis, and station axis plus and minus side.
8.4 Parameters According to Interference Area

8.4.0.5 S2C067 to S2C194: CUBE USING METHOD

These parameters specify the coordinates for defining the cube. If the user coordinates are selected, also specify the user coordinate system numbers. Set cubic area referring to the cubic interference areas shown below.

Coordinate specification:
- 0: Pulse (axis interference)
- 1: Base coordinates
- 2: Robot coordinates
- 3: User coordinates

Coordinate No.: Specify the user coordinate number when selecting “3: User Coordinates”.
Units: 1μm

Precaution When Setting the Interference Area

It will be necessary to consider the following when setting the cubic interference and S-axis interference areas. The manipulator is processed to decelerate to stop from the point where it enters in the area. Therefore, set the areas in consideration of the amount of the manipulator movement in the deceleration section shown in the figure below.

The move amount in the speed reduction section is dependent on the moving speed of the manipulator at that time:

- V = 1500mm/s → approx. 300mm (Max.)
- V = 1000mm/s → approx. 160mm
- V = 30mm/s → approx. 3 to 4 mm
- V = 20mm/s → approx. 2mm
Interference Prevention in Interference Area

Processing to prevent interference is executed in the I/O processing section. The relation between the DX100 I/O signal and manipulator operation is shown below.

In wait status with the entrance prohibit signal, the manipulator just barely enters the area for speed reduction processing and then stops.

Fig. 8-9: Connection Example Where Two Manipulators are Operated in the Same Area
8.4 Parameters According to Interference Area

8.4.0.6 S3C000 to S3C047: CUBE SOFT LIMIT

These parameters specify auxiliary functions of S2C001 parameter. For details, see section 8.4.0.2 “S2C001: CUBE SOFT LIMIT CHECK” on page 8-32.

8.4.0.7 S3C048 to S3C063: S-AXIS INTERFERENCE AREA

These parameters specify auxiliary functions of S2C002 parameter. For details, see section 8.4.0.3 “S2C002: S-AXIS INTERFERENCE CHECK” on page 8-34.

8.4.0.8 S3C064 to S3C1087: CUBIC INTERFERENCE AREA

These parameters specify auxiliary functions of S2C003 to S2C066 parameters. For details, see section 8.4.0.4 “S2C003 to S2C066: CUBE/AXIS INTERFERENCE CHECK” on page 8-35.

8.4.0.9 S3C1089 to S3C1096: ROBOT INTERFERENCE AREA

These parameters specify auxiliary functions of S2C236 to S2C263 parameters. For details, see section 8.4.0.6 “S3C000 to S3C047: CUBE SOFT LIMIT” on page 8-39.

8.4.0.10 S3C1097: A SIDE LENGTH OF WORK-HOME-POSITION CUBE

Units: \(1\mu m\)

This parameter specifies a side length of the cube for the work home position.
8.5 Parameters according to Status I/O

These parameters set the parity check or I/O setting for user input/output signals.

8.5.0.1 S2C235: USER OUTPUT RELAY WHEN CONTROL POWER IS ON

This parameter specifies the state of the user output relays when the control power is turned ON. Since the power OFF state, including peripheral devices, cannot be completely reproduced, take note when restarting.

0 : Reset to the power OFF state
1 : Initialized (all user relays OFF)

8.5.0.2 S4C000 to S4C015: PARITY OF USER INPUT GROUPS

These parameters specify whether to execute priority checks with parameters when instructions covering the input group (1G#) are executed. The instructions covering the input groups are as shown below.

- IF Sentence (JUMP, CALL, RET, PAUSE)
- Pattern Jump, Pattern Job Call
- DIN
- WAIT

Parity bits are set as the highest level bits of each input group and are written in even parity. If an error is detected during parity check, an alarm occurs and the manipulator stops. Remains unchanged if no parity check is specified.
8.5.0.3 S4C016 to S4C031: PARITY OF USER OUTPUT GROUPS

These parameters specify whether the output group instruction is executed with parity check (even parity).

Parity bits are set as the highest level bits of each output group. For example, if OG#01 is specified with parity and DOUT OG# (1) 2 is executed, the result will be 0000010 if 2 is binary converted. Since there will be only one bit (odd) ON at this time, the parity bit (highest level bit) will be set to ON and 1000010 (130) will be output to OG# (1).

As in the case of a variable such as DOUT OG# (1) B003 parity bits are added to the contents of the variable data. However, if the contents of the variable exceed 127, as in the case of DOUT OG# (1) 128, an alarm will occur. Remains unchanged if no parity check is specified.
8.5.0.4 S4C032 to S4C047: DATA OF USER INPUT GROUPS

These parameters specify whether to handle the input group data as binary data or as BCD data when an instruction for the input group (1G#) is executed. The instructions covering the input groups are as shown below.

- IF Sentence (JUMP, CALL, RET, PAUSE)
- Pattern Jump, Pattern Job Call
- DIN
- WAIT
8.5.0.5 S4C048 to S4C063: DATA OF USER OUTPUT GROUPS

These parameters specify whether the output group instruction is executed with binary data or BCD data.

Differences Between Binary Data and BCD Data

For the input group and output group, the result will depend on whether the binary or BCD formula is used.

<Example> When the input function is [01010101]

However, in the case of BCD data, because the upper bound value is 99, it is not possible to use any value which exceeds nine in the one or ten digit place.
8.5 Parameters according to Status I/O

8.5.0.6 S4C064 to S4C079: USER OUTPUT GROUP TO BE INITIALIZED AT SWITCHING MODE

Set the user output group with bit to be initialized at switching mode. Use these parameters when using user output signals as work instructions for peripheral devices.

8.5.0.7 S4C240: USER OUTPUT NO. WHEN MANIPULATOR DROP ALLOWABLE RANGE ERROR OCCURS

This parameter specifies the user output number to output the manipulator drop allowable range error alarm occurrence externally.

When this function is not used, set “0”.
8.6 Parameters according to Coordinated or Synchronized Operation

These parameters make the settings for coordinated or synchronized operations between manipulators or between manipulators and stations.

8.6.0.1 S2C212: +MOV or +SMOV INSTRUCTION SPEED INPUT

This parameter specifies whether the speed inputting for move instructions of the master robot in a coordinated job is permitted or not.

<Example> 0: Not Provided

SMOVL V=100
+MOVL ← Master side

Speed specification not provided

<Example> 1: Provided

SMOV L V=100
+MOV L ← Master side

Speed specification provided

8.6.0.2 S2C213: +MOV INSTRUCTION INTERPOLATION INPUT

This parameter specifies which interpolation is permitted for move instructions for the master robot in a coordinated job. More than one instruction can be specified.

\[
\begin{array}{c}
\text{d7} \\
\text{d6} \\
\text{d5} \\
\text{d4} \\
\text{d3} \\
\text{d2} \\
\text{d1} \\
\text{d0} \\
\end{array}
\]

+ MOVJ : 1(VALID)
+ MOVL : 2(VALID)
+ MOVC : 4(VALID)
+ MOVS : 8(VALID)

8.6.0.3 S2C231: OPERATION METHOD AT FWD/BWD OPERATION OR TEST RUN BY INDEPENDENT CONTROL

This parameter specifies the operation method at FWD/BWD operation or test run by independent control.

0 : The job of the task that is currently displayed operates.
1 : Jobs of all the tasks operate.
8.6 Parameters according to Coordinated or Synchronized Operation

8.6.4 S2C232: JOB AT CALLING MASTER OF SUBTASK BY INDEPENDENT CONTROL

This parameter specifies the job which is called up when the master of the subtask is called up by independent control.

0 : Master job
1 : Root job

Master Job: Job registered in the master control window
Root Job: Job activated by PSTART instruction

8.6.5 S2C264: STATION AXIS CURRENT VALUE DISPLAY FUNCTION

This parameter specifies whether the function to display the current value of the station axis in the following units is valid/invalid.

0 : Invalid
1 : Valid

Rotary axis: Angle (deg)
Servo track: Distance (mm)

Regarding whether to specify the rotary axis or the servo track, refer to section 8.6.6 “S2C265 to S2C288: STATION AXIS DISPLAYED UNIT”.

8.6.6 S2C265 to S2C288: STATION AXIS DISPLAYED UNIT

This parameter specifies the station axis displayed unit (bit specification).

0 : Display angle (deg)
1 : Display in distance (mm)
Setting Method

Set a numerical value (decimal) where the bit of the axis to be displayed in the units of distance becomes 1.

<table>
<thead>
<tr>
<th>d7</th>
<th>d6</th>
<th>d5</th>
<th>d4</th>
<th>d3</th>
<th>d2</th>
<th>d1</th>
<th>d0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>(16)</td>
<td>(8)</td>
<td>(4)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Station 1st axis**
- **Station 2nd axis**
- **Station 3rd axis**
- **Station 4th axis**
- **Station 5th axis**
- **Station 6th axis**

<Example> When 1st and 3rd axes of station 1 are displayed in the units of distance:

```
  d7 d6 d5 d4 d3 d2 d1 d0
  0 0 0 0 1 0 1 (1)
```

Set 1 to axis displayed in distance.

Therefore, set parameter S2C265 of station 1 to 5.

8.6.0.7 S2C420: POSTURE CONTROL OF SYNCHRONIZED MANIPULATOR

(When Twin Synchronous Function Used)

This parameter specifies the posture control method for synchronized manipulator performing compensation during playback by using the twin synchronous function.

- 0 : Change posture according to station movement
- 1 : Fixed in relation to the ground

8.6.0.8 S2C421: POSTURE CONTROL OF MANIPULATOR IN MULTI-JOB

(When Twin Synchronous Function Used)

This parameter specifies the posture control method for manipulator executing compensation at the linking side when job linking is performed during FWD/BWD operation by the twin synchronous function.

- 0 : Change posture according to station movement
- 1 : Fixed in relation to the ground
8.6.0.9 S2C687: OPERATION OF JOB WITHOUT CONTROL GROUP SPECIFICATION

When the servo power supply is individually turned OFF where jobs in multiple number of tasks are operated using the independent control function, the job execution of the control group whose servo power supply is turned OFF is interrupted. The jobs of other control groups continue their execution.

For the jobs without control group specification such as master job, the conditions for execution can be set by the parameter.

0 : Execution possible only when servo power supply to all the axes have been turned ON.
1 : Execution possible when servo power supply to any axis is turned ON.

8.6.0.10 S2C688: EXECUTION OF “BWD” OPERATION

This parameter prohibits step-back operation of a job without a step.

8.6.0.11 S3C1101: MAXIMUM DEVIATION ANGLE OF CURRENT STATION POSITION (When Twin Synchronous Function Used)

Used when the twin synchronous function is used. This parameter specifies the maximum deviation between the teaching position and the current station position.

0 : No deviation check
Other than 0 : Deviation angle (units : 0.1°)

In the above figure on the left, the follower R2 executes the job of subtask 2 in synchronization with the motion of the station axis which is moved by the R1 job. In this procedure, the job of subtask 2 controls only the R2 robot axis.

If the teaching position of the station in the subtask 2 differs from the station current position (controlled by the subtask 1 job), the difference is automatically offset so that R2 keeps the taught position in relation to the station.

Difference between the taught and the station current positions is always monitored. If the difference exceeds a set value of the parameter, the message “PULSE LIMIT (TWIN COORDINATED)” appears.
8.7 Parameters for Other Functions or Applications

These parameters make the settings for other functions or applications.

8.7.0.1 S1CxG049 to S1CxG051: SMALL CIRCLE CUTTING

These parameters prescribe cutting operation at small circle cutting.

- **S1CxG049** (Minimum diameter): Set the minimum diameter of a figure in the units of \(\mu m \) that can be processed by small-circle cutting machine.
- **S1CxG050** (Maximum diameter): Set the maximum diameter of a figure in the units of \(\mu m \) that can be processed by small-circle cutting machine.
- **S1CxG051** (Maximum speed): Set the maximum cutting speed at operation by CUT instruction in the units of 0.1mm/s.

8.7.0.2 S1CxG052 to S1CxG053: SMALL CIRCLE CUTTING DIRECTION LIMIT VALUE

These parameters set the cutting direction limits at small circle cutting.

- **S1CxG052** (+ direction): Set the limit value in the positive direction of cutting angle DIR set by CUT instruction, in the units of 0.01\(^\circ\).
- **S1CxG053** (- direction): Set the limit value in the negative direction of cutting angle DIR set by CUT instruction, in the units of 0.01\(^\circ\).

8.7.0.3 S1CxG054 to S1CxG055: SMALL CIRCLE CUTTING OVERLAP VALUE

These parameters set the overlapped value at small circle cutting.

- **S1CxG054** (Operation radius): Set the operation radius at inner rotation in the units of 1 \(\mu m \) after overlapping by CUT instruction.
- **S1CxG055** (Rotation angle): Set the rotation angle at inner rotation in the units of 0.1\(^\circ\) after overlapping by CUT instruction.

8.7.0.4 S1CxG063, S1CxG064: PATTERN CUTTING DIMENSION

These parameters set the minimum diameter (S1CxG063) and the maximum diameter (S1CxG064) for the pattern cutting in units of \(\mu m \).

8.7.0.5 S1CxG065: MIRROR SHIFT SIGN INVERSION

This parameter sets which axis to be shifted (mirror-shift: invert the sign).

- **1st axis (0: Not invert, 1: Invert)**
- **7th axis**

8.7.0.6 S2C430: RELATIVE JOB OPERATION METHOD

This parameter specifies how to operate a relative job. A method to convert a relative job into a standard job (pulse), and a conversion method to calculate the aimed position (pulse position) when a relative job is operated can be specified.

- **0**: Previous step with priority (B-axis moving distance minimized.)
- **1**: Form with priority
- **2**: Previous step with priority (R-axis moving distance minimized.)
8.7 Parameters for Other Functions or Applications

8.7.0.7 S3C1111 to S3C1190: ANALOG OUTPUT FILTER CONSTANT (When analog output corresponding to speed function is used)

By setting a constant to filter, a filter processing can be performed for the output analog signal.

8.7.0.8 S3C1191: CUT WIDTH CORRECTION VALUE (When form cutting function is used)

This parameter specifies the path correction value for pattern cutting operation. A value 1/2 of the cut width is set in units of μm.
8.8 Hardware Control Parameters

These parameters make the hardware settings for fan alarm or relay operation, etc.

8.8.0.1 S2C646: ANTICIPATOR FUNCTION

This parameter specifies anticipation output.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Invalid</td>
</tr>
<tr>
<td>1</td>
<td>Valid</td>
</tr>
</tbody>
</table>

The anticipator function is a function to quicken or slow the ON/OFF timing of four user output signals and two user output groups. Using this function, signal output can be carried out before or after the step is reached. As a result, timing deviation due to delayed motion of peripheral devices and robot motion can be adjusted.

Setting the time to a negative value (-) advances the signal output.

This setting is effective when adjusting timing deviation due to delayed motion of peripheral devices.

Setting the time to a positive value (+) delays the signal output.

This setting is effective when adjusting timing deviation due to delayed robot motion.

<Advanced Signal Output>

Signal output is carried out before the step is reached.

<Delayed Signal Output>

Signal output is carried out after the step is reached.
8.8.0.2 S4C327 to S4C390: SETTING OF OPERATING RELAY NO.

Up to 64 output signals can be turned ON/OFF with the programming pendant. The object relay No. is set in these parameters. Although it is possible to set optional values for output No. 1 to 1024 in the parameters, the following must be taken into consideration.

- Avoid setting duplicate numbers.
- The signal turned ON or OFF with the programming pendant is operated again or remains unchanged until the instruction is executed.

8.8.0.3 S4C391 to S4C454: OPERATING METHOD OF RELAYS

These parameters specify the operating method of output signals by the programming pendant. The operating method can be specified for each output signal.

<table>
<thead>
<tr>
<th>Parameter Setting Value</th>
<th>Operation of Output Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>, </td>
</tr>
<tr>
<td>1</td>
<td>, ON if the key is pressed, OFF if the key is not pressed</td>
</tr>
</tbody>
</table>

8.8.0.4 S2C786 to S2C788: COOLING FAN ALARM DETECTION

This parameter specifies a detection for cooling fan 1 to 3 with alarm sensor, connected to power ON unit.

- 0 : No detection
- 1 : Detected with message display
- 2 : Detected with message and alarm display
8.8.0.5 S2C789 to S2C792: COOLING FAN ALARM 1 OPERATION

8.8.0.6 S2C793 to S2C796: COOLING FAN ALARM 2 OPERATION

8.8.0.7 S2C797 to S2C800: COOLING FAN ALARM 3 OPERATION

These parameters specify the operation of cooling fan 1 to 3 with alarm sensor, connected to power ON unit.

Each bit specifies the power ON unit to which the detecting sensor is connected.

8.8.0.8 S2C801 to S2C804: FAN ALARM 1 POWER SOURCE STATUS

8.8.0.9 S2C805 to S2C808: FAN ALARM 2 POWER SOURCE STATUS
8.8.0.10 S2C809 to S2C812: FAN ALARM 3 POWER SOURCE STATUS

- S2C801, S2C805, S2C809
 - SERVOPACK#1
 - SERVOPACK#2

- S2C802, S2C806, S2C810
 - SERVOPACK#3
 - SERVOPACK#4

- S2C803, S2C807, S2C811
 - SERVOPACK#5
 - SERVOPACK#6

- S2C804, S2C808, S2C812
 - SERVOPACK#7
 - SERVOPACK#8
8 Parameter
8.9 TRANSMISSION PARAMETERS

8.9 TRANSMISSION PARAMETERS

These parameters are used when the optional FC1, FC2, or data transmission function is used.

For details, refer to the optional manual “DX100 DATA TRANSMISSION FUNCTION”.

8.10 Application Parameters

8.10.1 Arc Welding

8.10.1.1 AxP000: APPLICATION

This parameter specifies the application. Set “0” for arc welding.

8.10.1.2 AxP003: WELDING ASSIGNMENT OF WELDING START CONDITION FILE

This parameter specifies the beginning condition number in the welding start condition file to be assigned to Power Source 2. Condition files of a lower number are automatically assigned to Power Source 1. For a system with one Power Source, set “49” (maximum value).

8.10.1.3 AxP004: WELDING ASSIGNMENT OF WELDING END CONDITION FILES

This parameter specifies the beginning condition number in the welding END condition file to be assigned to Power Source 2. Condition files of a lower number are automatically assigned to Power Source 1. For a system with one Power Source, set “13” (maximum value).

8.10.1.4 AxP005: WELDING SPEED PRIORITY

This parameter specifies whether the welding speed is specified by the “ARCON” instruction, by the welding start condition file, or by the additional times of the “MOV” instruction.

8.10.1.5 AxP009: WORK CONTINUING

This parameter specifies whether to output an “ARCON” instruction to restart after the manipulator stopped while the “ARCON” instruction is being output.
8.10 Application Parameters

8.10.1.6 AxE010: WELDING INSTRUCTION OUTPUT
This parameter specifies the beginning number (0 to 12) of the analog output channel to the Power Source. "0" indicates that no Power Source exists.

8.10.1.7 AxE011, AxE012: MANUAL WIRE OPERATION SPEED
These parameters specify the manual wire operation speed as a percentage of the maximum instruction value. Instruction polarity is determined by the current instruction in the Power Source characteristic file. The setting range is from 0 to 100.

8.10.1.8 AxE013, AxE014: WELDING CONTROL TIME
These parameters specify the welding control time in units of minutes. The setting range is from 0 to 999.

8.10.1.9 AxE015 to AxE017: NUMBER OF WELDING CONTROL
These parameters specify the number of welding controls. The setting range is from 0 to 99.

8.10.1.10 AxE026 to AxE029: TOOL ON/OFF USER OUTPUT NO. (Jigless system)
These parameters specify the user output number for the tool open/close operation by specific keys.

8.10.2 Handling Application

8.10.2.1 AxE002, AxE004: f1 KEY FUNCTION
These parameters set the output signal to assign for f1 key.

0: Not specified
1 to 4: Specific outputs for HAND-1 to HAND4-1
5: User output (No. is specified by AxE004).

8.10.2.2 AxE003, AxE005: f2 KEY FUNCTION
These parameters set the output signal to assign for f2 key.

0: Not specified
1 to 4: Specific outputs for HAND-2 to HAND4-2
5: User output (No. is specified by AxE005)

8.10.3 Spot Welding

8.10.3.1 AxE003: MAXIMUM NUMBER OF CONNECTED POWER SOURCES
This parameter specify the maximum number of power sources which are to be used. The value is automatically set at start-up. No modification is needed.
8.10.3.2 AxP004: GUN FULL OPEN STROKE ON/OFF SIGNAL
This parameter specifies which stroke switching signal is output ON or OFF to make the gun fully-opened for each gun.

Bit specification (1 for 01) for 8 guns. The initial setting is “0”.

```
  0  0  0  0  0  0  0  0
   |   |   |   |   |   |   |
  8  7  6  5  4  3  2  1 Gun number
```

8.10.3.3 AxP005: STROKE CHANGE ANSWER TIME LIMIT
When using the X2 gear mechanical stopper gun and switching gun stroke, this parameter sets the time from the stroke-switching-sequence start until the pressure instruction end.

The initial setting is “0”, with which the switching signal is output for the “stopper-type stroke switching time” set in the file, and then the gun pressure instruction is turned OFF.

8.10.3.4 AxP006: PARITY SPECIFICATION FOR WELDING CONDITIONS
When adding the parity signal to the welding condition signal with the Power Source connected to each welding gun, this parameter specifies odd or even parity.

Bit specification for 4 Power Sources. (0 : odd number, 1 : even number)
The initial setting is “0”.

```
  0  0  0  0  0  0  0  0
   |   |   |   |
  4  3  2  1 Power Source number
```

8.10.3.5 AxP007: ANTICIPATE TIME
When executing the GUNCL or SPOT instruction with NWAIT specified in the previous move instruction but the time is not specified by ATT in the GUNCL or SPOT instruction, this parameter specifies the anticipate condition (time). The initial setting is “0”, with which the each instruction is executed as soon as the taught position of the previous move instruction is reached, as normal operation.

8.10.3.6 AxP015: WELDING ERROR RESET OUTPUT TIME
This parameter sets the output time of the welding error reset signal to the Power Source when the alarm reset signal is input.

If the setting is "0", the welding error reset signal is not output to the Power Source even if the alarm reset signal is input.

8.10.3.7 AxP016, AxP017: ELECTRODE WEAR AMOUNT ALARM VALUE
These parameters set the electrode wear amount alarm values (AxP016: movable side, AxP017: fixed side) at the wear detection.
8.10.4 General-purpose Application

8.10.4.1 AxP009: WORK CONTINUE PROHIBIT

This parameter specifies whether to output TOOLON instruction or not at restarting when the work is stopped for some reasons during the output of TOOLON instruction.
9 Spot Welding Application Using a Motor Gun

9.1 System Overview

An I/O signal diagram of a typical system is shown below.

Fig. 9-1: Spot Welding System I/O Signal Diagram
9.1 System Overview

• Welding conditions (level signals)
 • Sets the welding conditions for the Power Source.
 • The output format can be set as binary or discrete.
 • Can handle up to 255 conditions in binary.

8 bits

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(8) (7) (6) (5) (4) (3) (2) (1)

The numbers in parentheses are for discrete.

• WELDING COMMAND (level/pulse)
 Outputs the start instruction to the Power Source.

• WELDING ERROR RESET (level)
 Resets the welding alarm status of the Power Source.

For details on signal contents, refer to section 9.9.2 on page 9-116.
9.2 Function Keys

Each function used for spot welding is allocated on the Numeric keys of the programming pendant.

- **[INTERLOCK] + [WELD COMPLETE]**
 - Forcibly release WAIT instruction. (only when specifying of force release for WAIT instruction is valid (S2C317 d1 bit =1))

- **[INTERLOCK] + [SPOT]**
 - With the MANUAL SPOT window, press these keys to execute manual spot welding.

- **[INTERLOCK] + [GUN CLOSE]**
 - With the MANUAL SPOT window, press these keys to execute manual dry spot welding.

- **[INTERLOCK] + [WELD ON/OFF]**
 - Turns the welding ON/OFF signal ON or OFF.

- **[INTERLOCK] + [SHORT OPEN]**
 - The movable side electrode moves to the selected short open position.

Displays the MANUAL SPOT window.

Displays the SVSPOT instruction in the input buffer line in order to register spot welding operation.

Displays the SVGUNCL instruction in the input buffer line in order to register dry spot welding operation.

The SHORT OPEN POSITION SETTING window appears the first time this key is pressed.

The selection No. for the short open position is replaced by pressing this key while the SHORT OPEN POSITION SETTING window is appeared.

The selection No. for the short open position is replaced by pressing this key while the SHORT OPEN POSITION SETTING window is appeared.
9.2 Function Keys

The FULL OPEN POSITION SETTING window appears the first time the key is pressed. The selection No. for the full open position is replaced by pressing this key while the FULL OPEN POSITION SETTING window is appeared.

[INTERLOCK] + [FULL OPEN] The movable side electrode moves to the selected full open position.

Selects either a coordinated or an individual interpolation when teaching a coordinated job. Each time this key is pressed, the operation type changes.

Coordinated: All the move instructions that are registered in this mode become coordinated instructions.

Individual: The master-slave relationship is cancelled. Each manipulator and station moves independently.

[INTERLOCK] + [WELD ALM RESET] A Power Source alarm reset signal is output to the Power Source while these keys are held down.

Changes the type of movement for the manipulator when teaching a coordinated job. Each time this key is pressed, the movement type changes.

SYNCRO: The mark for "synchronized" appears in the status display area. When the master side is moved, the slave side will follow the movement of the master.

SINGLE: Only the selected group axis moves.

[INTERLOCK] + [PRESSURE] With the MANUAL SPOT window or the JOB window, press these keys to execute pressurizing.

[INTERLOCK] + [RELEASE] Releases the electrode.
9.2 Function Keys

9.2.1 Switching of the Function Key

Function keys can be switched between for spot welding (motor gun) use and for arc welding use by following the procedures below:

9.2.1.1 Two-Robot System

1. Select a robot job for SPOT welding (motor gun).
 (CONTROL GROUP: R1 + S1)
 - Keys change for spot welding (motor gun) use automatically.
 (ARC/SPOT) icon on the main menu changes to (SPOT).

2. Select a robot job for ARC welding.
 (CONTROL GROUP: R2)
 - Keys change for arc welding use automatically.
 (ARC/SPOT) icon on the main menu changes to (ARC).
9.2.1.2 Single-Robot System

Function keys can be switched between for spot welding (motor gun) use and for arc welding use on APPLI SELECT window.

1. Select {ARC/SPOT} under main menu.
2. Select {APPLI SELECT}.
 - APPLI SELECT window appears.
 This window also appears by selecting [INTERLOCK]+[ROBOT].

3. Select {MOTOR GUN}.
 - Move the cursor to {MOTOR GUN} and press [SELECT], then the function keys become valid for SPOT welding (motor gun) use.
 {ARC/SPOT} icon on the main menu changes to {SPOT}.

9.2 Function Keys

4. Select {ARC WELD}.
 Move the cursor to {ARC WELD} and press [SELECT], then the function keys become valid for ARC welding use.
 {ARC/SPOT} icon on the main menu changes to {ARC}.

![Diagram of DX100 control panel with selected ARC WELD option]
9.3 Before Teaching

Before using the motor gun, execute the following operation instructions.

9.3.1 Manual Welding

For manual welding, perform the following operations.

1. Press [0/MANUAL SPOT] of the Numeric keys.

2. Press [INTERLOCK] + [/SPOT].

Manual welding is executed while these keys are held down when the MANUAL SPOT window is displayed.

Manual welding uses the conditions that are set in the MANUAL SPOT window.

Refer to section 9.4.1 “Setting of MANUAL SPOT Window” on page 9-15 for the condition settings.

9.3.2 Manual Dry Spotting

For manual dry spotting, perform the following operations.

1. Press [0/MANUAL SPOT] of the Numeric keys.

2. Press [INTERLOCK] + [2/GUN CLOSE].

Manual dry spotting is executed when pressing the above mentioned keys while the MANUAL SPOT window is displayed.

The conditions that are set in the MANUAL SPOT window are applied to Manual dry spotting.

Refer to section 9.4.1 “Setting of MANUAL SPOT Window” on page 9-15 for the condition settings.
9.3.3 Open/Close of a Motor Gun

Open and close the motor gun in the following operations.

1. Press [EX. AXIS].

 – The LED on [EX. AXIS] is lit.

2. Choose the control group of the gun-axis

 – Each time [EX.AXIS] is pressed, the objective external axis alternates.

 – Refer to section 2.2 “General Operations” on page 2-3 for the details.

4. Press [S+] or [S-].

 – The motor gun performs an “open motion” or a “close motion”.

 • The opening and closing direction of the motor gun differs depending on the gun type.
 • When setting the manual speed, be sure to select “slow speed” to check the opening and closing direction of the gun.
9.3.4 Mounting Electrodes

Mount the electrodes in a dry spotting motion.

For dry spotting, refer to section 9.3.2 “Manual Dry Spotting” on page 9-8.

For teaching, be sure to use a new electrode.

9.3.5 Registering the Operation Tool

The registration method of operation tool differs depending on whether it is a single gun or a double gun.

Considering the following cases, refer to section 8.3 “Tool Data Setting” of “DX 100 INSTRUCTIONS” (RE-CTO-A215) for the tool coordinate value and tool data setting.

9.3.5.1 When Using a Single Gun

Register the tool coordinate value of the fixed side electrode tip position as TCP.

Set the tool posture data so that the direction from the fixed side electrode to the movable side electrode is positive (+) side of Z-axis.

Be sure to set the direction of tool Z-axis facing the movable side electrode. If the Z-axis is not set in the correct direction, wear of the electrode cannot be properly compensated for.
9.3.5.2 When Using a Double Gun

Register the tool coordinate value of the both fixed side and movable side electrode contact position of as TCP.

Set the tool posture data so that the direction from the lower side electrode to the upper side electrode is positive (+) side of Z-axis.

![Diagram of tool Z-axis direction](image)

NOTE

Be sure to set the tool Z-axis in the direction from the lower side electrode to the upper side electrode. If the Z-axis is not set in the correct direction, wear of the electrode cannot be properly compensated for.
9.3.6 Teaching

This section explains how to prepare a job with a robot axis and a gun axis to use the motor gun.

9.3.6.1 Preparing a Pressure Instruction Job

1. Select {JOB} from the main menu.
2. Select {CREATE NEW JOB}.
3. Enter a job name.
4. Set a control group.
 – Set a control group which includes a gun-axis.
 – The gun-axis is registered as a station.
 – When the gun is preparing for a robot, be sure to register “Robot + Station (gun-axis)” control group.
 – The pressure compensation function doesn’t work properly when the job is for a control group of gun-axis only.

(Example Case) Robot: R1, Gun-Axis: S

Select “R1+S1” for a control group

4. Refer to section 9.8.8 “Gun Pressure Compensation Function” on page 9-63 for the details of gun pressure compensation.
5. Press [ENTER]

– Refer to section 3.1.3 “Registering a Job” on page 3-2 for details.
9.3.6.2 Registering Steps

Register the steps in the following operations

1. Register the positions from A to D as steps 1 to 4.
2. Close the gun until position E, and then register it as step 5 in the job.
3. Open the gun until position F, and then register it as step 6 in the job.
4. Register the positions from G to I as steps 7 to 9.

• Position E should not touch the workpiece. Keep 5 to 10 millimeters between the workpiece and the electrode.
• By registering a SVSPOT (Spot Welding Execution) instruction after step 5, the tool end touches the workpiece in the touch motion.
• For double-gun control, teach positions D and E in the same step, and also positions F and G in the same step.
9.3.6.3 Registering the SVSPOT Instruction

Register a SVSPOT instruction by pressing [./SPOT].

SVSPOT GUN#(1) PRESS#(1) WTM=1 WST=1

A B C D

A. Gun No.
Specifies the gun No. to be used for welding.

B. Gun pressure file No.
Specifies the file No. to which the pressure is set.

C. Welding condition No.
Specifies the welding condition No. set for the Power Source.

D. Power Source start signal output timing
Specifies the timing to start the Power Source.
Choose from the following three settings.

• WST=0 : The Power Source starts at the same time as the SVSPOT instruction.
 As the Power Source starts before pressure is applied, a squeeze time for the Power Source is required.

• WST=1 : The Power Source starts at the same time as pressure is applied for the first time.

• WST=2 : The Power Source starts at the same time as pressure is applied for the second time.

■ Power Source Start Signal Output Timing

<table>
<thead>
<tr>
<th>Power Source start signal for touch motion (WST = 0)</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Source start signal when applying pressure first time (WST = 1)</td>
<td>t</td>
</tr>
<tr>
<td>Power Source start signal when applying pressure second time (WST = 2)</td>
<td>t</td>
</tr>
</tbody>
</table>
9.4 Setting Welding Conditions

9.4.1 Setting of MANUAL SPOT Window

A. TWO GUN CONTROL
 For two gun control, selects “ON” or “OFF” of synchronous control.

B. GUN NO.
 Set the gun No. for pressurizing.

C. WELDING COND (WTM)
 Set the welding condition No. which applies to the welding.

D. GUN PRESS. MOTION SET
 Select “FILE” to specify settings.

E. GUN PRESSURE FILE NO.
 Set the gun pressure file No. used for the welding.

F. OUTPUT TIMING (WST)
 Shows the timing to start the Power Source. It can be selected from the following three.
 - TOUCH: Starts the Power Source at the same time as the SVSPOT instruction is carried out. Since the Power Source starts operation before pressure is applied, a squeeze time for the Power Source is required.
 - 1ST PRESS: Starts the Power Source at the same time as pressure is applied for the first time.
 - 2ND PRESS: Starts the Power Source at the same time as pressure is applied for the second time.

G. PRESS CONDITION
 Shows the pressurizing method in a dry spotting. It can be selected from the following two methods.
 - FILE: The pressure is applied according to the settings in the dry spotting pressure file.
 - FIXED: Dry spotting is done with the pressure specified in “CONST PRESSURE”.

H. PRESSURE NO. or CONST PRESSURE
 PRESSURE NO.: Set the dry spotting pressure file No. for pressurizing
 CONST PRESSURE: Shows the pressure for the dry spotting.
9. Spot Welding Application Using a Motor Gun
9.4 Setting Welding Conditions

Operation
1. Press [0/MANUAL SPOT] of the Numeric keys.

– Manual spot window appears.

2. Select the item to be set.
3. Enter a numerical value and press [ENTER].
 – When selecting “OUTPUT TIMING (WST)”, “TOUCH”, “1ST PRESS” or “2ND PRESS” appear alternately after pressing “SELECT”.
 – When selecting “PRESS CONDITION”, “FILE” or “CST PRESS” appear alternately after pressing “SELECT”.
9.4.2 Pressure Setting

The pressure used for welding is specified by the gun pressure file selected for the SVSPOT.

- **Gun Pressure Display**

 A. **CONDITION NO.**
 Expresses the No. of the gun pressure file.

 Select the file No. by pressing the page key.

 B. **SETTING**
 Shows whether the values are entered in the gun pressure file or not.
 For a file where the values are not entered, “NOT DONE” appears and “DONE” appears for the files with the values are entered.

 C. **TOUCH SPEED**
 Shows the electrode speed when the gun closes.
 It is shown as a ratio (%) to the gun motor rated speed.

 D. **TOUCH PRESS**
 Shows the pressure when electrode touches a workpiece.
 When the pressure reaches the touch pressure value after the electrode touches the workpiece, the first pressure that is set in E is applied.

 E. **1ST to 4TH PRESS**
 Shows the pressure at each speed.

 F. **1ST to 4TH END CONDITION**
 Shows the condition needed to end application for each pressure. “PRS TIME (pressure time)” or “END WAIT (welding end wait)” can be chosen.
 PRS TIME: The gun applies a pressure for the time specified in the next item G.
 END WAIT: The gun’s application of pressure ends when a welding end signal comes from the Power Source.
 When “END WAIT” is selected for 1ST to 3ED PRESS, the conditions required by the gun to apply pressure for the further steps are not displayed.

 G. **1ST to 4TH PRS TIME**
 Shows the pressure time of each pressure. When “END WAIT” is selected as the END CONDITION, the pressure time is not displayed.
9.4 Setting Welding Conditions

Operation

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN PRESSURE}.

- Gun pressure display appears.

3. Select the file No. by pressing the page key.
4. Select the item to be set.
5. Enter a numerical value and press [ENTER].

- When selecting “END CONDITION”, press [SELECT] to display “PRS TIME (pressure time)” and “END WAIT (welding end wait)” alternately.
6. Select “SETTING”.

– The display for “SETTING” changes from “NOT DONE” to “DONE”.

<table>
<thead>
<tr>
<th>Pressure (N)</th>
<th>End Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOUCH PRESS</td>
<td>1000</td>
</tr>
<tr>
<td>1ST PRESS</td>
<td>200.0 PRS TIME 0.20 s</td>
</tr>
<tr>
<td>2ND PRESS</td>
<td>150.0 PRS TIME 0.10 s</td>
</tr>
<tr>
<td>3RD PRESS</td>
<td>220.0 PRS TIME 0.20 s</td>
</tr>
<tr>
<td>4TH PRESS</td>
<td>180.0 END WAIT</td>
</tr>
</tbody>
</table>

For C: Yaskawa recommends the setting to 5%.

For D and E: Request settings so that the touch pressure is less than or equal to the 1st pressure.

The actual pressure relative to the specified pressure may not be ensured if the above conditions are not satisfied.
9.4 Setting Welding Conditions

9.4.3 Welding Current and Welding Time Settings

The welding current and the welding time are set according to the Power Source.

Refer to the Operator’s manual of the Power Source.

NOTE

- For pressure setting, Yaskawa recommends 5% or less for the touch speed (C), and a value greater than the friction torque (generally 1000N or more) for the touch pressure (D).
- If the touch speed is too fast or the touch pressure is too low, the gun axis may bounce.

NOTE

The welding condition No. set to the Power Source should be the same as the welding condition No. specified in the SVSPOT instruction.
9.5 Playback (Motor Gun)

This section explains the check run and the actual welding.

9.5.1 Check Run

Confirm the taught path in a check run. The check run is a dry run, so welding instructions such as SVSPOT are not carried out.

1. Set the mode switch to “PLAY” on the programming pendant.
2. Select {UTILITY} under the menu.
3. Select {SETUP SPECIAL RUN}.
4. Select “CHECK-RUN” to set to “VALID”.

9.5.2 Actual Welding

After having confirmed the taught path, start welding.

To start the SVSPOT instruction, select “CHECK-RUN” on the SPECIAL PLAY window to set to “INVALID”.

9.6 Dry Spotting (Motor Gun)

For dressing a tip and mounting an electrode, a gun motion to apply pressure without welding (dry spotting) is required. Dry spotting can be also registered in a job to be executed.

9.6.1 SVGUNCL (Dry Spotting Motion) Instruction

Register the SVGUNCL instruction by pressing [2/GUN CLOSE].

SVGUNCL GUN#(1) PRESSCL#(1)

A B

A. Gun No.

Specifies the gun No. to start dry spotting. It is used with the SVSPOT instruction in the same manner.

B. Pressure file No.

Specifies the file No. where the pressure for dry spotting is set.

9.6.2 Dry Spotting Pressure Setting

The pressure for dry spotting is specified by the pressure file selected for the SVGUNCL instruction

- **PRESSURE window**

 A. FILE NO.

 Shows the dry spotting pressure file No. Select a number by pressing the page key .

 B. PRE CUT TIME

 Shows the time from when the tip dresser rotating signal is output to the moment the gun starts applying pressure.

 C. END CUT TIME

 Shows the time from when the application of pressure stops to the moment the output signal to the tip dresser is turned OFF.

 D. TOUCH SPEED

 Shows the electrode speed when the gun closes. It is shown as a ratio (%) to the gun motor rated speed.
9 Spot Welding Application Using a Motor Gun
9.6 Dry Spotting (Motor Gun)

E. PRESS UNIT
Shows the units for dry spotting pressure. Select “N” or “% (TORQUE)”.

F. TOUCH PRESS
Shows the pressure when electrode touches a workpiece. When the pressure reaches the touch pressure value after the electrode touched the workpiece, the first pressure that is set in G is applied.

G. 1ST to 4TH PRESS
Shows the dry spotting pressure at each step.

H. 1ST to 4TH PRESS TIME
Shows the pressure time of each dry spotting pressure.

I. 1ST to 4TH PRESS OUT (ON/OFF status of 1st to 4th pressure synchronizing output signal)
Shows the ON/OFF status of the user output signal which is output in synchronization with each dry spotting pressure.
When a synchronizing signal is output to a tip dresser, etc., select “ON”.

J. 1ST to 4TH PRESS SIGNAL (1st to 4th pressure synchronizing output signal)
Shows the No. of the user output signal which is output in synchronization with each dry spotting pressure.
9.6 Dry Spotting (Motor Gun)

Operation

1. Select {SPOT WELDING} from the main menu.
2. Select {PRESSURE}.

- Gun pressure display appears.

3. Select a file No. by pressing the page key.
4. Select the item to be set.
5. Enter a numerical value, and press [ENTER].

For “PRESS UNIT”, press [SELECT] to display “N” and “% (TORQUE)” alternately.
For “OUT”, press [SELECT] to display “ON” and “OFF” alternately.

For D: Yaskawa recommends the setting to 5%.
For F and G: Request the settings so that the touch pressure is less than or equal to the 1st pressure.

The actual pressure relative to the specified pressure may not be ensured if the above conditions are not satisfied.
9.6 Dry Spotting (Motor Gun)

Table 9-2: Example

<table>
<thead>
<tr>
<th></th>
<th>PRESS</th>
<th>TIME (s)</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOUCH PRESS</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ST PRESS</td>
<td>200.0</td>
<td>0.50</td>
<td>ON</td>
</tr>
<tr>
<td>2ND PRESS</td>
<td>220.0</td>
<td>0.50</td>
<td>ON</td>
</tr>
<tr>
<td>3RD PRESS</td>
<td>0.0</td>
<td>0.00</td>
<td>OFF</td>
</tr>
<tr>
<td>4TH PRESS</td>
<td>0.0</td>
<td>0.00</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Tip dresser rotating signal

PRE CUT TIME = 1.0 (s) and END CUT TIME = 1.0 (s)

NOTE

For a tip dresser synchronizing signal, select the No. in the output allocation window.

- For pressure setting, Yaskawa recommends 5% or less for the touch speed (D), and a value greater than the friction torque (generally 1000N or more) for the touch pressure (G).
- If the touch speed is too fast or the touch pressure is too low, the gun axis may bounce.
9.7 Electrode Wear Detection and Wear Compensation

9.7.1 Wear Detection and Wear Compensation Operation Flow Chart

1. Mount a new tip.
2. Teach the manipulator moving positions.
4. Register the reference position of the fixed tip by dry-spotting touch motion. (See chapter 9.7.2.1 "Dry Spotting Touch Motion" at page 9-18.)
5. Register the reference position of the movable tip by sensor detection. (See chapter 9.7.2.2 "Sensor Detection" at page 9-18.)
6. Perform welding.
7. Tip dressing.
8. Read the position by dry-spotting touch motion. (See chapter 9.7.2.1 "Dry Spotting Touch Motion" at page 9-18.)
9. Read the position by sensor detection. (See chapter 9.7.2.2 "Sensor Detection" at page 9-18.)
10. Calculate the wear amount for movable and fixed tips.
11. When the wear amount is less than the allowable value.
12. Output a signal to request tip replacement (only when specified.)
13. Replace the tip.
9.7 Electrode Wear Detection and Wear Compensation

9.7.2 Wear Detection

This section explains the method to detect the amount of the electrode wear by dry spotting touch motion and sensor detection.

9.7.2.1 Dry Spotting Touch Motion

Read the position where the movable side (upper) electrode touches the fixed side (lower) electrode, and then calculate the total amount of electrode wear on both sides.

Touching during dry spotting is done by carrying out a SVGUNCL (dry spotting) instruction.

<Example>

SVGUNCL GUN#(1) PRESSCL#(1) TWC-A

A B C

A. Gun No.
B. Dry spotting pressure file No.
C. Dry spotting touch motion designation

9.7.2.2 Sensor Detection

Move the movable side (upper) electrode to the sensor detectable position, and read the position to calculate the amount of electrode wear on the movable side.

Detect the electrode position using a sensor by carrying out a SVGUNCL (dry spotting) instruction.

<Example>

SVGUNCL GUN#(1) PRESSCL#(1) TWC-B

A B C

A. Gun No.
B. Dry spotting pressure file No.
C. Sensor detection designation
9.7.2.3 Example of Wear Detection

A. MOVJ
B. SVGUNCL GUN#(1) PRESSCL#(1) TWC-A (Dry spotting touch motion)
C. MOVJ
D. MOVJ
E. SVGUNCL GUN#(1) PRESSCL#(1) TWC-B (Sensor detection)
F. MOVJ

For double-gun control, teach a job so that the upper side electrode passes the sensor detecting zone while using the sensor detection.

Also, set the polarity of the signal that is output from the sensor, by the setting item "WEAR DETECT SENSOR POLARITY" in the GUN CONDITION window. (Refer to section 9.10.1 "Gun Condition File" on page 9-118.)
9.7.3 SPOT WELD DIAGNOSIS

The amount of electrode wear is displayed. The allowable wear amount can also be set.

Welding Diagnosis Window

A. GUN NO.

Shows the gun No. Select a number by pressing the page key.

B. TIP HIT COUNT (CURRENT, TOLERANCE)

“CURRENT” shows the number of times the SVSPOT instruction was carried out. When the current value exceeds the allowable value (TOLERANCE), a signal to request tip replacement is output.

C. WEAR (MOVABLE SIDE) (CURRENT, TOLERANCE)

“CURRENT” shows the current amount of electrode wear on the movable side. When the current value exceeds the allowable value (TOLERANCE), a signal to request tip replacement is output.

D. WEAR (FIXED SIDE) (CURRENT, TOLERANCE)

“CURRENT” shows the current amount of electrode wear on the fixed side. When the current value exceeds the allowable value (TOLERANCE), a signal to request tip replacement is output.

E. TCP ADJUSTMENT VALUE

Shows the amount of shift from the TCP.

F. GUN STROKE ADJUSTMENT

Shows the adjusted amount of gun stroke.

G. BASE POS (MOVABLE SIDE)

Registers the first detected position (position where the signal from the sensor is input) after the reference data is cleared. For the second detection or later, calculates the difference from the reference position as the wear amount.

H. BASE POS (FIXED SIDE)

Registers the first detected position (position at dry spotting) after the reference data is cleared. For the second detection or later, calculates the difference from the reference position as the wear amount.
9.7 Electrode Wear Detection and Wear Compensation

Operation
1. Select {SPOT WELDING} from the main menu.
2. Select {WELDING DIAGNOSIS}.

- The SPOT WELD DIAGNOSIS window appears.

3. Select a gun No. by pressing the page key .
4. Select the item to be set.
5. Enter a numerical value, and press [ENTER].
9.7 Electrode Wear Detection and Wear Compensation

- **Clearing Operation of Each Current Value**
 1. Select {DATA} from the menu.
 2. Select {CLEAR CURRENT POS}.
 3. Select “YES”.

![Clearing Operation of Each Current Value](image-url)
9.7.4 Wear Compensation

The manipulator motion and the gun stroke are adjusted according to the amount of electrode wear.

The step registered immediately before the SVSPOT instruction compensates for the amount of wear.

<Example of Wear Compensation>
For a single gun, the amount of wear on the movable side = 3mm; the amount of wear on the fixed side = 5mm.

<Job Example>

MOVJ

MOVJ ← In this position, wear compensation is done.

SVSPOT GUN#(1) PRESS#(1) WTM=1 WST=1

MOVJ

MOVJ

The fixed side electrode is always shifted in the Z-axis + direction on the tool coordinates. Therefore, be sure to register the tool position and direction correctly. (Refer to section 9.3.5 “Registering the Operation Tool” on page 9-10.)
9.7.5 Teaching Positions with a Worn Electrode

When teaching positions with a worn electrode, the position is registered according to the electrode wear amount.

9.7.5.1 Teaching Example

![Diagram of teaching positions with a worn electrode.](image)

This effect occurs only with the move instruction immediately before the SVSPOT instruction. The wear amount is ignored when registering positions with other move instructions.

9.7.5.2 Parameters

AxP010: Teaching with compensation enabled value for wear (units: \(\mu \text{m} \))

Sets the reference value of the wear amount where compensation becomes enabled. Compensation is carried out when the wear amount exceeds the reference value.

<Example>

In the case of AxP010 = 1000:

Wear amount \(\geq 1 \text{mm} \): The taught position is registered according to the wear amount.

Wear amount \(< 1 \text{mm} \): The taught position is registered disregarding the wear amount.

AxP014: Selection of compensation execution and display

0: A message “Compensated position”. appears when the position is registered.

1: The dialog box appears before the position is registered with a message “Compensate? YES/NO”.

Workpiece

Electrode with 5-mm wear

The position is taught by the electrode with 5-mm wear.

New electrode

After the electrode is replaced, operation is done so that the relative positions of the workpiece and the end of the electrode are the same as when taught with the worn electrode.
9.7.6 Wear Amount Loading

Detected wear amount can be loaded in a job.

The wear amount is stored in the system D variable ($D). Use the GETS instruction and load the wear amount.

<Example>

GETS D000 $D030
The wear amount of Gun 1 (movable side) is stored in D000.

<table>
<thead>
<tr>
<th></th>
<th>(Unit: μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D30</td>
<td>Gun 1 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D31</td>
<td>Gun 1 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D32</td>
<td>Gun 2 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D33</td>
<td>Gun 2 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D34</td>
<td>Gun 3 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D35</td>
<td>Gun 3 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D36</td>
<td>Gun 4 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D37</td>
<td>Gun 4 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D38</td>
<td>Gun 5 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D39</td>
<td>Gun 5 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D40</td>
<td>Gun 6 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D41</td>
<td>Gun 6 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D42</td>
<td>Gun 7 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D43</td>
<td>Gun 7 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D44</td>
<td>Gun 8 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D45</td>
<td>Gun 8 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D46</td>
<td>Gun 9 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D47</td>
<td>Gun 9 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D48</td>
<td>Gun 10 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D49</td>
<td>Gun 10 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D50</td>
<td>Gun 11 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D51</td>
<td>Gun 11 fixed side (lower) wear amount</td>
</tr>
<tr>
<td>$D52</td>
<td>Gun 12 movable side (upper) wear amount</td>
</tr>
<tr>
<td>$D53</td>
<td>Gun 12 fixed side (lower) wear amount</td>
</tr>
</tbody>
</table>
9.8 Other Functions Using a Motor Gun

9.8.1 Motor Gun Stroke

The motor gun stroke is classified into two; full open and short open.

9.8.1.1 Registering the Full-open/Short-open Position

Eight positions can be registered for each for the gun strokes, full open and short open.

- **Full Open Registering**

 ![Motor Gun Stroke Diagram]

 A. GUN NO.

 Shows the gun for position setting.

 Select a gun No. by pressing the page key 📚

 B. SEL

 The mark “●” moves to the currently selected position.

 C. POSITION

 Shows the gun stroke.
9.8.1.2 Registering the current position

 – The FULL OPEN POS SET window (or the SHORT OPEN POS SET window) appears.

2. Select a gun No. by pressing the page key .

3. Select a position to register a gun stroke and press [MODIFY] + [ENTER].

9.8.1.3 Registering by entering a numerical value

 – The FULL OPEN POS SET window (or the SHORT OPEN POS SET window) appears.

2. Select a position to register a gun stroke.

3. Enter a numerical value, and press [ENTER].
9.8.1.4 Moving to Full-open/Short-open Position

 - The FULL OPEN POS SET window (or the SHORT OPEN POS SET window) appears.

2. Select a gun No. by pressing the page key .

3. Change the position by pressing repeatedly [3/FULL OPEN] or [-/SHORT OPEN].

 - While the SHOR OPEN POS SET window (or the FULL OPEN POS SET window) appears, the cursor moves each time [NEXT] is pressed.

9.8.1.5 Moving to Full-open/Short-open Position While Other Window is Displayed

By pressing [INTERLOCK] + [3/FULL OPEN] or [INTERLOCK] + [-/SHORTOPEN] while the control group of the gun axis is selected by the operation of pressing [SHIFT] + [EX. AXIS], the gun axis of the selected group moves to FULL OPEN or SHORT OPEN position.
9.8.2 Gun Change

This section explains the gun change function.

9.8.2.1 Gun Change Instruction

Remove or mount a gun with the GUNCHG (gun change) instruction.

<Example>

GUNCHG GUN#(1) PICK

A B

A. Gun No.
B. Designation of mounting or removing a gun

When "PICK (gun mounted)" is selected, the power supply of the gun motor is turned ON.
When "PLACE (gun removed)" is selected, the power supply of the gun motor is turned OFF.

9.8.2.2 Signal Status to Execute a GUNCHG Instruction

The signals must be in the status shown in the following table when executing a GUNCHG instruction.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Input/Output</th>
<th>Explanation</th>
<th>Signal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gun Identification Signal</td>
<td>Input (3 bits)</td>
<td>A binary signal to identify the gun number.</td>
<td>Agree with Gun No. 1)</td>
</tr>
<tr>
<td>Gun Connection (PICK) Confirmation Signal</td>
<td>Input</td>
<td>The signal to confirm that the gun is connected. Normally, a chucking confirmation signal of ATC is allocated.</td>
<td>ON</td>
</tr>
<tr>
<td>Gun Disconnection (PLACE) Confirmation Signal</td>
<td>Input</td>
<td>The signal to confirm that the gun is disconnected. Normally, an unchucking confirmation signal of ATC is allocated.</td>
<td>OFF</td>
</tr>
<tr>
<td>Gun Connection (PICK) Signal</td>
<td>Output</td>
<td>The signal to connect the gun. Normally, a chucking signal of ATC is allocated. (CHUCK = OFF, UNCHUCK = ON)</td>
<td>OFF</td>
</tr>
</tbody>
</table>

1 The signal must agree with the gun number as shown in the following example.

<When the gun identification signal (Start) is IN10, and the gun identification signal (End) is IN12:>

<table>
<thead>
<tr>
<th>Gun No.</th>
<th>IN10</th>
<th>IN11</th>
<th>IN12</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUN# (1)</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>GUN# (2)</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>GUN# (3)</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>GUN# (4)</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>GUN# (5)</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>GUN# (6)</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
The signals listed in the table above are confirmed when the DX100 control power supply is turned ON.

If the gun is connected, the servo power supply for the gun motor turns ON when the servo is turned ON.

If the gun is not connected, the servo power supply for the robot motor turns ON when the servo is turned ON, but the servo power supply for the gun motor does not turn ON.
9.8.2.3 Gun Change Job

The following example explains the gun change job.

<Example of I/O Allocation>

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>Output Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chucking confirmation</td>
<td>IN1</td>
</tr>
<tr>
<td>Unchucking confirmation</td>
<td>IN2</td>
</tr>
<tr>
<td>Coupling confirmation</td>
<td>IN3</td>
</tr>
<tr>
<td>Gun 1 presence LS</td>
<td>IN4</td>
</tr>
<tr>
<td>Gun 1 cover open limit</td>
<td>IN5</td>
</tr>
<tr>
<td>Gun 1 cover close limit</td>
<td>IN6</td>
</tr>
<tr>
<td>Gun identification signal</td>
<td>IN21</td>
</tr>
<tr>
<td>Gun identification signal</td>
<td>IN23</td>
</tr>
</tbody>
</table>

<Example of Mounting a Gun>

Job name: GUN 1 PICK

Control group: R1

NOP

MOVJ VJ=30 Moves to the standby position.
WAIT IN#(3)=OFF Confirms ATC uncoupling.
WAIT IN#(2)=ON Confirms ATC unchucking.
WAIT IN#(4)=ON Confirms Gun 1 presence.
DOUT OT#(2)=ON Opens Gun 1 cover.
WAIT IN#(5)=ON Confirms Gun 1 cover opened.

: MOVL V=500 Moves to the position which is just above the Gun 1’s placing table.
MOVL V=100 PL=0 Moves to the ATC coupling position.
WAIT IN#(3)=ON Confirms ATC coupling.
DOUT OT#(1)=OFF ATC chucking
WAIT IN#(1)=ON Confirms ATC chucking.
GUNCHG GUN#(1) PICK Turns ON the gun motor power.
TIMER T=0.2 Waits for 0.2 seconds.
MOVL V=1000 Lifts the Gun 1.

: WAIT IN#(4)=OFF Confirms Gun 1 absence.
DOUT OT#(2)=OFF Closes Gun 1 cover.
WAIT IN#(6)=ON Confirms Gun 1 cover closed.

: MOVJ VJ=30 Moves to the standby position.
END
<Example of Removing a Gun>
Job name: GUN 1 PLACE
Control group: R1

NOP
MOVJ VJ=30 Moves to the standby position.
WAIT IN#(3)=ON Confirms ATC coupling.
WAIT IN#(4)=OFF Confirms Gun 1 absence.
DOUT OT#(2)=ON Opens Gun 1 cover.
WAIT IN#(5)=ON Confirms Gun 1 cover opened.

MOVL V=500 Moves to the position which is just above the Gun 1's placing table.
MOVL V=100 PL=0 Moves to Gun 1 placing position.
WAIT IN#(4)=ON Confirms Gun 1 presence.
GUNCHG GUN#(1) PLACE Turns OFF gun motor power.
TIMER T=0.2 Waits for 0.2 seconds.
DOUT OT#(1)=ON ATC unchucking
WAIT IN#(2)=ON Confirms ATC unchucking.
MOVL V=1000 Disconnects the gun.

WAIT IN#(4)=ON Confirms Gun 1 presence.
DOUT OT#(2)=OFF Closes Gun 1 cover.
WAIT IN#(6)=ON Confirms Gun 1 cover closed.

MOVJ VJ=30 Moves to the standby position.
END

NOTE Be sure to confirm the unchucked status when moving an automatic tool changer to the chuck position.
9.8.2.4 Gun Changing Timing

The timing to change a gun is illustrated below.

- **Gun status**
- **Coupling confirmation**
- **Gun identification signal**
- **PICK/PLACE SOL**
- **Chucking confirmation**
- **Unchucking confirmation**
- **Gun-axis servo**

Diagram:

```
GUNCHG PICK  GUNCHG PLACE

PLACE

PICK

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

GUNCHG PICK  GUNCHG PLACE
```

- **Gun status**
- **Coupling confirmation**
- **Gun identification signal**
- **PICK/PLACE SOL**
- **Chucking confirmation**
- **Unchucking confirmation**
- **Gun-axis servo**

Diagram:

```
GUNCHG PICK  GUNCHG PLACE

PLACE

PICK

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

GUNCHG PICK  GUNCHG PLACE
```
9.8.3 Electrode Touch Position Teaching Function

If the fixed electrode position cannot be visually confirmed at teaching, register the position where the fixed electrode touches the workplace by moving the movable electrode to touch the workpiece.

9.8.3.1 Setting the Workpiece Thickness

- **Welding Diagnosis Window (Workpiece Thickness Setting)**

<table>
<thead>
<tr>
<th>A. STROKE</th>
<th>Shows the distance between electrodes at the touch position teaching. Pressing [SHIFT] + [ENTER] on the JOB window changes the value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. THICKNESS</td>
<td>Enter the thickness of workpiece to be welded.</td>
</tr>
<tr>
<td>C. TCP ADJUSTMENT STROKE</td>
<td>Shows the corrected distance of fixed electrode at the touch position teaching.</td>
</tr>
</tbody>
</table>
Operation

1. Select `{SPOT WELDING}` from the main menu.
2. Select `{WELDING DIAGNOSIS}`.

 - The SPOT WELD DIAGNOSIS window appears.

3. Select a gun No. by pressing the page key.
4. Select “THICKNESS”.

 DX100

9 Spot Welding Application Using a Motor Gun
9.8 Other Functions Using a Motor Gun
5. Enter a numerical value, and press [ENTER].

<table>
<thead>
<tr>
<th>SPOT WELD DIAGNOSIS</th>
<th>CURRENT</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP PLATE WIDTH</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NEAR-ADJUSTED SIDE</td>
<td>0.5 mm</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>NEAR-FIXED SIDE</td>
<td>0.0 mm</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>TOP ADJUSTMENT VALUE</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>GUN STROKE ADJUSTMENT</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>BASE ADJUSTED SIDE</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>BASE FIXED SIDE</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>STROKE</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>THICKNESS</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>THICKNESS DETECTION</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>TOP ADJUSTMENT STROKE</td>
<td>0.0 mm</td>
<td>0.0 mm</td>
</tr>
</tbody>
</table>
9.8.3.2 Registering and Confirming Positions by Touch Motion Teaching

1. Select {JOB} from the main menu.
2. Select {JOB}.

3. Move the manipulator to the welding position.
4. Move the movable electrode to touch the workpiece.
5. Press [SHIFT] + [ENTER].

- Press [SHIFT] + [ENTER] on the JOB window to make a correction in the tool coordinates Z+ axis direction.
- Press [FWD] to move the manipulator to confirm the corrected position that is actually registered.
- After having taught the position by pressing [SHIFT] + [ENTER], the manipulator correction amount can be confirmed on the SPOT WELD DIAGNOSIS window.
9.8.4 Forced Gun-pressurizing Function
Gun-pressure can be applied by inputting an external signal.

NOTE
Gun-pressure can be applied by an external signal for dry spotting only.
Welding cannot be carried out by an external signal.

9.8.4.1 Setting an Input Signal Number
1. Select (SPOT WELDING) from the main menu.
2. Select (GUN CONDITION).

![GUN CONDITION window](image)

– The GUN CONDITION window appears.
3. Select a signal number to be set.

NOTE

When the signal number “0” is selected, the forced gun-pressurizing function for dry spotting is disabled.

- **DRY SPOT(FILE)**
 - After the signal is input, pressurizing is started.
 - Pressure is applied according to the settings in the dry spotting pressure file specified by “Forced Pressure File No”.
 - The gun stops applying pressure after a specified time period.

- **DRY SPOT(CONTINUE)**
 - The signal input and pressurizing is started as well as the above, but pressurizing is continued during the signal input.
 - When the signal is turned OFF, the gun stops applying pressure.
9.8.5 Electrode Wear Compensation for Fixed Gun

The electrode wear for the fixed gun (the gun that is not mounted on the manipulator) can be detected and compensated in the following manner.

The wear amount of electrode for the fixed gun cannot be detected by the fixed sensor. Build a system so that the sensor can move into the fixed gun's motion range to detect the electrode wear.

9.8.5.1 Setting the User Coordinates

Set the user coordinate system with its zero-point located on the fixed electrode end.

The + direction of the Z-axis must be towards the movable electrode.

The DX100 has the External Reference Point Control Function (the function to execute teaching or playback operation with the manipulator TCP set to a point in space). If the direction of coordinates used for such External Reference Point Control Function is the same as that of the above coordinates, resetting the user coordinates is not required. (The coordinates set for the External Reference Point Control Function can be used.)
9.8.5.2 Parameters

Assign the numbers of user coordinates set for the guns.

For the gun mounted on the manipulator, set “0”. (Initial value: 0)

As for the wear-compensation user coordinates number for fixed gun (Gun 1), setting is possible with “WEAR COMPENSATION USER COORDINATE (FIXED GUN 1)” on the relevant window to the application.

When using 2 or more fixed guns, set the following parameters for setting the user coordinates.

Parameters

S2C338: Wear-compensation user coordinates number for fixed gun (Gun 1)
S2C339: Wear-compensation user coordinates number for fixed gun (Gun 2)
S2C340: Wear-compensation user coordinates number for fixed gun (Gun 3)
S2C341: Wear-compensation user coordinates number for fixed gun (Gun 4)
S2C342: Wear-compensation user coordinates number for fixed gun (Gun 5)
S2C343: Wear-compensation user coordinates number for fixed gun (Gun 6)
S2C344: Wear-compensation user coordinates number for fixed gun (Gun 7)
S2C345: Wear-compensation user coordinates number for fixed gun (Gun 8)
S2C346: Wear-compensation user coordinates number for fixed gun (Gun 9)
S2C347: Wear-compensation user coordinates number for fixed gun (Gun 10)
S2C348: Wear-compensation user coordinates number for fixed gun (Gun 11)
S2C349: Wear-compensation user coordinates number for fixed gun (Gun 12)

<Example>

Gun 1: Fixed gun, using the user coordinates #3 \(S2C338=3 \)
Gun 2: Fixed gun, using the user coordinates #5 \(S2C339=5 \)
9.8.5.3 Example of Wear Compensation

The workpiece and the gun stroke are adjusted according to the amount of electrode wear.

The step registered immediately before the SVSPOT instruction compensates for the amount of wear.

<Job Example>

MOVJ

MOVJ← In this position, wear compensation is done.

SVSPOT GUN#(1) PRESS#(1) WTM=1 WST=1

MOVJ

MOVJ

- **Note:** The workpiece is always shifted in the Z-axis – direction on the specified user coordinates. Therefore, be sure to register the position and direction of the user coordinates correctly. (Refer to section 9.8.5.1 “Setting the User Coordinates” on page 9-49.)
9.8.6 Clearance Teaching Function

9.8.6.1 Operation Flow Chart

With the clearance teaching function, by specifying the clearance for the upper tip or the lower tip of the motor gun, the position taught at the welding point is automatically offset for the clearance and registered.

The following shows the operation flow chart for the clearance teaching.

```
Start

Select the teaching type.

Select one of the followings:
- Teaching type 1: Lower-tip teaching
- Teaching type 2: Upper-tip teaching
- Teaching type 3: Gun-close teaching

Set the clearance file.

Set the clearance data of the followings:
- Upper-tip clearance distance
- Lower-tip clearance distance
- Board thickness (for the teaching types 1 and 2)

Teach the welding point.

Set the teaching data of the followings:
- Teaching position (Teaching)
- Moving speed
- Clearance file number
- Gun pressure conditions/
  Welding conditions

End
```
9.8.6.2 Setting the Teaching Type

The following three types of settings are available; the lower-tip teaching, the upper-tip teaching, and the gun-close teaching.

Follow the procedure to select one of the three types before teaching the welding point.

- Lower-tip teaching (inputting board thickness necessary)
- Upper-tip teaching (inputting board thickness necessary)
- Gun-close teaching (inputting board thickness unnecessary)

1. Select {SETUP} from the main menu.
2. Select {TEACHING COND.}.

- The TEACHING CONDITION SETTING window appears
3. Select \{CLEARENCE TEACHING METHOD\}.
 - Move the cursor to the lowest line “CLEARENCE TEACHING METHOD” and press \{SELECT\} to display the selection dialog box for the teaching methods to appear.

 - Three teaching methods are available.
 • UPPER TIP : Teaching with the upper tip contacting the workpiece
 • LOWER TIP : Teaching with the lower tip contacting the workpiece
 • GUN CLOSE : Teaching with both tips contacting the workpiece

4. Select the desired teaching method.
 - Press \{SELECT\} to change the method.
9.8.6.3 Setting the Clearance Files

In this section, setting procedures of various data for clearance files are explained.

- Set the board thickness in the clearance file before teaching the welding point when selecting “UPPER TIP” or “LOWER TIP” for the clearance teaching method.

- No need to set the board thickness in the clearance file before teaching the welding point in when selecting “GUN CLOSE” for the clearance teaching method.

- Up to 32 clearance files can be used.

1. Select (SPOT WELDING) from the main menu.

2. Select (CLEARANCE FSETTING).

- The following CLEARANCE SETTING window appears.

- Clearance teaching and operation condition can be set.

- There are three operation conditions.
 - MOVE&CLOSE
 - SQUARE
 - MOVE&OPEN
9.8 Other Functions Using a Motor Gun

- This file is a file to be specified by the clearance tag of move instruction. (Up to 32 conditions can be set.)

3. Select the desired item.

- {DISTANCE TO UPPER TIP}, {DISTANCE TO LOWER TIP}, and {THICKNESS} can be set by 1/10mm.

4. Input the value and press [ENTER].

- Position the cursor and press [SELECT] to enter the value.

- After entering each value, press [ENTER] to set the value.
9.8.6.4 Operations for Teaching Welding Points

The following describes the outline of the procedure for teaching the welding point.

1. Select {JOB} from the main menu.
2. Select {JOB}.

- The JOB CONTENT window appears.

When registering pressure instruction (SVSOPT, SVGUNCL, SVSPOTMOV), create a job which include the control group of the gun axis.

3. Press [SHIFT] + [MOTION TYPE] to display SVSPOTMOV.

- When executing clearance teaching and register it, display SVSPOTMOV by modification of interpolation type ([SHIFT] + [MOTION TYPE]).
- This can be done only while the manipulator is operating (while the robot switch LED indicator is lit.).

4. Edit the tag item of the instruction.
9.8 Other Functions Using a Motor Gun

5. Press [INSERT], then press [ENTER].

- The move instruction for clearance has been registered.

<table>
<thead>
<tr>
<th>JOB CONTENT</th>
<th>SET DIP</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONTROL GROUP: RT+RT</td>
<td>TOOL: 00</td>
<td></td>
</tr>
<tr>
<td>DX100 (DC)</td>
<td>SUBMIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVSPOTMOV (CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1 WGO=1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.8.6.5 Move Instruction for Clearance

The following describes the move instruction for clearance.

<Example>

SVSPOTMOV V=1000.0 PLIN=1 PLOUT=1 CLF#(1) GUN#(1)
PRESS#(1) WTM=1 WST=1 WGO=1

SVSPOTMOV : Move instruction for clearance
V=1000.0 : Linear moving speed for clearance (1000.0mm/s for this example)
PLIN=1 : Position level at the clearance position before hit
PLOUT=1 : Position level at the clearance position after hit
CLF#(1) : Clearance file number (file 1 for this example)
GUN#(1) : Motor gun number (Motor gun 1 is used for this example.)
PRESS#(1) : Pressure condition file number (Pressure condition file 1 is used for this example.)
WTM=1 : Welding condition number (Welding condition 1 is used for this example.)
WST=1 : Power Source start-up timing
WGO=1 : Welding condition group output (Refer to section 9.8 "Other Functions Using a Motor Gun" on page 9-35)
9.8.6.6 Moving for Clearance

The following describes moving operation for clearance.

- **When moving with positioning specified using PLIN**

Table 9-3: Job Example: Work 1

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>MOVJ VJ=100.0</td>
<td>→ A</td>
</tr>
<tr>
<td>0002</td>
<td>SVSPOTMOV V=1000.0 PLIN=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ B</td>
</tr>
<tr>
<td>0003</td>
<td>SVSPOTMOV V=1000.0 PLIN=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ C</td>
</tr>
<tr>
<td>0004</td>
<td>SVSPOTMOV V=1000.0 PLIN=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ D</td>
</tr>
<tr>
<td>0005</td>
<td>SVSPOTMOV V=1000.0 PLIN=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ E</td>
</tr>
<tr>
<td>0006</td>
<td>SVSPOTMOV V=1000.0 PLIN=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ F</td>
</tr>
<tr>
<td>0007</td>
<td>MOVL V=1000.0</td>
<td>→ G</td>
</tr>
<tr>
<td>0008</td>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Note: The alphabet letters on the right correspond to the ones in the following figure.

- Clearance file setting: 1
- PLIN = 0
- Distance to upper tip: 20.0mm
- Distance to lower tip: 10.0mm
- Board thickness: 2.0mm
When moving with positioning specified using PLOUT

Table 9-4: Job Example: Work 1

<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>MOVJ VJ=100.0</td>
<td>→ A</td>
</tr>
<tr>
<td>0002</td>
<td>SVSPOTMOV V=1000.0 PLOUT=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ B</td>
</tr>
<tr>
<td>0003</td>
<td>SVSPOTMOV V=1000.0 PLOUT=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ C</td>
</tr>
<tr>
<td>0004</td>
<td>SVSPOTMOV V=1000.0 PLOUT=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ D</td>
</tr>
<tr>
<td>0005</td>
<td>SVSPOTMOV V=1000.0 PLOUT=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ E</td>
</tr>
<tr>
<td>0006</td>
<td>SVSPOTMOV V=1000.0 PLOUT=0 CLF#(1) GUN#(1) PRESS#(1) WTM=1 WST=1</td>
<td>→ F</td>
</tr>
<tr>
<td>0007</td>
<td>MOVL V=1000.0</td>
<td>→ G</td>
</tr>
<tr>
<td>0008</td>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Note: The alphabet letters on the right correspond to the ones in the following figure.

Clearance file setting: 1
PLOUT = 0
Distance to upper tip : 20.0mm
Distance to lower tip : 10.0mm
Board thickness: 2.0mm
9.8.7 Teaching with Gun Pressure

With the teaching with gun pressure, the position is registered with pressure applied by the motor gun when teaching the position. This function is included in the clearance teaching function and valid only when “gun-close teaching” is selected for the clearance teaching type.

9.8.7.1 Operation Flow Chart

The following shows the operation flow chart for the gun pressure teaching.

```
Start

Select "Gun-close teaching" for clearance teaching type of teaching condition.

Set pressure conditions.

Move the manipulator to the welding point.

Apply pressure.

Register the position of the welding point.

Stop applying the pressure.

End

Refer to chapter 9.8.6 "Clearance Teaching Function" at page 9-49.
```
9.8.7.2 Procedure for Registering the Position

The following describes the procedure for registering the position.

Note that this function is a part of the clearance teaching function, and is available only when the clearance teaching type is the gun-close teaching.

1. Move the fixed tip until it contacts the workpiece and apply the pressure.
 - To apply the pressure, press [8] + [INTERLOCK].
 - For pressure conditions, the file number specified at “PRESS NO.” of the MANUAL SPOT window is used.
2. Confirm the pressure status and register the position.
 - SVSPOTMOV instruction appears in the input buffer line of the job input display while it is pressurized.
 In case it doesn’t appear, press [8] to change the indication.
 - The taught position is to be registered adding the compensation amount of wear of the gun axis. Yaskawa recommends that the pressure be applied with the gun axis not bent when teaching.
3. Stop applying the pressure.
 - Press [INTERLOCK] + [9] to release the gun axis.

9.8.7.3 Setting the Pressure Conditions

The following describes settings for the pressure conditions.

The pressure condition is set with the following file No. of (GUN PRESSURE FILE NO.)

Specify “FILE” at (PRESS CONDITION)

The following window can be displayed by pressing [0].
9.8.8 Gun Pressure Compensation Function

9.8.8.1 Operation Flow Chart

With the gun pressure compensation function, the gun pressure can be kept stable even when the motor gun posture changes.

The following shows the operation flow chart for the gun pressure compensation.

Start

Register the data for applying pressure downwards to the GUN CONDITION file.

Register the data for applying pressure upwards to the GUN COND.AUXILIARY file.

Teach the welding point.

End
9.8.8.2 Overview

The following describes outline of the gun pressure compensation function.

The pattern 1 is shown in the Fig. 9-2; applying pressure downwards, and the pattern 2 is shown in the Fig. 9-3; applying pressure upwards.

In the pattern 1, set the points (maximum twelve points) for the pressure-to-torque conversion value (see Fig. 9-5 “Pressure-to-torque Conversion (For Pattern 1)” on page 9-65) of GUN CONDITION file. With this twelve points data, the specified pressure is calculated by interpolation, and the motor torque for motor gun is calculated.

Fig. 9-2: Pattern 1 (Applying Pressure Downwards)

Fig. 9-3: Pattern 2 (Applying Pressure Upwards)
For the pattern 2 shown in Fig. 9-3 “Pattern 2 (Applying Pressure Upwards)” on page 9-64, the weight of the motor gun itself may cause deviation of pressure.
Using the gun pressure compensation function, by setting one pressure compensation value (see Fig. 9-6), the motor torque for motor gun is calculated using the pressure-to-torque conversion value of pattern 1 and the inclination of the Z-axis + on the tool coordinates at welding so that the pressure can be kept stable even when the welding posture changes. (See Fig. 9-7.)

Fig. 9-6: Pressure Compensation (For Pattern 2)

![Graph showing pressure compensation values for patterns 1 and 2.](image)

Fig. 9-7: Welding Posture

![Diagram showing welding posture with Z-axis + on the tool coordinates.](image)
9.8.8.3 Setting the Pressure Compensation Value

The following describes settings for pressure compensation value of pattern 2.

For details on the data registration of pattern 1; applying pressure downwards (settings for pressure-to-torque conversion value), refer to section 9.10 “System Setting” on page 9-118.

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN CONDITION}.

-- The GUN CONDITION window appears.
9.8 Other Functions Using a Motor Gun

3. Select {PRESSURE COMPENSATION}.

- By Specifying the pressure for compensation (0 to 9999N) at PRESSURE COMPENSATION, the pressure is compensated when the robot changes its posture.

- Press {SELECT} to input the value for compensation.

4. Press {ENTER} after inputting the value.
9.8.9 Workpiece Transfer Function Using a Motor Gun

9.8.9.1 Operation Flow Chart

With the workpiece transfer function, workpieces can be transferred using a motor gun.

While this function is used, the force control for grasping a workpiece and the tip wear compensation are available so that workpieces can be stably handled using a motor gun.

The following shows the operation flow chart for the workpiece transfer function.

Start

Set the conditions for grasping/releasing workpieces.

Teach the position.

Register workpiece grasping and releasing instructions.

End

Set pressure for grasping workpiece.
9.8.9.2 Setting the Conditions for Grasping/Releasing Workpieces

The PRESSURE file is used to set the conditions for grasping/releasing workpieces.

The following describes how to set the pressure to grasp a workpiece. Up to fifteen PRESSURE files can be used.

1. Select {SPOT WELDING} from the main menu.
2. Select {PRESSURE}.

– The PRESSURE window appears.
9.8 Other Functions Using a Motor Gun

- <Setting items>

• TOUCH SPEED
 Moving speed for dry spotting.
 Ratio to rated motor speed: 0 to 100%

• PRESS UNIT
 Specifies the dry spotting pressure in “N” or “%” (torque).
 When torque is specified, pressure is applied at the set torque value,
 and the torque-to-pressure conversion table is not referred to.

• TOUCH PRESS, PRESS (1ST TO 4TH)
 Sets the pressure (N) in each step.
 For conversion from the pressure (N) to the reference torque (%),
 the torque-to-pressure conversion table of the GUN CONDITION file
 is referred to. When “0” is set for the pressure, the pressure that has
 been set in the previous stage is applied to grasp the workpiece.

• TOUCH PRESS, TIME (1ST TO 4TH)
 Sets the time for applying pressure in each step.
 Setting range: 0.00 to 9.99 seconds
 Initial value: 0.00 seconds
 When “0.00” is set, this setting is ignored.

3. Select the desired item.

4. Input the value and press [ENTER].
9.8.9.3 Instruction for Grasping/Releasing Workpieces

<Example>

<table>
<thead>
<tr>
<th>SVGUNCL</th>
<th>GUN#(1)</th>
<th>PRESSCL#(1)</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

A. Instruction for grasping/releasing workpieces
B. GUN#(1)
Specifies the gun number to grasp the workpiece.
C. PRESSCL#(1)
Specifies dry spotting condition file (setting pressure for grasping workpiece) number.
D. ON
Specifies whether the workpiece is grasped (ON) or released (OFF).

1. Select {JOB} from the main menu.
2. Select {JOB}.
 - Job content window appears.

3. Press [INFORM LIST].
4. Select {DEVICE}.
 - Select [SVGUNCL] for the instruction of grasping.
5. Select {SVGUNCL} and press it twice.

- The following DETAIL window appears.
 For transferring workpieces, adding the transfer tag is required.

- When selecting "UNUSED" for {WEAR DETECT}, the following dialog box appears.

6. Edit the tag item of the instruction.

- Select {CONSTANT} from the dialog box.
 • ON: Grasps the workpiece
 • OFF: Release the workplace
7. Press [INSERT] and then press [ENTER].

 (1) The window returns to the JOB CONTENT window after pressing [ENTER].

 (2) The instruction can be inserted while LED indicator is lit by pressing [INSERT].
9.8.9.4 Manual Operation for Grasping/Releasing Workpieces

This section describes how to grasp/release workpiece by manual operation on the programming pendant.

With this operation, the workpiece can be easily grasped/released when teaching the position for transferring workpieces.

This operation can be performed only in the teach mode.

1. Make the fixed tip contact the workpiece to let the manipulator grasp the workpiece.
 - Press [8] + [INTERLOCK] to apply pressure.
 To set the pressure conditions, use the file number specified in {PRESS NO.} in the MANUAL SPOT window.

2. Releasing the Workpiece
 - Press [9] + [INTERLOCK] to release the gun axis.
9.8.10 Individual Reset Function for Wear Amount

9.8.10.1 Operation Flow Chart

With the individual reset function, the wear amount of the motor gun’s fixed/movable tip can be reset.

The following shows the operation flow chart for the individual resetting.

Start

Assign the reset signal for wear amount.

End

9.8.10.2 Procedure for Signal Assignment

The following describes the setting method of each signal so that the wear amounts on the fixed side and movable side can be reset individually.

I/O can be allocated in the GUN CONDITION window.

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN CONDITION}.

 – The GUN CONDITION window appears.
3. Select (RESET WEAR OF LOWER TIP).
 - Set the user input signal for clearing the wear amount.
 - When "0" is entered, "***" appears and the wear amount cannot be cleared by inputting the signal.
 The initial value is "0."

4. Enter the desired value.
9.8.11 Welding Conditions Group Output Function

9.8.11.1 Operation Flow Chart

With the welding conditions group output function, a group signal is output to the Power Source during welding.

The following shows the operation flow chart for the welding conditions group output function.

1. Select {SPOT WELDING} from the main menu.
2. Select {I/O ALLOCATION}.
 - The INPUT ALLOCATION window appears.

9.8.11.2 Procedure for Assigning the Group Output Relay

The following describes how to assign the signal number for group output when executing the SVSPOT instruction.

1. Select {SPOT WELDING} from the main menu.
2. Select {I/O ALLOCATION}.
 - The INPUT ALLOCATION window appears.
3. Select [DISPLAY] from the menu select and [ALLOCATE OUTPUT]

4. Select the desired item.

- Set {GROUP OUTPUT (START) / (GROUP OUTPUT (END))}.

Enter the LSB output number to start and MSB output number to end.

5. Input the numerical value and press [ENTER].
9.8.11.3 Setting the Group Output Tag

The following describes the settings for the pressure conditions.

When the job contents are displayed, by pressing [MOTION TYPE] + [SHIFT], the instruction in the input line can be switched from the normal motion interpolation (MOVJ, MOVL, MOVC, MOVS) to the clearance motion interpolation.

1. Select {JOB} from the main menu.
2. Select {JOB}.

 – The JOB CONTENT window is displayed.

3. Press [MOTION TYPE] + [SHIFT] to display “SVSPOTMOV” or “SVSPOT”.

 – The group output can be set either the following two instructions.
 • SVSPOTMOV
 • SVSPOT

4. Press [SELECT].
 – The cursor moves to “SVSPOTMOV” or “SVSPOT”

 – The DETAIL EDIT window appears.
6. Select {WELD GRP OUT}.

 – Press [SELECT] to display the selection dialog box. (The initial value is “UNUSED”.)

 (1) Select {WGO=}.

 (2) Set the output value.

7. Press [ENTER].

9.8.11.4 Group Output

"0" can be used as the initial number for group output.

Set AP parameter.

AxP031 (group output number setting)

AxP031=0 : group number range is from 1 to 16
AxP031=1 : group number range is from 0 to 15
9.8.12 Compensation of Gun Arm Bend for C-Gun and X-Gun (SINGLE ARM MOTION)

The gun arm bend at pressurizing can be compensated by the corrective manipulator motion.

Specify each compensation value (X, Y, Z directions of the tool coordinate) for the gun arm bent with the pressure of 1000N.

When K is the gun bend compensation coefficient (mm/1000N) and F is the gun pressure (N), the robot position is corrected in each coordinate direction of the tool for \((K \times F \div 1000) \) mm in synchronization with gun pressure.

9.8.12.1 Setting the Gun Bend Compensation Coefficient

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN CONDITION}.
 - The GUN CONDITION window appears.
3. Select a gun No. by pressing the page key.

Compensation motion in the tool Z+ direction for \((K \times F \div 1000) \) mm
4. Select “COEF. FOR GUN ARM BEND”.
 - COEF. FOR GUN ARM BEND
 Sets the compensation amount for gun arm bend per 1000N pressure.

5. Enter a numerical value, and press [ENTER].

 If “0” is entered, the gun bend compensation function will not be effective.

9.8.12.2 Compensation Example

The gun bend compensation operation is done by the robot when SVSPOT instruction is executed.

In case the robot is not included in the job control group, the gun bend compensation operation will not be executed.

<Example>

R1+S1 : Gun bend compensation executed
S1 : Gun bend compensation unexecuted

When 2.0 (mm/1000N) is specified for the gun bend compensation coefficient:

<table>
<thead>
<tr>
<th>Gun Pressure (N)</th>
<th>Gun Bend Compensation Amount (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>2.0</td>
</tr>
<tr>
<td>2000</td>
<td>4.0</td>
</tr>
<tr>
<td>3000</td>
<td>6.0</td>
</tr>
</tbody>
</table>
9.8.13 Gun Stroke Setting for Welding Start

At the execution of SVSPOT instruction, the gun can once be opened to a specified position before the touch motion starts.

9.8.13.1 Setting the Gun Stroke Position

SVSPOT GUN#(1) PRESS#(1) WTM=1 WST=1 BWS=10.0

A

A. Gun Stroke Value for Welding Start

At the execution of SVSPOT instruction, the gun is opened to a specified position. Then, the touch motion starts and the gun is closed to the pressurizing position.
When this item is omitted, the touch motion starts immediately at the SVSPOT instruction.
9.8.13.2 Setting the Gun Stroke Motion Speed

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN CONDITION}.
 - The GUN CONDITION window appears.

3. Select a gun No. by pressing the page key.

4. Select “STROKE MOVING VELOCITY”.
 - STROKE MOVING VELOCITY
 Sets the gun stroke motion speed under the SVSPOT instruction.

5. Enter a numerical value, and press [ENTER].
9.8.13.3 Motion Example

The below diagram shows an example of gun stroke motion in the following conditions:

The gun stroke position when the welding start is 10.0 mm; the gun stroke motion speed is 100.0%; and the touch motion speed is 20%.

![Diagram showing gun stroke motion](image)

9.8.14 Setting the Gun Pushing Coefficient

This setting is regarded as a part of clearance teaching function and it is available only when the clearance teaching method is “GUN CLOSE”.

By setting a value to the gun pushing coefficient, the position is registered after subtracting the pressure pushing value when teaching the pressure under “GUN CLOSE” setting.

By setting the gun pushing coefficient correctly, the contact point of the tip and the work can be registered as a teaching point regardless of the pressure during pressure teaching operation.

![Diagram showing gun pushing coefficient](image)
9.8.14.1 Setting of gun pushing coefficient

1. Select [SPOT WELDING] from the main menu.
2. Select [GUN CONDITION].
 - The GUN CONDITION window appears.

3. Set the value to [GUN PUSHING COEF.]
 - Set the value (0 to 10.0 [mm/1000N]) to the gun pushing coefficient to compensate the registering position when pressure is taught.
 - Press [SELECT] to input the numerical value.

4. Press [ENTER].
9.8.14.2 Calculation of Gun Pushing Coefficient

Set a pressure per 1000N [mm] to GUN PUSHING COEFFICIENT.

Fig. 9-8: Relation Between Pressure and Gun Axis Position [mm]

Following the relation mentioned above, calculate the change of gun axis position per 1000N pressure and set it to the GUN PUSHING COEF.

The GUN PUSHING COEFF. is set with [mm] unit.
9.8.15 **tip Mounting Control Function**

The cause of the pressure position error when pressure is applied can be sorted to two causes; tip wear and tip mounting error.

By handling the cause separately, the real wear volume of tip itself can be handled to decide the ideal replacing timing.
9.8.15.1 Tip Mounting Error Detection Flow Chart

- Mount a new tip
- Teach the manipulator moving positions
- Clear the reference position (See 9.10.3)
- Register the reference position of the fixed tip by dry-spotting touch motion. (See "Dry Spotting Touch Motion" in 9.7.2.1)
- Register the reference position of the movable tip by sensor detection. (See "Sensor Detection" in 9.7.2.2)
- Execute TWC-AE and TWC-BE
- Calculation of tip mounting error compensation. Clear the wear. 0.
- Execute welding
- Tip dressing
- Execute TWC-A and TWC-B
- Calculate the wear amount for movable and fixed tips.
 - When the wear amount is less than the allowable value
 - Output a signal to request tip replacement (only when specified)
- Replace the tip.
9.8.15.2 Tip Installation

The error for electrode mounting is displayed.

MEASURE MODE which switches wear detection and tip mounting error detection operations can be set.

When MEASURE MODE is ON, the difference from the reference position is calculated as a tip mounting error.

Tip Installation Window

- **A. GUN NO.**
 Shows the number of the gun.
 Select a gun number by pressing the page key.

- **B. TOUCH POS (NEW TIP)**
 The touch position while TWC-AE is executed (TWC-A is executed in MEASURE MODE) is indicated.

- **C. TOUCH POS (TWC-A)**
 The touch position of TWC-A or TWC-AE (TWC-A is executed regardless of MEASURE MODE is ON or OFF) is indicated.

- **D. INSTALLATION COEF. (LOWER TIP)**
 Shows the current mounting error of fixed electrode.

- **E. INSTALLATION COEF. (UPPER TIP)**
 Shows the current mounting error of movable electrode.

- **F. MEASURE MODE**
 This mode is used for specifying the wear detection operation (TWC-C or TWC-B).
9 Spot Welding Application Using a Motor Gun
9.8 Other Functions Using a Motor Gun

Operation
1. Select [SPOT WELDING] from the main menu.
2. Select [TIP INSTALLATION].

– TIP INSTALLATION window appears.

3. Select the gun number by pressing the [PAGE] key.
4. Set [MEASURE MODE].
 – Move the cursor to ON or OFF. The ON/OFF mode alternate each time pressing the select button.
 • MEASURE MODE ON: The function is set for tip mounting error detection (TWC-AE or TWC-BE).
 • MEASURE MODE OFF: The function is set for wear detection (TWC-A or TWC-B).
 – Tip mounting error detection (TWC-AE or TWC-BE) functions when executing wear detection (TWC-A or TWC-B) at ON status. Accordingly, the difference from reference position which is indicated on the welding diagnosis window is calculated as a tip mounting error. The wear is 0 cleared at this time.
9.8.15.3 Tip Mounting Error Detection

The method to execute the tip mounting error detection operation by dry spotting touch motion and by plate touch motion is described here.

The following two methods are for detecting the tip mounting error.

ON the MEASURE MODE on Tip Mounting Control Display

Apply this method when wear detection and tip mounting error detection are to be executed in the common job.

- **Dry spotting touch motion (TWC-A)**
 - Touch the fixed side and then, the movable side of the electrode to read the position.
 - Execute SVGUNCL. instruction for dry spotting touch motion operation.

 <Example>

 MEASURE MODE:ON (Tip Mounting Control Display)

 SVGUNCL GUN#(1) PRESSCL# (1)TWC-A

- **Plate touch motion (TWC-B)**
 - Bring the movable side of the electrode into contact with a plate and read its position.
 - Execute SVGUNCL. instruction for dry spotting touch motion operation.

 <Example>

 MEASURE MODE:ON (Tip Mounting Control Display)

 SVGUNCL GUN#(1) PRESSCL# (1)TWC-B
9.8 Other Functions Using a Motor Gun

Use the Specific Tag for Tip Mounting Error

- Dry spotting touch motion (TWC-A)
 Touch the fixed side and then, the movable side of the electrode to read the position.
 Execute SVGUNCL instruction for dry spotting touch motion operation.

<Example>
SVGUNCL GUN#(1) PRESSCL# (1)TWC-AE

- Plate touch motion (TWC-B)
 Bring the movable side of the electrode into contact with a plate and read its position.
 Execute SVGUNCL instruction for dry spotting touch motion operation.

<Example>
SVGUNCL GUN#(1) PRESSCL# (1)TWC-BE

9.8.15.4 Job Examples

<Job Example: (ON the MEASURE MODE)>

- Tip Mounting Error Detection
 A. MOVJ
 ON the MEASURE MODE on the TIP INSTALLATION window.
 B. SVGUNCL GUN#(1) PRESSCL#(1) TWC-A (Dry spotting Touch Motion)
 C. MOVJ
 D. MOVJ
 E. SVGUNCL GUN#(1) PRESSCL#(1) TWC-B (Against Plate Touch Motion)
 OFF the MEASURE MODE on the TIP INSTALLATION window.
 F. MOVJ
 Welding operation
Wear Detection
A'. MOVJ
B'. SVGUNCL GUN#(1) PRESSCL#(1) TWC-A (Dry spotting Touch Motion)
C'. MOVJ
D'. MOVJ
E'. SVGUNCL GUN#(1) PRESSCL#(1) TWC-B (Against Plate Touch Motion)
F'. MOVJ

<Job Example (Not in MEASURE MODE >

A. MOVJ
B. SVGUNCL GUN#(1) PRESSCL#(1) TWC-AE (Dry spotting Touch Motion)
C. MOVJ
D. MOVJ
E. SVGUNCL GUN#(1) PRESSCL#(1) TWC-BE (Against Plate Touch Motion)
F. MOVJ
Repeat the same series of operation after this.

9.8.15.5 Monitoring tip Mounting Errors
The following parameters can monitor the tip mounting error.
A1P56 : Electrode mounting error (absolute value) general output signal allocation
A1P57 : Absolute value threshold of electrode mounting error (movable side) [μm]
A1P58 : Absolute value threshold of electrode mounting error (fixed side) [μm]

<Example>
A case when the value of the parameters are as follows.
A1P56=5, A1P57=1000 and A1P58=2000
The general output signal 5 is output when either of the following condition meets.
The absolute value of movable electrode mounting compensation >= 1mm
The absolute value of fixed electrode mounting compensation >= 2mm

NOTE
The signal is not output when the value of the general signal allocation parameter (A1P56) and both A1P57 and A1P58 are 0.
9.8.16 Workpiece Thickness Detection Function

9.8.16.1 Outline

The workpiece thickness detection function monitors the thickness of workpiece to be welded every welding spot (hit point) at the SVSPOT instruction. This function does not, however, monitor the workpiece thickness when executing the SVGUNCL instruction.

An alarm occurs if the workpiece is missing.

![Diagram](image-url)
9.8.16.2 Instruction

The workpiece thickness detection function is only available in the SVSPOT instruction but unavailable in the SVSPOTMOV instruction.

SVSPOT (Spot Welding Instruction)
The SVSPOT instruction applies pressure to the gun and performs welding according to the specified welding condition number.

1. **GUN# ()**
 Gun condition file number

2. **PRESS# ()**
 Gun pressure file number

3. **WTM=**
 Welding condition number
 - Specifies the welding condition number which is output to the power source.

4. **WST=**
 Power source start signal output timing
 - Specifies the timing of output signal to start the power source.
 - Choose from the following three settings:
 1) Touch motion (WST=0)
 2) Pressure first time (WST=1)
 3) Pressure second time (WST=2)

5. **BWS=**
 Welding start gun stroke position
 - Specifies the stroke position to which the gun is opened at the execution of SVSPOT instruction.
 - Moves the gun to the position that has been adjusted according to the amount of electrode wear.
 - If the stroke position is not specified, starts the operation with speed control at the touch speed.
 - The gun operation speed is set by the gun condition file.
9 Spot Welding Application Using a Motor Gun
9.8 Other Functions Using a Motor Gun

6 TH=
Workpiece thickness (unit: mm) (Can be set by constant numbers:
-999.9 to 999.9 (the first decimal place is displayed).)
• In the thickness measure mode: the thickness value that has been
measured at playback is written.
• In the monitoring mode: At playback, the “TH” value is compared with
the measured workpiece thickness.

7 THA=
Allowable ratio of workpiece thickness (unit: %, 0 to 100)
• In the thickness measure mode: this condition is not used at the
execution of SVSPOT instruction.
• In the monitoring mode: this condition is used for the calculation of
workpiece thickness comparison, and allows for variations in % for
the specified workpiece thickness “TH”.

8 THM=
Allowable workpiece thickness (unit: mm, 0.0 to 10.0)
• In the thickness measure mode: this condition is not used at the
execution of SVSPOT instruction.
• In the monitoring mode: this condition is used for the calculation of
workpiece thickness comparison, and allows for variations (from
-THM to +THM) for the specified workpiece thickness “TH”.

...
9.8.16.3 Operational Procedure

- **Setting of Workpiece Thickness Monitoring**

 - Set the mode switch of programming pendant to the Teach mode.
 - Set the security mode to the Edit mode or Management mode to set job data.
 - In the Operation mode, only error contents reference is allowed.

1. Select {JOB}, then {JOB CONTENT} under the main menu.

 - The JOB CONTENT window appears.

![Image of JOB CONTENT window](image_url)
2. Set SVSPOT instruction.

 – Move the cursor to the “SVSPOT” data and press [SELECT].

 ![Image](image1)

 – Press [ENTER] again to display the DETAIL EDIT window.

 ![Image](image2)

 – Move the cursor to “THICKNESS” and press [SELECT]. Then, select “TH=” and press [ENTER].

 ![Image](image3)

 – Press [ENTER] again.

 * Returns to the JOB CONTENT window.
3. Set the workpiece thickness (TH).

- Move the cursor to “THICKNESS”, and press [SELECT].

- Enter a value (numeric value= 0.0), and press [ENTER].
4. Set the allowable workpiece thickness (THA, THM).
 - Set THA= 0 to 100 [%]
 (THA: Specifies the allowable range for the detected workpiece thickness by using a percentage.)
 or THM= 0.0 to 10.0 [mm]
 (THM: Specifies the allowable range for the detected workpiece thickness by using an absolute value).
 Move the cursor to "THICK RATIO", and press [SELECT].

 - Enter a value, and press [ENTER].
 (Value: Specify by a numeric value or I variable.)

 - Press [ENTER] again.
 * Returns to the JOB CONTENT window.
9.8 Other Functions Using a Motor Gun

Setting of Workpiece Thickness Measurement

Set the mode switch of programming pendant to the Play mode.

1. Set the mode switch of programming pendant to the Play mode.
2. Select {JOB}, then {JOB CONTENT} under the main menu.

- The JOB CONTENT window appears.

![Image of JOB CONTENT window]
3. Select {THICKNESS MEASURE} under {UTILITY}.

- “Thickness measure mode” appears in the message display area. The [THICKNESS MEASURE] key is displayed with an asterisk.

- General signal can be used to switch to the thickness measure mode.

- When using the general signal to switch to the thickness measure mode, set the following parameter.
 S4C522: Specifies the general input signal to switch to the thickness measure mode
 0: Switches to the thickness measure mode by using the programming pendant.
 1 to 2048: Switches to the thickness measure mode while the specified general signal is input.

- Note that when S4C522 is not 0, it is impossible to switch to the thickness measure mode by using the programming pendant.

- While above general signal is input, to switch again to the thickness measure mode after the mode is canceled by one of the operations described in “How to Cancel Thickness Measure Mode” on page 9-109, turn off then on the general signal.
4. Execute the job.

- The “TH” tag value of SVSPOT instruction will be rewritten with the workpiece thickness, the value when the pressure reaches the touch pressure, at each hit point. The following formula is used to calculate the “TH” value.

\[TH = \text{Touch pressure position (Pulse-to-stroke conversion value, mm)} \times 1 + \text{DMF (Fixed side wear amount + Movable side wear amount, mm)} + \text{BZ (Gun bending compensation coefficient (Z-direction)} \times \text{Touch pressure, mm)} \times 1 \]

*1: Refer to the gun condition file.

• The following parameter can decide whether to consider the gun bending compensation coefficient or not when measuring or monitoring workpiece thickness.

A1P59: Whether to consider the gun bend compensation coefficient or not when detecting workpiece thickness

0: Not consider
1: Consider

• Do not change the above parameter between when measuring and when monitoring. Detection cannot be performed properly.
Execution of Workpiece Thickness Monitoring

- Set the mode switch of programming pendant to the Play mode.
- Cancel the thickness measure mode.
 * Refer to “How to Cancel Thickness Measure Mode” on page 9-109.

If playback of a job is performed with the thickness measure mode canceled, the workpiece thickness measured at each hit point is compared with the value of “TH”, “THA”, or “THM” tag.

If the comparison result is not acceptable, the alarm “Thickness Error” occurs.

Use the following formula for comparison.

For THM tag:

[Acceptable Result]
\[TH - THM \leq \text{Touch pressure position} + \text{DMF} + \text{BZ} \leq TH + THM \]

[Not-Acceptable Result]
\[TH - THM > \text{Touch pressure position} + \text{DMF} + \text{BZ} \]

Or
\[\text{Touch pressure position} + \text{DMF} + \text{BZ} > TH + THM \]

For THA tag:

[Acceptable Result]
\[TH - (TH \times \text{THA} / 100) \leq \text{Touch pressure position} + \text{DMF} + \text{BZ} \leq TH + (TH \times \text{THA} / 100) \]

[Not-Acceptable Result]
\[TH - (TH \times \text{THA} / 100) > \text{Touch pressure position} + \text{DMF} + \text{BZ} \]

Or
\[\text{Touch pressure position} + \text{DMF} + \text{BZ} > TH + (TH \times \text{THA} / 100) \]
9.8.16.4 Related Functions

- **I/O Output at Thickness Measure Mode**
 In the thickness measure mode, “1” is output to the general output that has been stored in the parameter “S4C168”. For example, if the parameter S4C168 is 20 (S4C168=20), “1” is output to “OUT20”. This parameter can be used to stop welding in the thickness measure mode.

- **Canceling Thickness Monitoring**
 While the general input signal specified to the following parameter is input, the workpiece thickness monitoring function is canceled, and the same operation is performed as when the TH tag is unused.

 S4C523: Cancels workpiece thickness monitoring
 0: Not used
 1 to 2048: When the specified general signal is input, the workpiece thickness monitoring function is canceled.

- **Display of Measured Thickness**
 - The measured thickness is displayed in mm on the “SPOT WELD DIAGNOSIS” window.
 - The latest measured thickness is always displayed on the window.
 - Even if the power to the controller is turned OFF, the measured thickness value will remain.

1. Select {SPOT WELDING} under the main menu, then select {WELD DIAGNOSIS}.

![Display of Measured Thickness](image-url)
How to Cancel Thickness Measure Mode

1. Cancel the thickness measure mode, then switch to the monitoring mode.

 – Performing one of the following operations cancels the thickness measure mode and switches to the monitoring mode:

 1) END operation at Playback
 2) Switching to Teach Mode
 3) Canceling [THICKNESS MEASURE] from the menu
9.8.16.5 Notes

1. After a series of teaching operations, it is recommended that the “TH” tag of SVSPOT instruction be specified immediately before thickness measurement.
 If the “TH” tag is specified before that, the alarm “Thickness Error” may occur during test operation, which results in less operating efficiency.

2. The value of measured workpiece thickness is affected by the delay of measurement timing and gun bend at the touch motion. Therefore, an absolute accuracy cannot be guaranteed.
 The faster the touch speed becomes and the more the touch pressure increases, the bigger the error will be. If the pressure specified in the thickness measure mode is equal to that of the monitoring mode, the absolute accuracy will be approximately 1 mm or less.

3. The value of measured workpiece thickness is calculated as follows:
 finding the touch motion position by using the pulse value at touch motion according to the pulse-to-stroke conversion table registered in the gun condition file, then adding the total wear amount to the touch motion position.
 Thus, the value is affected by the previous information registered in the gun condition file.

Value of measured workpiece thickness
= Touch motion position + Total wear amount
 + Gun bending compensation coefficient (Z-direction)
 × Touch pressure
9.9 I/O Signals for a Motor Gun

9.9.1 I/O Allocation

The I/Os necessary for welding for each type of Power Source can be allocated to user I/O signals.

The validity of the following signals can be validated in the PSEUDO INPUT SIGNAL window.

- TMR COOL WTR ERR (timer cooling water error)
- GUN COOL WTR ERR (gun cooling water error)
- TRANSTHERMO ERR (transformer thermostat error)
- WELD ON/OFF (welding ON/OFF)

9.9.1.1 INPUT ALLOCATION Window

1. Select {SPOT WELDING} from the main menu.
2. Select {I/O ALLOCATION}.

- The INPUT ALLOCATION window appears.
3. Select the signal No. to be set.
 – The number can now be entered.

4. Enter the numerical value and press [ENTER].
9.9.1.2 OUTPUT ALLOCATION Window

1. Select {SPOT WELD} from the main menu.
2. Select {I/O ALLOCATION}.

– The INPUT ALLOCATION window appears.

3. Select {ALLOCATE INPUT} on the INPUT ALLOCATION window.

– The OUTPUT ALLOCATION window appears.
4. Select the operation to be set.
 - The number can now be entered.

![Output Allocation Table]

5. Enter the numerical value and press [ENTER].

NOTE

- Be sure that the allocated user signals are not used in the job. If the duplicated signals are used in the job, malfunctions will result.
- If the WELDING CONDITION PARITY is set, the parity signal is automatically output when the welding conditions are output. The odd/even parity is set with a parameter.
9.9.1.3 PSEUDO INPUT SIGNAL Window

1. Select {IN/OUT} from the main menu.
2. Select {PSEUDO INPUT STG}.

 - The PSEUDO INPUT SIGNAL window appears.

3. Move the cursor to the signal whose validity/invalidity is to be set, and press [INTERLOCK] + [SELECT].

 - Each time [INTERLOCK] + [SELECT] are pressed, “○ (invalid)” and “● (valid)” alternately appear.
9.9.2 Allocated Signals

Table 9-5: Input Signals to DX100

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
<th>To</th>
<th>Standard Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELD COMPLETE</td>
<td>Shows that the Power Source completed the welding normally. Used as a confirmation signal for welding instruction and manual spot welding. After this signal is input, the welding sequence is completed, and the operation moves to the next step.</td>
<td>Power Source</td>
<td>IN13</td>
</tr>
<tr>
<td>TMR COOL WTR ERR</td>
<td>Monitors an abnormal state of the cooling water for the timer Power Source. When this signal is input, an alarm occurs to stop the manipulator. The servo power supply stays ON.</td>
<td>Cooling water flow switch</td>
<td>IN9</td>
</tr>
<tr>
<td>GUN COOL WTR ERR</td>
<td>Monitors an abnormal state of the cooling water for the gun. When this signal is input, an alarm occurs to stop the manipulator. The servo power supply stays ON.</td>
<td>Cooling water flow switch</td>
<td>IN10</td>
</tr>
<tr>
<td>TRANS-THERMO ERR</td>
<td>This alarm signal from the gun transformer is input directly into the DX100. This signal is normally ON (normally closed) and when it is OFF, an alarm occurs. The servo power supply stays ON.</td>
<td>Gun transformer</td>
<td>IN11</td>
</tr>
<tr>
<td>WELD ON/OFF (from PLC)</td>
<td>Inputs the WELD ON/OFF selector switch status from a PLC such as the interlock board. The WELD ON/OFF signal is output to the Power Source according to this signal and the manipulator status. When this signal is input (ON), the Power Source is turned OFF, and spot welding is not done.</td>
<td>Interlock board, etc.</td>
<td>CN12-B6</td>
</tr>
</tbody>
</table>
Table 9-6: Output Signals from DX100

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
<th>To</th>
<th>Standard Setting</th>
</tr>
</thead>
</table>
| WELDING CONDITION (LEVEL signals) | Sets the welding conditions for the Power Source.
• The output format can be set as binary or discrete (bit number.)
• Can handle up to 255 conditions. The most significant bit is the parity bit when specified. | Power Source | 4 bits from OUT11 OUT19 OUT20 OUT21 OUT21 |
| 1 (1) | | | Not used |
| 2 (2) | | | |
| 4 (3) | | | |
| 8 (4) | | | |
| 16 (5) | | | |
| 32 (6) | | | |
| 64 (7) | | | |
| 128 (8) | | | |
| WELDING CONDITION PARITY | | | |
| WELDING COMMAND | Outputs the start command to the Power Source. This command is NOT necessary for the Power Sources which use the WELDING CONDITION signal as a start signal. | Power Source | Not used |
| WELDING ERROR RESET | Resets the error status in the Power Source. Outputs by programming pendant operation. | Power Source | OUT18 |
| WELD ON/OFF | Outputs the robot status added to the status of signals input from the interlock board. | Power Source | OUT17 |
9.10 System Setting

The items to be determined at the system setting, such as the gun and the Power Source, are specified in the system setting files.

9.10.1 Gun Condition File

The gun characteristics are specified in the gun condition file.

- **Operation**

1. Select {SPOT WELDING} from the main menu.
2. Select {GUN CONDITION}.

 - **GUN CONDITION window appears.**

3. Select a gun No. by pressing the page key .
4. Select the item to be set.

5. Enter the numerical value, and press [ENTER].
Gun Condition Window

A. GUN NO.
Shows the No. of the gun to be used.
When using two guns or more, select the No. by pressing the page key.

B. SETTING
Shows whether the gun condition file has been set or not. For the file where the values have not been entered, “NOT DONE” appears, while for the file where the values have already been entered, “DONE” appears.

C. GUN TYPE
Shows the gun type. Select from “C-GUN”, “X-GUN (SINGLE ARM MOVE)” and “X-GUN (DOUBLE ARM MOVE)”.

D. POWER SOURCE NO.
Shows the No. of the connected Power Source.

E. TORQUE DIR
Specifies the pressure direction of the gun axis motor. When the direction to increment the motor encoder value and the pressure direction of the gun are the same, select “+”. When they are different, select “-“.
F. PULSE, STROKE
Shows the relationship between the encoder pulse value of the gun axis motor and the gun stroke. The pulse value for the specified gun stroke can be calculated by interpolation of these values.

G. TORQUE, PRESSURE
Shows the relationship between the gun axis motor torque and the electrode pressure. The torque value for the specified pressure can be calculated by interpolation of these values.

H. MAX PRESSURE
Enter the maximum pressure that the gun can apply.
If the value specified by the pressure file exceeds it, an alarm occurs when accelerated.

I. TOUCH DETECTIVE DELAY TIME
Shows the delay time from the start of the touch motion to the start of the touch motion detection for the SVSPOT and SVGUNCL instruction.

J. TOUCH SPEED THRESHOLD
Shows the gun axis motor speed to detect that the pressure reaches the touch pressure for SVSPOT and SVGUNCL instruction.

K. WEAR DETECTIVE SENSOR DIN NO.
Shows the direct IN No. where the signal from the sensor to be used for wear detection is input.

L. WEAR RATIO (FIXED SIDE)
Shows the fixed side electrode wear ratio to the total wear amount detected in the wear detection operation.

M. FIXED OFFSET
Shows the fixed side electrode shift amount executed at the time of the wear compensation. Substitute the value when the fixed side electrode is to be shifted in one direction at spot welding.

N. WEAR DETECT SENSOR POLARITY
Shows the polarity of the signal from the sensor used for the wear detection.
“ON → OFF”: Normally ON. OFF when the electrode reaches the sensor.
“OFF → ON”: Normally OFF. ON when the electrode reaches the sensor.

O. MOVEMENT RATIO AFTER CLOSE (LOW) (displayed only when “X-GUN (DOUBLE ARM MOVE)” is selected)
Shows the lower electrode movement ratio when the gun closes more by the electrode wear. Enter 60% when the ratio of upper electrode movement: the lower electrode movement = 4:6.

P. MOVEMENT RATIO IN SENSING (UP) (displayed only when “X-GUN (DOUBLE ARM MOVE)” is selected)
Shows the ratio when the upper side electrode passes the sensor, for detecting the upper side electrode wear using a sensor. Enter 70% when the ratio of the upper side electrode movement: the lower side electrode movement = 7:3.

Q. STROKE MOVING VELOCITY
Specify the motion velocity of welding start stroke, etc. (BWS specified value) when welding instruction (SVSPOT instruction) is executed.
Refer to section 9.8.14 “Setting the Gun Pushing Coefficient” on page 9-87 for the details.

R. GUN ARM BEND COEF.
Set the gun arm bend compensation volume over the pressure of 1000N.
Refer to section 9.8.13 “Gun Stroke Setting for Welding Start” on page 9-85 for the details.
9.10 System Setting

S. PRESSURE COMPENSATION
When applying pressure upwards, set the difference of pressure between that of downwards.
Refer to section 9.8.8 "Gun Pressure Compensation Function" on page 9-63 for the details.

T. RESET WEAR OF LOWER TIP
Set "WEAR(FIXED SIDE) CURRENT VALUE" on SPOT WELD DIAGNOSYS window to 0 by the specified user input.

U. RESET WEAR OF UPPER TIP
Set "WEAR(MOVABLE SIDE) CURRENT VALUE" on SPOT WELD DIAGNOSYS window to 0 by the specified user input.

V. GUN PUSHING COEF
Set the gun axis pushing volume per 1000N.
Refer to section 9.8.15 "tip Mounting Control Function" on page 9-90 for the details.

W. LIMIT OF TOUCH (LOWER TIP)
Set the fixed electrode allowable range for touch motion detection position when pressurizing.

X. LIMIT OF TOUCH (UPPER TIP)
Set the movable electrode allowable range for touch motion detection position when pressurizing.

Y. DRY SPOT (FILE)
Execute dry spotting by the specified user input.
Pressure is released after pressurized at the pressure position which is specified by a file in accordance with the dry spotting pressure file.

Z. DRY SPOT (CONTINUE)
Execute dry spotting by the specified user input.
Pressure follows the dry spotting pressure file which is specified by the DRY SPOT FILE NO.
Pressurizes when the signal is ON and releases when it is OFF.

a. DRY SPOT FILE NO.
Specifies the dry spotting file no. used when forced gun-pressurizing.

b. TIP HIT COUNT RESET
Clears the tip hit count by the specified user input.

c. WEAR VOLUME OVER (FIXED)
ON the specified user input when "WEAR(FIXED SIDE) CURRENT VALUE" exceeds the "FIXED ELECTRODE ALLOWABLE RANGE" after the measurement of wear.

d. WEAR VOLUME OVER (MOVABLE)
ON the specified user input when "WEAR(MOVABLE SIDE) CURRENT VALUE" exceeds the "MOVABLE ELECTRODE ALLOWABLE RANGE" after the measurement of wear.

e. HIT POINT COUNT OVER
By the SVSPOT instruction, ON the specified user input when "HIT POINT CURRENT VALUE" exceeds the "HIT POINT ALLOWABLE RANGE".
9.10 System Setting

9.10.1 Entering Pulse to Stroke Conversion Data
To specify the gun stroke in mm, enter data about the relationship between the gun axis motor encoder pulse value and the gun stroke (mm).

Follow the procedures explained below.
Up to 8 items of data can be entered.
1. Set the applicable gun stroke by a jog operation with the programming pendant.
 - Read the pulse value of the gun axis motor encoder on the programming pendant.
2. Repeat the steps 1 for 8 points in total.
 - When the relationship between two values are known from the machine drawing, calculate the data for the 8 points.
3. Enter the obtained data of 8 points in "PULSE" and "STROKE" in the gun condition file.

9.10.2 Entering Torque to Pressure Conversion Data
To specify the pressure in N, enter data about the relationship between the gun axis motor torque (%) and the pressure (N).

Follow the procedures explained below.
Up to 8 items of data can be entered.
1. Set the pressure in the dry spotting pressure file.
 - Specify the pressure units as "Torque (%)".
2. Register SVGUNCL instruction in a job.
 - Specify the dry spotting pressure file set in step 1.
3. Execute the job and measure the gun pressure with a pressure gauge.
4. Repeat steps 1. to 3. with a different pressure each time to obtain 8 items of data for the torque and the pressure.
5. Enter the obtained data of 8 points in "TORQUE" and "PRESSURE" in the gun condition file.

When the gun condition file has not been set, the pressure cannot be applied.
When applying the pressure for the first time, set any value in the gun condition file.
9.10.2 Power Source Condition File

Specify the Power Source characteristics in the Power Source condition file.

1. Select {SPOT WELDING} from the main menu.
2. Select {SPOT POWER SOURCE COND.}.

3. Select a Power Source No. by pressing the page key.
4. Select the item to be set.
5. Enter a numerical value, and press [ENTER].
Power Source Start Timing

- When the welding instruction output type is set to “LEVEL”:

 - When WST=0
 - When WST=1
 - When WST=2
9.10 System Setting

- When the welding instruction output type is set to “PULSE”:

 - When WST=0
 - Welding timer condition
 - Welding instruction
 - Welding completion

 - When WST=1
 - Welding timer condition
 - Welding instruction
 - Welding completion

 - When WST=2
 - Welding timer condition
 - Welding instruction
 - Welding completion
• When the welding instruction output type is set to “START SIGNAL”:

- When WST=0
 - Welding timer condition
 - Welding instruction

- When WST=1
 - Welding timer condition
 - Welding instruction

- When WST=2
 - Welding timer condition
 - Welding instruction
9.10.3 Clearing Reference Position Pulse for Wear Detection

The reference position pulse to be used for wear amount detection is registered as internal data.

When the motion for wear detection is changed, this value should be cleared.

1. Select {SPOT WELDING} from the main menu.
2. Select {WELD DIAGNOSIS}.

– The WELD DIAGNOSIS window appears.

3. Select a gun No. by pressing the page key .
4. Select {CLEAR ORG POS} in {DATA} menu.
5. Select “YES”.

![Diagram of a graphical user interface with options for setting parameters such as current, tolerance, and data management.]
9.10.4 Setting the Software Limit Value

For motor guns, the position where the new electrodes touch each other is set as the zero-point (pulse = 0), and the pulse software limit is set on this zero-point position.

When correcting the position for the compensation of the detected amount of electrode wear, modifying the pulse soft limit value is necessary because the gun is closed more than the zero-position.

<Setting Example>

The touch position of new electrodes is set as the zero-point.

When electrodes are worn out, they do not reach the touch position (zero-point.)

Modify the software limit value so that the electrodes reach the touch position.

Parameters

S1CxG400: Pulse software limit (+ side)
S1CxG408: Pulse software limit (- side)

<Example>

When S1CxG400=50000 and S1CxG408=0:

The motor gun moves in the range 0 to 50,000 pulses.

To move the electrodes to the touch position when the electrodes are worn out, set -3,000 for S1CxG408 so that the motor gun moves in the range -3,000 to 50,000 pulses.

When setting the value for S1CxG408, consider the pulse amount equivalent to the total of maximum wear amounts of two electrodes and the gun axis bend when maximum gun pressure is applied.
9.10.5 Setting the Lost-electrode Detection Value

The gun-axis pulse can be monitored to output the signal when an electrode of motor gun is detached.

<Setting Example>

The signal is output when the shank moves out of its normal motion range because an electrode is detached.

Parameters

S2C003=10 (S1 (gun-axis) uses Interference 1.)
S2C067=0 (Monitors pulses.)
S3C664=3000, S3C072=10000 (The signal is output in the range of 3000 to 10000.)
9.11 Instruction List

< > indicates numeric or alphabetical data.

If multiple items are shown in one section, select one of the items.

<table>
<thead>
<tr>
<th></th>
<th>Function</th>
<th>Additional Items</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVSPOT</td>
<td>Applies gun pressure and executes welding.</td>
<td>GUN#
(<Gun 1 condition file No.>)</td>
<td>1 to 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRESS#
(<Gun 1 pressure file No.>)</td>
<td>1 to 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTM=
<Gun 1 welding conditions></td>
<td>1 to 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WST=
<Power Source start timing></td>
<td>0 to 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUN#
(<Gun 2 condition file No.>)</td>
<td>1 to 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRESS#
(<Gun 2 pressure file No.>)</td>
<td>1 to 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTM=
<Gun 2 welding conditions></td>
<td>1 to 255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WST=
<Power Source start timing></td>
<td>0 to 2</td>
</tr>
<tr>
<td>Example</td>
<td>MOV L V=1000
SVSPOT GUN#(1) PRESS#(1) WTM=1 WST=1
M O V L V=1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Function</th>
<th>Additional Items</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVGUNCL</td>
<td>Applies gun pressure.</td>
<td>GUN#
(<Gun 1 condition file No.>)</td>
<td>1 to 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRESSCL#
(<Dry spotting pressure file No.>)</td>
<td>1 to 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TWC-A
TWC-B
TWC-C</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>MOV L V=1000
SVGUNCL GUN#(1) PRESSCL#(1)
M O V L V=1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Function</th>
<th>Additional Items</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GUNCHG</td>
<td>Mounts or removes a gun.</td>
<td>GUN#
(<Gun condition file No.>)</td>
<td>1 to 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PICK
PLACE</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>GUNCHG GUN#(1) PICK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10 Arc Welding Application

10.1 System Structure Example of Arc Welding System

Fig. 10-1: System Structure of Welding Robot
10.2 General Descriptions of Instructions and Functions

10.2.1 Setup

Connect peripheral devices.

- Wire inching function (See section 10.3 “Function Keys” on page 10-5).
- Gas flow control function (See section 10.3 “Function Keys” on page 10-5).

Setup the Power Source.

See section 10.4 “Power Source Condition File” on page 10-11.

10.2.2 Teaching Operation

Teach a welding line.

Register work instructions.

- ARCON section 10.5.1 “ARCON” on page 10-22
- ARCOF section 10.5.2 “ARCOF” on page 10-34
- ARCSET section 10.5.3 “ARCSET” on page 10-47
10.2 General Descriptions of Instructions and Functions

Set welding conditions.
- Arc welding start condition section 10.5.1 “ARCON” on page 10-22
- Arc welding end condition section 10.5.2 “ARCOF” on page 10-34

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>NOP</td>
</tr>
<tr>
<td>001</td>
<td>MOVJ VJ=10.00</td>
</tr>
<tr>
<td>002</td>
<td>MOVJ VJ=80.00</td>
</tr>
<tr>
<td>003</td>
<td>MOVL V=800</td>
</tr>
<tr>
<td>004</td>
<td>ARCON ASF#(1)</td>
</tr>
<tr>
<td>005</td>
<td>MOVL V=50</td>
</tr>
<tr>
<td>006</td>
<td>ARCSET AC=200 AVP=100</td>
</tr>
<tr>
<td>007</td>
<td>MOVL V=50</td>
</tr>
<tr>
<td>008</td>
<td>ARCOF AEF#(1)</td>
</tr>
<tr>
<td>009</td>
<td>MOVL V=800</td>
</tr>
<tr>
<td>010</td>
<td>MOVJ VJ=50.00</td>
</tr>
<tr>
<td>011</td>
<td>END</td>
</tr>
</tbody>
</table>

Set other welding functions.
- Weaving section 10.12 “Weaving Condition File” on page 10-100
- Arc retry function section 10.6 “Arc Retry Function” on page 10-73
- Arc restart function section 10.7 “Arc Restart Function” on page 10-75
- Wire-stick check function section 10.9 “Wire-stick Check Function” on page 10-81
- Automatic wire-stick release function section 10.8 “Automatic Wire-stick Release Function” on page 10-79
- Slope up/down function section 10.10 “Slope Up/Down Function” on page 10-82
10.2 General Descriptions of Instructions and Functions

10.2.3 Playback

Fine-control the welding conditions.
- Changing welding conditions during playback section 10.13 “Changing Welding Conditions During Playback” on page 10-120
- Arc monitor function section 10.16 “Arc Monitor Function” on page 10-130

10.2.4 Production (Automatic Operation)

Control the arc welding operation.
- Check for welding errors section 10.14 “Displaying Welding Alarm History” on page 10-125
- Arc welding management and maintenance section 10.15 “Arc Welding Management and Maintenance” on page 10-127
- Welding condition check section 10.16 “Arc Monitor Function” on page 10-130

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>MOVJ VJ=10.00</td>
<td>Standby position</td>
</tr>
<tr>
<td>002</td>
<td>MOVJ VJ=80.00</td>
<td>Approach position</td>
</tr>
<tr>
<td>003</td>
<td>MOVL V=800</td>
<td>Welding start point</td>
</tr>
<tr>
<td>004</td>
<td>WVON WEV#(1)</td>
<td>Weaving start</td>
</tr>
<tr>
<td>005</td>
<td>ARCON ASF#(1)</td>
<td>Welding start</td>
</tr>
<tr>
<td>006</td>
<td>MOVL V=50</td>
<td>Welding condition change</td>
</tr>
<tr>
<td>007</td>
<td>ARCSET AC=200 AVP=100</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>MOVL V=50</td>
<td>Welding end point</td>
</tr>
<tr>
<td>009</td>
<td>ARCOF AEF#(1)</td>
<td>Welding end</td>
</tr>
<tr>
<td>010</td>
<td>WVOF</td>
<td>Weaving end</td>
</tr>
<tr>
<td>011</td>
<td>MOVL V=800</td>
<td>Retract position</td>
</tr>
<tr>
<td>012</td>
<td>MOVJ VJ=50.00</td>
<td>Standby position</td>
</tr>
<tr>
<td>013</td>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Check the operation.
- Test operations (See section 3.8 “Test Operations” on page 3-70).
- Welding execution function during teach mode section 10.5.7 “Welding Execution Function During Teach Mode” on page 10-71
10.3 Function Keys

Each function used for spot welding is allocated on the Numeric keys of the programming pendant.

- Registers a timer instruction “TIMER” in a job.

- Registers a reference point “REFP” in a job, or modifies the registered reference point.

 \[\text{[REFP]} + \text{[FWD]} \]

 Moves the manipulator to the registered reference point.

- Registers a welding start instruction “ARCON”.

- Registers a welding end instruction “ARCOFF”.

- Use this key to control the gas flow.
 Gas is fed only while [GAS] is pressed.
 (Refer to section 10.3.3 “Gas Flow Control Function” on page 10-10.)
10.3 Function Keys

Used for wire inching. Press [FEED] to feed the wire, and press [RETRACT] to retract the wire. While these keys are pressed, the wire feed motor operates.

Three speed levels are available for wire feeding:
- [FEED]: Slow
- [FEED] + [FAST]: Medium
- [FEED] + [HIGH SPEED]: Fast

Two speed levels are available for wire retraction:
- [RETRACT]: Slow
- [RETRACT] + [HIGH SPEED]: Fast

(Refer to section 10.3.2 “Wire Inching Function” on page 10-10.)

Modifies the welding current/voltage while welding during the play mode.

Press [3/CUR/VOL] to increase the current/voltage value, and press [-/CUR/VOL] to decrease the current/voltage value.

(Refer to section 10.13 “Changing Welding Conditions During Playback” on page 10-120.)

When the security mode is the management mode, press this key to light the LED and welding can be performed during the test run. Use this key for welding check during teaching.

* When [WELD ON/OFF] is pressed and the LED is lit, a beep is sounded.

Changes the type of movement for the manipulator when teaching a coordinated job. Each time this key is pressed, the movement type changes.

SYNCRO: The mark for “synchronized” appears in the status display area. When the master side is moved, the slave side will follow the movement of the master.

SINGLE: Only the selected group axis moves.

- Wire retraction, high-speed inching, or high-speed retraction cannot be performed depending on the Power Source.

- The function key is not available if the window (subject of key operation) is active while arc start cond. or arc end cond.window is displayed.
10.3 Function Keys

10.3.1 Switching of the Function Key

Function keys can be switched between for spot welding (motor gun) use and for arc welding use by following the procedures below:

10.3.1.1 Two-Robot System

1. Select a robot job for SPOT welding (motor gun).
 (CONTROL GROUP: R1 + S1)
 - Keys change for spot welding (motor gun) use automatically.
 - (ARC/SPOT) icon on the main menu changes to (SPOT).

2. Select a robot job for ARC welding.
 (CONTROL GROUP: R2)
 - Keys change for arc welding use automatically.
 - (ARC/SPOT) icon on the main menu changes to (ARC).
10.3.1.2 Single-Robot System

Function keys can be switched between for spot welding (motor gun) use and for arc welding use on APPLI SELECT window.

1. Select {ARC/SPOT} under main menu.

2. Select {APPLI SELECT}.
 - APPLI SELECT window appears.
 - This window also appears by selecting [INTERLOCK]+[ROBOT].

3. Select {MOTOR GUN}.
 - Move the cursor to {MOTOR GUN} and press [SELECT], then the function keys become valid for SPOT welding (motor gun) use.
 - {ARC/SPOT} icon on the main menu changes to {SPOT}.
4. Select {ARC WELD}.
Move the cursor to {ARC WELD} and press [SELECT], then the function keys become valid for ARC welding use.
{ARC/SPOT} icon on the main menu changes to {ARC}.
10.3 Function Keys

10.3.2 Wire Inching Function

Wire Inching
The term wire inching refers to gradually feeding or retracting the welding wire through the torch. [FEED] and [RETRACT] are used to perform wire inching. The wire inching simply feeds or retracts the wire, it has nothing to do with the job procedure being taught. The wire inching is performed only in the teach mode when the arc does not occur.

Wire Feeding
The wire is fed only while [FEED] is pressed.
Three speed levels are available for wire feeding:
[FEED]: Slow
[FEED] + [FAST]: Medium
[FEED] + [HIGH SPEED]: Fast

Wire Retraction
The wire is retracted only while [RETRACT] is pressed.
Two speed levels are available for wire retraction:
[RETRACT]: Slow
[RETRACT] + [HIGH SPEED]: Fast

Supplement
Wire retraction, high-speed inching, or high-speed retraction cannot be performed depending on the Power Source.

10.3.3 Gas Flow Control Function

Gas Flow Control
The Gas Flow Control function is used to adjust the flow amount of shielding gas by opening or closing the solenoid valve.
The solenoid valve can be opened or closed by pressing [GAS].
This function simply opens or closes the solenoid valve for shielding gas. Therefore, the operation does not cause any changes in the job contents.
The Gas Flow Control function is enabled in the teach mode only.
10.4 Power Source Condition File

10.4.1 About Power Source Condition File

This is the file where the Power Source characteristics: voltage characteristic, etc., is registered. This file contains the information for Power Source control.

For precise control of the welding current and voltage, the control signals sent from the controller to the Power Source must be properly adjusted.

The voltage of the current control signal is called the welding current reference value; the voltage of the voltage control signal is called the welding voltage reference value. A reference value is in the range between 0 and 14V (or between 0 and -14 depending on Power Sources).

How the output of the welding current or voltage changes with the reference value depends on the Power Source model, and this relationship between the reference value and output value is called an output characteristics. Each Power Source condition data file contains the output values (measured values) associated with several reference values. The figure below is an example of the welding current output characteristic curve.

Fig. 10-2: Welding Current Output Characteristics (Example)

Note that the data points (points of measurement) are automatically connected by straight lines, which define the output values of any points off these data points.

The inclination between the last two data points is extended as a straight line beyond the last point until it reaches the end of the measuring range.

If the intended welding current or voltage is not output due to a fluctuation in the Power Source’s power supply voltage, adjust the output by specifying a correction value. The figure (Fig. 10-2 “Welding Current Output Characteristics (Example)”) shows how a correction value works.
The following are the three types of the Power Source condition files. Each file consists of two windows.

Fig. 10-3: Power Source Condition Files

- The execution file is used to set the condition file of the Power Source being used.
- The user registered file is used by the user to save the Power Source condition files, and the data for 64 models can be registered.
- Yaskawa also offers initial value files which contain common Power Source characteristics. Data for 24 models have already been registered.

A Power Source condition file can be set only by reading from either the user registered file or initial value file to the execution file.

When it is necessary to make adjustments to the data, refer to section 10.4.4 “Editing the Power Source Condition Files” on page 10-16.

10.4.2 Specifying Welding Voltage when Synergic Power Supply is Used

When a synergic power supply is used, the DX100 requests the user to specify the welding voltage by a ratio against the proper output value (not by the output value as conventionally done).

For that, the voltage characteristics associated with a certain welding current output value must be determined by measurement, and the results should be stored in the Power Source condition data file as representative values.

The welding current output value for the measurement should be a value that is assumed relatively often in actual situations.

Each of the provided Power Source condition data files already contains the representative values for the associated Power Source model.

<Example>

An example is shown with the ARCON instruction.

If the welding current output is 250A, the welding voltage can be specified as follows:

<table>
<thead>
<tr>
<th>ARCON</th>
<th>AC=250</th>
<th>AVG=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Welding current 250A</td>
<td>100% of proper output, assuming the use of synergic power supply.</td>
</tr>
</tbody>
</table>

With the voltage characteristics with the following Figure A, the above instruction causes the output of 7.5V control signal to the Power Source.
If the welding current output value is changed to 220A, a minor correction to the ARCON instruction causes the output of the control signal associated with 100% of the proper output value at 220A. (Fig.B)

```
ARCON  AC=220  AVP=100  ······100% output
```

Also note that a minor adjustment of the welding voltage can be instructed easily. (Fig.C)

e.g. The control signal is output 110% of the proper output value at 220A.

```
ARCON  AC=220  AVP=110  ······110% output
```

or

e.g. The control signal is output 94% of the proper output value at 220A.

```
ARCON  AC=220  AVP=94   ······94% output
```

This setting method enables easy adjustment without calculating the voltage output.

This method can be also applied to condition data files and instructions other than ARCON.

Another advantage is that a single welding job can be used with more than one Power Source with a synergic power supply by changing the welder condition data file.

If welding current output is significantly different from the voltage characteristics measurement used, voltage output may vary. Write the welding current value used for the voltage characteristics measurement as a comment for reference.
10.4.3 POWER SOURCE CONDITION File

A Power Source condition data file has the following two windows:

- POWER SOURCE CONDITION Window
- POWER SOURCE CONDITION Window (for current/voltage output)

10.4.3.1 POWER SOURCE CONDITION Window

A. POWER SOURCE NO. (1 to 8)
Displays a Power Source number between 1 and 8 (for each welder).

B. SETTING
If this file is modified, the status automatically changes to “NONE,” indicating that the modification is not saved yet. To save the modification to the file, move the cursor to “SETTING” and press [SELECT]. Then the status changes to “DONE”.

C. POWER SOURCE NAME
Displays a Power Source name of 16 characters or less.

D. COMM. (COMMENT)
Displays a comment of 32 characters or less.

E. POWER SUPPLY (A/V, A/%)
- When “A/%” is displayed: Measured values of voltage can be input by the unit of “%” for “D. MEASURE” in the POWER SOURCE CONDITION window for current/voltage output shown in the next page.

- When “A/V” is displayed: Measured values of voltage can be input by the unit of “V” for “D. MEASURE” in the POWER SOURCE CONDITION window for current/voltage output shown in the next page.

*To switch between “A/%” and “A/V” in the POWER SOURCE CONDITION window, select [DATA] -> [READING] to read the initial value file (maker offer) or user registered file once again.

*This function is available for the standard software version NS4.00.00A (□)-00 or later.

F. SHIELDING GAS (CO₂, MAG)
Specifies the shielding gas type.

G. WIRE DIA. (0 to 9.9mm)
Specifies the wire diameter.
H. WIRE STICKOUT (0 to 99mm)
Specifies the length of the welding wire protruding from the torch tip.

I. WIRE ANTI-STICKING (0 to 9.9 seconds)
Specifies the duration of the wire anti-stick process at the end of welding.

J. ARC FAILURE STOP (0 to 2.55 seconds)
Specifies the time between the detection of arc failure and the stopping of the manipulator movement.

10.4.3.2 POWER SOURCE CONDITION Window for Current/Voltage Output

A. RANGE
Indicates the polarity of the reference value for the welding current and voltage. If the range is positive(+), the reference value is in the range between 0 and 14.00V. If the range is negative(-), the reference value is in the range between 0 and -14.00V.

B. ADJUST (0.80 to 1.20)
A correction value to adjust the welding current/voltage output.

C. REF. (V) (0 to 14.00V)
Welding current/voltage reference values.

D. MEASURE (0 to 999A, 0 to 50.0V, or 50 to 150%)
The welding current/voltage output values measured at the reference values as given under C.
10.4.4 Editing the Power Source Condition Files

NOTE

When the Power Source condition file is modified or the file is read in, the SETTING status in the POWER SOURCE CONDITION window changes from “DONE” to “NONE”. After editing, move the cursor to SETTING then press [SELECT] to save the modification. Then the SETTING status changes from “NONE” to “DONE”.

10.4.4.1 Displaying a Power Source Condition File

1. Select {ARC WELDING} under the main menu.
2. Select {POWER SOURCE CONDITION}.

 – The POWER SOURCE CONDITION window appears.

10.4.4.2 Reading a Power Source Condition File

1. Select {DATA} from the menu.
2. Select {READING}.
3. Select the Power Source condition file number of the data to be read.

– Each time the page key is pressed, the window alternates between MAKER INITIAL VALUE window and USER INITIAL VALUE window.

– On the MAKER INITIAL VALUE window, the registered initial value file list (1 to 24) appears.

4. Select “YES”.

– The confirmation dialog box appears. Select “NO” to return to the POWER SOURCE CONDITION window without the read-in.
10.4.4.3 Editing a Power Source Condition File

■ Editing the “WELDER NAME” or “COMMENT”

1. Select “POWER SOURCE NAME” or “COMMENT”.
2. Input characters.

<table>
<thead>
<tr>
<th>SETTING</th>
<th>POWER SOURCE NAME</th>
<th>COMM</th>
<th>POWER SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>MOTOWELD-E350</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

■ Editing Other Items

1. Select the item to be edited.
2. Input the number using the Numeric keys.

<table>
<thead>
<tr>
<th>SETTING</th>
<th>POWER SOURCE NAME</th>
<th>COMM</th>
<th>POWER SUPPLY</th>
<th>SHIELDING GAS</th>
<th>WIRE DIA</th>
<th>WIRE STICKOUT</th>
<th>ANTI-STICKING</th>
<th>ARC FAILURE STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DONE</td>
<td>MOTOWELD-E350</td>
<td></td>
<td>A/%</td>
<td>CO2</td>
<td>0.1 mm</td>
<td>15 mm</td>
<td>0.1 sec</td>
<td>1.50 sec</td>
</tr>
</tbody>
</table>
10.4.4.4 Editing a Power Source Condition File for Current/Voltage Output

- **Editing the “RANGE”**

 1. Select “RANGE”.
 - Each time [SELECT] is pressed, the indication alternates between “+” (positive) and “−” (negative).

- **Editing “ADJ”, “REF”, or “MEASURE”**

 1. Select {ADJ}, {REF}, or {MEASURE}.
 2. Input the number using the Numeric keys.
 - When some data is modified, the SETTING status is changed to “NONE”.

NO.	REF.(V)	MEASURE (A)	REF.(V)	MEASURE (%)
01	0.01	2.70	0.00	50
02	1.00	3.10	1.20	50
03	2.00	3.50	2.25	50
04	10.00	3.80	4.50	60

 3. After the modification, move the cursor to “SETTING” and press [SELECT].
 - The setting is completed.

Notes on Power Source Data Condition File Modification:

When changing “POWER SUPPLY” in Power Source condition file, the welding condition files (Arc Welding Start Condition File, Arc Welding End Condition File, and Arc Auxiliary Condition File) are formatted.
10.4.4.5 Registering the Power Source Condition File Data

Other than the 24 types of initial value data that Yaskawa has provided, 4 types of Power Source condition files can be registered. The data partially modified using the initial value file can also be registered.

1. Select {ARC WELDING} under the main menu.

2. Select {POWER SOURCE COND.}.

3. Select {WRITING} from {DATA} in the menu.

 The user registered file list appears.

 - The user registered file list appears.

 - The user registered file list appears.
4. Select the Power Source condition file number of the data to be written.
 – The confirmation dialog box appears.

5. Select “YES”.
 – Select “YES” to register the Power Source condition file data. Select “NO” to return to the POWER SOURCE CONDITION window.
10.5 Basic Functions

10.5.1 ARCON

10.5.1.1 Function

This instruction outputs an arc start command.

The arc start signal to the Power Source is turned ON to start welding by this instruction.

The function key [ARCON] can be used for registration.

Function key to register the welding start instruction (ARCON)

To register the ARCON instruction using [INFORM LIST], select “DEVICE” from the instruction group list.

10.5.1.2 Syntax

![Syntax Diagram]
10.5.1.3 Explanation

- **WELDn [1]**
 Choose one of the following tags.

 These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.

 When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDn</td>
<td>Selects the Power Source 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

- **ASF# (Arc welding start condition file number) [2] /AC = Current output value [3]**
 Be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASF# (Arc welding start condition file number)</td>
<td>Specifies the arc welding start condition file number. Conditions to start welding are registered in the arc welding start condition file.</td>
<td>No. 1 to 1000 The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
<tr>
<td>AC = Current output value</td>
<td>Specifies the output value of welding current.</td>
<td>Current value: 1 to 999 A The current output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable.</td>
</tr>
</tbody>
</table>

- **AV = Voltage output value /AVP [4] = Percentage against the proper voltage output value [5]**
 Only when "AC = Current output value" is selected in the above "ASF# (Arc welding start condition file number) [2] /AC = Current output value [3]", be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV = Voltage output value</td>
<td>Specifies the output value of welding voltage. The output value of welding voltage is specified when the power supply is independent.</td>
<td>Voltage value: 0.1 to 50.0 V The voltage output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. (Unit: 0.1 V)</td>
</tr>
<tr>
<td>AVP = Percentage against the proper voltage output value</td>
<td>Specifies the percentage against the proper output voltage of welding voltage. The percentage against the proper voltage output value is specified when the power supply is synergic.</td>
<td>Percentage: 50 to 150% The voltage output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable.</td>
</tr>
</tbody>
</table>
10.5 Basic Functions

T = Time [6]
This tag is added or omitted only when “AC = Current output value” is selected in the above "ASF# (Arc welding start condition file number) [2] / AC = Current output value [3]".

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Time</td>
<td>Specifies the timer value at the start of welding. Unit: seconds. The time can be specified by I/LI[]/LI[] variable. (Unit: 0.01 sec.)</td>
</tr>
</tbody>
</table>

V = Welding speed [7]
This tag is added or omitted only when “AC = Current output value” is selected in the aforementioned "ASF# (Arc welding start condition file number) [2] / AC = Current output value [3]".

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Welding speed</td>
<td>Specifies the welding speed. Speed: 0.1 to 1500.0 mm/sec. The unit displayed can be changed by the setting of the parameter (S2C101). The speed can be specified by B/B[]/LB/LB[]/Li/Li[]/Di/Di[]/LD/LD[] variable. (Unit: 0.1 mm/sec.)</td>
</tr>
</tbody>
</table>

RETRY [8]
This tag is added or omitted only when “AC = Current output value” is selected in the aforementioned "ASF# (Arc welding start condition file number) [2] / AC = Current output value [3]".

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETRY</td>
<td>Specify the retry function.</td>
<td>The retry function works to prevent the interruption of operation when an arc start failure occurs. Refer to section 10.6 “Arc Retry Function” on page 10-73.</td>
</tr>
</tbody>
</table>

REPLAY [9]
Only when RETRY is added in the above "RETRY [8]", be sure to add this tag.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPLAY</td>
<td>Specify the replay mode.</td>
<td>The replay mode is one of the modes to repeat the ARCON process when the retry function is enabled. Refer to section 10.6 “Arc Retry Function” on page 10-73.</td>
</tr>
</tbody>
</table>
10.5.1.4 Registering the ARCON Instruction

1. Press [ARCON].
2. Press [ENTER].

ARCON instruction cannot be modified after it is registered to the job.
(Refer to section 3.6.4 “Modifying Instructions” on page 3-55.)

If the ARCON instruction needs to be modified, delete it and then, add the necessary instruction.

10.5.1.5 Setting Welding Start Conditions

The ARCON instruction can be registered in any of the following three ways:

- With additional items to specify conditions
 ARCON AC=200 AVP=100 T=0.50 V=60 RETRY

- With an arc welding start condition file
 ARCON ASF# (1)
 In this case, the welding condition is set using the arc welding start condition file. (Refer to section 10.5.4 “Arc Start Condition File” on page 10-56.)

- Without additional items
 ARCON
 In this case, the welding condition must be set using the welding condition set instruction (ARCSET) before the ARCON instruction is executed. (Refer to section 10.5.3 “ARCSET” on page 10-47.)

With Additional Items to Specify Conditions

1. Select the ARCON instruction in the instruction area.
 - The ARCON instruction appears in the input buffer line.

2. Press [SELECT].
 - The DETAIL EDIT window appears.

 ![DETAIL EDIT window](image)
3. Select “UNUSED”.

4. Press [SELECT] and select “AC=” from the selection dialog.

– If the arc welding start condition file has already been set in the ARCON instruction additional items, the DETAIL EDIT window appears.
5. Place the cursor on “ASF#()” and press [SELECT], then select “AC=” from the selection dialog.

6. Input the welding condition.
 – Set each welding condition.

7. Press [ENTER].
 – The set contents are displayed in the input buffer line.

8. Press [ENTER].
- The set contents are registered in the job.

- Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
With an Arc Welding Start Condition File

1. Select the ARCON instruction in the instruction area.
 - The ARCON instruction appears in the input buffer line.

2. Press [SELECT].
 - The DETAIL EDIT window appears.

3. Place the cursor on “UNUSED”.

4. Press [SELECT] and select “ASF#()” from the selection dialog.
– If the welding conditions have already been set in the ARCON instruction additional items, the DETAIL EDIT window appears.

<table>
<thead>
<tr>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Place the cursor on “AC=” and press [SELECT], then select “ASF#()” from the selection dialog.

6. Set the file number.
– Specify the file number (1 to 64).
(1) Move the cursor to the file number and press [SELECT].
(2) Type the file number using the numeric keys and press [ENTER].

7. Press [ENTER].
 – The set contents are displayed in the input buffer line.

8. Press [ENTER].
 – The set contents are registered in the job.

 – Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
10.5 Basic Functions

Without Additional Items

When an additional item is not provided for the ARCON instruction, set the welding conditions in advance with the welding condition setting instruction (ARCSET) before executing the ARCON instruction. (Refer to section 10.5.3 “ARCSET” on page 10-47.)

1. Select the ARCON instruction in the instruction area.
 - The ARCON instruction appears in the input buffer line.

2. Press [SELECT].
 - The DETAIL EDIT window appears.

3. Place the cursor on “ASF#()” or “AC=”.

```plaintext
1. Select the ARCON instruction in the instruction area.
   - The ARCON instruction appears in the input buffer line.

2. Press [SELECT].
   - The DETAIL EDIT window appears.

3. Place the cursor on “ASF#( )” or “AC=”.
```
4. Press [SELECT] and select “UNUSED” from the selection dialog.

5. Press [ENTER].
 – The set contents are displayed in the input buffer line.

6. Press [ENTER].
 – The set contents are registered in the job.
 – Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
10.5.2 ARCOF

10.5.2.1 Function

This instruction outputs an arc end command. The arc start signal to the Power Source is turned OFF to end welding by this instruction.

The function key [ARCOF] can be used for registration.

Function key to register the welding end instruction (ARCOF)

To register the ARCOF instruction using [INFORM LIST], select “DEVICE” from the instruction group list.

10.5.2.2 Syntax
10.5.2.3 Explanation

- **WELDn [1]**
 Choose one of the following tags.
 These tags are enabled only when multiple applications are in use and
two or more applications are set as arc welding application.
 When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDn</td>
<td>Selects the Power Source</td>
<td>1 to 8.</td>
</tr>
</tbody>
</table>

- **AEF# (Arc welding end condition file number) [2] /AC = Current output value [3]**
 Be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEF# (Arc welding end condition file number)</td>
<td>Specifies the arc welding end condition file number. Conditions to end welding are registered in the arc welding end condition file.</td>
<td>No. 1 to 1000 The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
<tr>
<td>AC = Current output value</td>
<td>Specifies the output value of welding current.</td>
<td>Current value: 1 to 999 A The current output value can be specified by B/I/D/LB/LI/LD/LB/[LI]/LB variable.</td>
</tr>
</tbody>
</table>

- **AV = Voltage output value /AVP [4] = Percentage against the proper voltage output value [5]**
 Only when "AC = Current output value" is selected in the above "AEF# (Arc welding end condition file number) [2] /AC = Current output value [3]", be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV = Voltage output value</td>
<td>Specifies the output value of welding voltage. The output value of welding voltage is specified when the power supply is independent.</td>
<td>Voltage value: 0.1 to 50.0 V The voltage output value can be specified by B/I/D/LB/LI/LD/LB/[LI]/LB variable. (Unit: 0.1 V)</td>
</tr>
<tr>
<td>AVP = Percentage against the proper voltage output value</td>
<td>Specifies the percentage against the proper output value of welding voltage. The percentage against the proper voltage output value is specified when the power supply is synergic.</td>
<td>Percentage: 50 to 150% The voltage output value can be specified by B/I/D/LB/LI/LD/LB/[LI]/LB variable.</td>
</tr>
</tbody>
</table>
10.5 Basic Functions

T = Time [6]
This tag is added or omitted only when “AC = Current output value” is selected in the above "AEF# (Arc welding end condition file number) [2] / AC = Current output value [3]".

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| T =Time | Specifies the timer value at the end of welding. | Unit: seconds
The time can be specified by I/LI/I]/LI[] variable. (Unit: 0.01 sec.) |

ANTSTK [7]
This tag is added or omitted only when “AC = Current output value” is selected in the aforementioned "AEF# (Arc welding end condition file number) [2] / AC = Current output value [3]".

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTSTK</td>
<td>Specifies the automatic wire-stick release function. When the automatic</td>
<td>Refer to section 10.8 “Automatic Wire-stick Release Function” on page</td>
</tr>
<tr>
<td></td>
<td>wire-stick release function is used, the manipulator does not immediately</td>
<td>10-79.</td>
</tr>
<tr>
<td></td>
<td>output the wire sticking signal upon detecting a wire stick, but</td>
<td></td>
</tr>
<tr>
<td></td>
<td>automatically attempts to release the sticking by applying a certain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>voltage.</td>
<td></td>
</tr>
</tbody>
</table>
10.5.2.4 Registering the ARCOF Instruction

1. Press [ARCOF].

2. Press [ENTER].

ARCOF instruction cannot be modified after it is registered to the job.

(Refer to section 3.6.4 “Modifying Instructions” on page 3-55.)

If the ARCOF instruction needs to be modified, delete it and then, add the necessary instruction.
10.5.2.5 Setting Arc Welding End Conditions (Crater Processing)

The ARCOF instruction can be registered in any of the following four ways:

- With additional items to specify conditions
 ARCOF AC=160 AVP=70 T=0.50 ANTSTK

- With an arc welding end condition file
 ARCOF AEF#(1)
 In this case, the welding condition is set using the arc welding end condition file. (Refer to section 10.5.5 “Arc End Condition File” on page 10-63.)

- Without additional items
 ARCOF
 When the crater process is performed by changing the welding condition when welding is completed, before the ARCOF instruction is executed, the welding condition needs to be set using the welding condition setting instruction. (Refer to section 10.5.3 “ARCSET” on page 10-47.)
With Additional Items to Specify Conditions

1. Select the ARCOF instruction in the instruction area.
 – The ARCOF instruction appears in the input buffer line.

2. Press [SELECT].
 – The DETAIL EDIT window appears.

3. Place the cursor on “UNUSED”.

4. Press [SELECT] and select “AC=” from the selection dialog.
 – If the arc welding end condition file has already been set in the ARCOF instruction additional items, the DETAIL EDIT window appears.
5. Place the cursor on “AEF#()” and press [SELECT], then select “AC=” from the selection dialog.

6. Input the welding condition.
 - Set each welding condition.

7. Press [ENTER].
 - The set contents are displayed in the input buffer line.
8. Press [ENTER].
 - The set contents are registered in the job.

 ![Job Content Display]

 - Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.

 ![Job Content Display with CANCEL]
With an Arc Welding End Condition File

1. Select the ARCOF instruction in the instruction area.
 - The ARCOF instruction appears in the input buffer line.

2. Press [SELECT].
 - The DETAIL EDIT window appears.

3. Place the cursor on “UNUSED”.

4. Press [SELECT] and select “AEF#()” from the selection dialog.
10.5 Basic Functions

– If the welding conditions have already been set in the ARCOF instruction additional items, the DETAIL EDIT window appears.

5. Place the cursor on “AC=” and press [SELECT], then select “AEF#()” from the selection dialog.

6. Set the file number.
 – Specify the file number (1 to 1000).
 (1) Move the cursor to the file number and press [SELECT].
 (2) Type the file number using the numeric keys and press [ENTER].

7. Press [ENTER].
 – The set contents are displayed in the input buffer line.

8. Press [ENTER].
- The set contents are registered in the job.

```
JOB CONTENT
JOB NAME: WORK A
CONTROL GROUP: R1
STEP NO: 0003
0000  NOP
0001  MOVL V=80.00
0002  MOVL V=800
0003  ARCON
0004  MOVL V=50
0005  MOVL V=50
0006  MOVL V=50
0007  ARCOF AEF# (10)
0008  MOVL V=800
0009  MOVL V=80.00
0010  END
```

- Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.

```
JOB CONTENT
JOB NAME: WORK A
CONTROL GROUP: R1
STEP NO: 0003
0000  NOP
0001  MOVL V=80.00
0002  MOVL V=800
0003  ARCON
0004  MOVL V=50
0005  MOVL V=50
0006  MOVL V=50
0007  ARCOF AEF# (10)
0008  MOVL V=800
0009  MOVL V=80.00
0010  END
```
Without Additional Items

1. Select the ARCOF instruction in the instruction area.
 - The ARCOF instruction appears in the input buffer line.

 ![JOB EDIT DISPLAY UTILITY]

 ![DATA EDIT DISPLAY UTILITY]

 ![DATA EDIT DISPLAY UTILITY]

 ![DATA EDIT DISPLAY UTILITY]

2. Press [SELECT].
 - The DETAIL EDIT window appears.

3. Place the cursor on “AEF#()” or “AC=”.

4. Press [SELECT] and select “UNUSED” from the selection dialog.

5. Press [SELECT].
 - The set contents are displayed in the input buffer line.
6. Press [ENTER].

 – The set contents are registered in the job.

 – Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
10.5.3 ARCSET

10.5.3.1 Function

This is the instruction to set the welding conditions (current, voltage, etc.) individually.

The ARCSET instruction can be registered in any of the following two ways:

- With additional items to specify conditions

 ARCSET AC=200 AVP=100

- With an arc welding start condition file

 ARCSET ASF# (1)

 In this case, the welding condition is set using the arc start condition file.

 (Refer to section 10.5.4 “Arc Start Condition File” on page 10-56.)

10.5.3.2 Syntax
10.5.3.3 Explanation

WELDn [1]
Choose one of the following tags.

These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.

When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDn</td>
<td>Selects the Power Source 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

AC = Current output value [2]/ASF# (Arc welding start condition file number) [3]
This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC = Current output value</td>
<td>Specifies the output value of welding current.</td>
<td>Current value: 1 to 999 A The current output value can be specified by B/I/D/B/I/D/LB/LI/LD/LB/I/LI/LD variable.</td>
</tr>
<tr>
<td>ASF# (Arc welding start condition file number)</td>
<td>Specifies the arc welding start condition file number. Conditions to start welding are registered in the arc welding start condition file.</td>
<td>No. 1 to 1000 The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
</tbody>
</table>

AV = Voltage output value /AVP [4]= Percentage against the proper voltage output value [5]
Be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV = Voltage output value</td>
<td>Specifies the output value of welding voltage. The output value of welding voltage is specified when the power supply is independent.</td>
<td>Voltage value: 0.1 to 50.0 V The voltage output value can be specified by B/I/D/B/I/D/LB/LI/LD/LB/I/LI/LD variable. (Unit: 0.1 V)</td>
</tr>
<tr>
<td>AVP = Percentage against the proper voltage output value</td>
<td>Specifies the percentage against the proper output value of welding voltage. The percentage against the proper voltage output value is specified when the power supply is synergic.</td>
<td>Percentage: 50 to 150% The voltage output value can be specified by B/I/D/B/I/D/LB/LI/LD/LB/I/LI/LD variable.</td>
</tr>
</tbody>
</table>
V = Welding speed [6]

This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>V = Welding speed</td>
<td>Specifies the welding speed. Speed: 0.1 to 1500.0 mm/sec. The unit displayed can be changed by the setting of the parameter (S2C101). The speed can be specified by B/B[/]/LB/LB[/]/I/I[/]/LI/LI[/]/D/D[/]/LD/LD[/] variable. (Unit: 0.1 mm/sec.)</td>
<td></td>
</tr>
</tbody>
</table>

AN3 = Voltage target value [7]

This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN3 = Voltage target value</td>
<td>Specifies the voltage target value for the analog output 3. Target value: -14.00 to +14.00 V The voltage target value can be specified by I/LI[/]/LI[/] variable. (Unit: 0.01 V)</td>
<td></td>
</tr>
</tbody>
</table>

AN4 = Voltage target value [8]

This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4 = Voltage target value</td>
<td>Specifies the voltage target value for the analog output 4. Target value: -14.00 to +14.00 V The voltage target value can be specified by I/LI[/]/LI[/] variable. (Unit: 0.01 V)</td>
<td></td>
</tr>
</tbody>
</table>
10.5.3.4 Registering the ARCSET Instruction

- **With Additional Items to Specify Conditions**

1. Press [INFORM LIST].
 - The instruction list dialog box appears.

2. Select the ARCSET instruction.
 - The ARCSET instruction appears in the input buffer line.

3. Press [SELECT] and set the welding condition on the DETAIL EDIT window.
 - The DETAIL EDIT window appears.

 (1) Move the cursor to the item to be set, and press [SELECT].

 (2) Type the welding conditions using the numeric keys, and press [ENTER].
(3) To add the additional items, place the cursor on the item with the “UNUSED” status and press [SELECT], then the selection dialog appears.

(4) To delete the additional items, line up the cursor with the additional items and press [SELECT] to select “UNUSED”.

4. Press [ENTER].
 – The set contents are displayed in the input buffer line.

5. Press [ENTER].
 – The set contents are registered in the job.
– Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
With an Arc Start Condition File

1. Select the ARCSET instruction in the instruction area.
 - The ARCSET instruction appears in the input buffer line.

   ```
   JOB
   JOB NAME: WORK A
   CONTROL GROUP: R1
   STEP NO: 0003
   TOOL: 00
   0007 MOVL V=100
   0008 ARCSET
   0009 MOVL V=100
   0010 ARCOF AC=100 AVP=100 ANSTK
   0011 MOV J VJ=5.00
   0012 MOV J VJ=5.00
   0013 MOV J VJ=5.00
   0014 END
   ```

2. Press [SELECT].
 - The DETAIL EDIT window appears.

 (1) Place the cursor on “UNUSED”.

   ```
   WELDING CURR : UNUSED
   WELDING VOLT : UNUSED
   SPEED : UNUSED
   ANALOG OUTPUT3 : UNUSED
   ANALOG OUTPUT4 : UNUSED
   ```

 (2) Press [SELECT] and select “ASF#()” from the selection dialog.
3. Set the file number.
 - Specify the file number (1 to 396).
 (1) Move the cursor to the file number and press [SELECT].

 ![Diagram](image1)

 (2) Type the file number using the numeric keys and press [ENTER].

 ![Diagram](image2)

4. Specify the condition set.
 - When the welding condition file is the enhanced type
 - Specify the number for the condition set (0 or 1).
 (1) Move the cursor to the ACOND number at the condition set, and press [SELECT].

 ![Diagram](image3)
Type the file number using the numeric keys and press [ENTER].

- "By selecting the condition set number, either one of the "start condition" or "main condition" in the condition file can be specified.
- ACOND=0: Sets the welding current and voltage which are specified in the "start condition".
- ACOND=1: Sets the welding current and voltage which are specified in the "main condition".

5. Press [ENTER].

- The set contents are displayed in the input buffer line.

6. Press [ENTER].

- Press [ENTER]. The set contents are registered in the job.

- Press [CANCEL] to return to the JOB CONTENT window if the set contents are not to be registered.
10.5.4 Arc Start Condition File

10.5.4.1 Displayed File Numbers

Two types of file numbers are displayed: The sequential serial number of all welding files and the file number allocated for each power source. Either number can be entered.

When specifying the condition file number for the ARCON or the ARCSET command of a job, set the number shown in the sequential serial number field.

10.5.4.2 Tabs

Conditions of the arc start condition file are divided into the tabs: “PREFLOW”, “START”, “MAIN COND.”, and “OTHER”.

To switch tabs, use the cursor key (left and right).

“Main Condition” Tab Window

A. START COND. ON
Check this box to enable the start condition.

B. CURRENT (30 to 500 A)
Welding current output value.

C. VOLTAGE (12.0 to 45.0 V, 50 to 150%)
Welding voltage output value.

D. ANALOG OUTPUT 3 (-14.00 to 14.00)
Displayed when the enhanced welding condition file function is enabled. This is the reference value to the Power Source through the analog output 3.
To use this, YEW board or XEW02 board, etc. with analog output ports must be added.

E. ANALOG OUTPUT 4 (-14.00 to 14.00)
Displayed when the enhanced welding condition file function is enabled. This is the reference value to the Power Source through the analog output 4.
To use this, YEW board or XEW02 board, etc. with analog output ports must be added.

F. ROBOT PAUSE TIME (0 to 10.00 seconds)
The length of time when the manipulator pauses at the beginning of welding.
If the start condition is enabled, the robot pause time is specified in the “START” tab and is not displayed in the “MAIN COND.” tab.
G. ROBOT SPEED (1 to 600 cm/min)

Set the travel speed of the torch tip during welding. However, if the move instruction specifies a particular speed in the welding section, this particular speed is given priority.

“START” Tab Window

Check the box of “SLOPE ON” to specify whether the conditions set in “START” tab should be changed stepwisely or gradually to the conditions set in “MAIN COND.” tab when starting welding.

The setting window switches as shown in the following.

Fig. 10-4: With “SLOPE ON” Checked
A. The values of CURRENT, VOLTAGE, ANALOG OUTPUT 3, and ANALOG OUTPUT 4 of the start condition at the beginning of welding
Check the box of “START COND. ON” in the “MAIN COND.” tab to set the values.
To use the analog output 3 and 4, YEW board or XEW02 board, etc. with analog output ports must be added.

B. ROBOT PAUSE TIME (0 to 10.00 seconds)
The length of time when the manipulator pauses at the beginning of welding.

C. ROBOT MOVE DIST (DISTANCE)
Displayed only when the slope function is OFF.
The distance which the manipulator moves along the welding line with the conditions set in “START” tab.
The manipulator moves at the speed specified in the "MAIN COND.".

D. ROBOT SPEED (1 to 600 cm/min)
Displayed only when the slope function is ON.
Specifies the initial velocity when the manipulator starts moving after the robot pause time (specified in B. above).
Then, the speed gradually increases to the speed specified in the “MAIN COND.”.

E. SLOPE DIST : Distance Specification
Displayed only when the slope function is ON.
The interval where the conditions are gradually changed from the ones set in the “START” tab to the ones set in the “MAIN COND.” tab can be specified by millimeter.
“PREFLOW” Tab Window
Specifies the process before the beginning of welding.

A. GAS: PREFLOW TIME
When the manipulator moves to the welding start point, feeding of the shielding gas can be started before the manipulator reaches the welding start point.

When to start feeding the shielding gas before the manipulator reaches the welding start point can be specified by seconds.

If the manipulator’s traveling time from the preceding step to the welding start point step becomes shorter than the gas prefloow time due to the job teaching, the shielding gas is fed when the manipulator starts traveling to the welding start point, thus the prefloow time becomes shorter than the time specified.
A. RETRY ON
Specifies whether the retry function is ON or OFF. Check this box to turn the retry function ON.

B. ARC FAILURE RESTART
Regarding the ON/OFF status of the restart function, select whether to turn OFF the restart function or to follow the settings in the Arc Auxiliary Condition File.

C. PZ: POSITION SET ZONE
Specifies the distance from the actual position of the manipulator (the position fed back from the encoder of each axis of the manipulator) to the welding start point, where the manipulator is regarded to have reached the welding start point.

When the position set zone is set to “UNUSED”, the welding start signal is output to the Power Source immediately after the move instruction to the welding start point is output.

When the position set zone is set to 1, the welding start signal is output to the Power Source after the manipulator completely reaches the welding start point and stops.

When a bigger number is selected (2, 3, or 4), the timing of the output of the welding start signal becomes earlier, i.e., the time from the output of the welding start signal to the welding start point becomes longer.
10.5.4.3 Comment

Comment can be added to every ARC START COND. file number. It is input or displayed with the arc start cond. window.

A. COMMENT

The comment added to each file number is displayed in this box. Up to 32 characters can be input for the comment.

Inputting Comment

1. Move the cursor to the comment displaying box.
2. Press [ENTER].
 - The software keypad window appears.
3. Input the comment and press [ENTER].

- The window returns to the arc start cond. window and the input comment is displayed.
10.5.5 Arc End Condition File

10.5.5.1 Displayed File Numbers

Two types of file numbers are displayed: The serial number of all welding files (Serial No) and the file number allocated for each welder. Either number can be entered. When specifying the condition file number for the ARCOF instruction of a job, set the number shown in the “Serial No” field.

10.5.5.2 Tabs

Conditions of the arc end condition file are divided into the tabs: “CRATER COND. 1”, “CRATER COND. 2”, and “OTHER”.

To switch tabs, use the cursor key (left and right).

■ “CRATER COND. 1” Tab Window

Check the box of “SLOPE ON” to specify whether the welding conditions should be gradually changed to the crater condition before the manipulator reaches to the welding end point, or should be changed to the crater condition immediately after the manipulator reaches the welding end point.

The setting window switches as shown in the following.

Fig. 10-6: With “SLOPE ON” Checked
A. The values of CURRENT, VOLTAGE, ANALOG OUTPUT 3, and ANALOG OUTPUT 4 of the crater condition 1 at the beginning of welding

The analog output 3 and 4 are displayed when the enhanced welding condition file function is enabled.
To use the analog output 3 and 4, YEW board or XEW02 board, etc. with analog output ports must be added.

B. ROBOT SPEED (1 to 600 cm/min)

Displayed only when the slope function is ON.
This is the manipulator’s travel speed at the welding end point.
The manipulator’s travel speed changes from the speed specified with the move instruction of a job or the speed specified by the welding start condition file to the speed specified above.

C. ROBOT PAUSE TIME (0 to 10.00 seconds)

The length of time when the manipulator continues welding while the manipulator is stopped at the welding end point.

D. SLOPE DIST : Distance Specification

Displayed only when the slope function is ON.
The interval where the conditions are gradually changed from the ones set in the “MAIN COND.” tab to the ones set in the “CRATER COND. 1” tab can be specified by millimeter.
“CRATER COND. 2” Tab Window

Check the box of “CRATER2 ON” to set the condition to either of the following:

- Check “CRATER2 ON” to change the crater condition stepwisely after the manipulator reaches the welding end point
- Uncheck “CRATER2 ON” to continue welding with the crater condition 1

The setting window switches as shown in the following.

Fig. 10-8: With “CRATER2 ON” Checked

![Image of setting window with CRATER2 ON checked]

Fig. 10-9: With “CRATER2 ON” Unchecked

![Image of setting window with CRATER2 ON unchecked]

A. The values of CURRENT, VOLTAGE, ANALOG OUTPUT 3, and ANALOG OUTPUT 4 of the start condition at the beginning of welding

Check the box of “CRATER2 ON” to set the value.

The analog output 3 and 4 are displayed when the enhanced welding condition file function is enabled.

To use the analog output 3 and 4, YEW board or XEW02 board, etc. with analog output ports must be added.

B. ROBOT PAUSE TIME (0 to 10.00 seconds)

The length of time when the manipulator continues welding while the manipulator is stopped at the welding end point.
"OTHER" Tab Window

Fig. 10-10: With "AST: ANTI-STICK ON" Checked

Fig. 10-11: With "AST: ANTI-STICK ON" Unchecked

Fig. 10-12: Timing of Each Process Time of Arc End Process

Maniplulator Operating Time
Welding Condition Output Time
Wire Anti-Stick Process Time
Wire-Stick Check Time
Gas Afterflow Time
A. PZ: POSITION SET ZONE
Specifies the distance from the actual position of the manipulator (the position fed back from the encoder of each axis of the manipulator) to
the welding end point, where the manipulator is regarded to have reached the welding end point.
When the position set zone is set to 1, the condition switches to the crater condition after the manipulator completely reaches the welding end point and stops.

Crater at the end of the weld bead
If the timings of the manipulator’s stop and the switch of the crater condition are not right, there may be rare occasions when the crater part becomes longer as shown below.
In this case, it is effective to set the position set zone to 0 in order to synchronize precisely the timings of the manipulator’s stop and the switch of the crater condition.

When the position set zone is set to 1, the cycle time extends by 0.1 to 0.2 seconds, because the judgment that the manipulator has reached the welding end point is delayed, compared with when the position set zone is set to other than 0.
Set the appropriate position set zone depending on the shape of crater.

B. MTS: MONITORING TIME
Wire stick monitoring time at the end of welding.

C. AST: ANTI-STICK ON
Check this box so that the process of automatic wire-stick release will be performed if wire-stick is detected at the end of welding.

When the anti-stick function is ON, the cycle time becomes longer than when it is OFF.
- When the anti-stick is ON:
 After the wire stick monitoring of the step B above, the manipulator starts to move.
- When the anti-stick is OFF:
 Simultaneously with the start of the wire stick monitoring of the step B above, the manipulator starts to move.

D. GAS: AFTERFLOW TIME
Specifies with the length of time to feed the shielding gas while the manipulator is moving from the end of welding to the next step.
10.5.5.3 Comment

Comment can be added to every ARC END COND. file number. It is input or displayed with the arc start cond. window.

A. COMMENT

The comment added to each file number is displayed in this box. Up to 32 characters can be input for the comment.

- **Inputting Comment**
 1. Move the cursor to the comment displaying box.
 2. Press [ENTER].
 - The software keypad window appears.
3. Input the comment and press [ENTER].

4. The window returns to the arc end cond. window and the input comment is displayed.
10.5.6 Welding Speed Specifications

The welding speed is determined by one of the following:

- Welding speed specified by the play speed of the move instruction
- Welding speed specified by the ARCON instruction or the arc start condition file

When the move instruction does not specify a speed

Welding is performed at the welding speed of the ARCON instruction.

When the move instruction and ARCON instruction specify different speeds

Priority is given to one according to the parameter values described below. To switch the priorities, change the parameter setting.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AxP005</td>
<td>Move instruction speed is priority</td>
<td>0</td>
</tr>
<tr>
<td>x: Application number</td>
<td>ARCON instruction speed is priority</td>
<td>1</td>
</tr>
</tbody>
</table>
Welding Execution Function During Teach Mode

When the [INTERLOCK] + [WELD ON/OFF] keys are pressed simultaneously, the LED is lit with a beep sound, turning ON the system output signal "#50065: PERMISSIBLE WORK IN TEST RUN".

When pressing these keys once again, the LED goes out and the beep sound stops, then the system output signal "#50065: PERMISSIBLE WORK IN TEST RUN" turns OFF.

The standard ladder program of arc welding application supports the function that welding can be performed during the teach mode by the signal "#50065: PERMISSIBLE WORK IN TEST RUN".

*Welding can be performed during a test run only when the security mode is the management mode.

*Welding cannot be performed during a test run even while the LED is lit unless the security mode is the management mode.

During a test run of the teach mode, the manipulator may not move at the actual welding speed due to the speed limit in some cases. (e.g. at a welding position/point where the manipulator significantly changes its posture during a coordinated motion with a station)

In these cases, weld bead may be thicker compared with the bead that is formed during the playback operation, or burn through may occur as the speed of the welding is different from the speed that is appropriate for the welding conditions (current and voltage).
10.5.8 Notes on Arc Welding

10.5.8.1 Notes on Restarting

If the manipulator stops during welding, the arc is automatically turned OFF. When restarted, the arc is automatically turned ON, and the manipulator starts welding towards the step where the cursor is located on the screen. The welding current and voltage when arc is turned ON again are the same as those before stopping.

If the manipulator is moved from the stopped position using the axis keys, return the manipulator to the stopped position before restarting for safe operation.

It is possible to move the manipulator to the stopped position automatically at restarting and start welding again by the parameter setting (S2C422, S2C423).

[FWD] or [BWD] can be used for moving to the stopped position.

S2C422: Restart Operation after E-Stop (Set 2).
S2C423: Restart Operation after Jog Operation (Set 2).

Refer to “DX100 Concurrent IO·Parameter” for details of the parameter setting.
10.6 **Arc Retry Function**

An attachment to the welding start position of a non-conductive material, such as rust, soot, and oil, may cause an arc start failure during arc start. An arc start failure stops the manipulator and interrupts work. This is prevented by using the arc retry function.

When an arc start failure occurs and this arc retry function is performed, the ARCON process is repeated according to the retry condition defined in the Arc Auxiliary Condition File. The manipulator repeats the ARCON procedure as it slightly shifts its position near the arc starting point. After that, the manipulator returns to the starting point when an arc starts and continues working.

Fig. 10-13: Retry Function Example

1. Arc Start Failure
2. The Retry Procedure
 - Returns toward the previous step and performs a retract inching, then returns to the teaching starting point and repeats the ARCON procedure.
3. After a successful arc start, the manipulator continues to weld.
10.6 Arc Retry Function

10.6.1 Arc Retry Function Setting

A. NO. (0 to 9 times)
 Maximum repetition count for the arc retry process.

B. RETRACT TIME (0 to 2.50 seconds)
 Wire retracting time in the arc retry process.

C. REPLAY DISTANCE (0 to 99.9 mm)
 Manipulator moving distance for an arc retry process at the replay mode.

D. SPEED (1 to 600 cm/min)
 Speed of the manipulator when it returns to the welding start point at arc retry.

E. CURRENT (1 to 999A)
 Welding current output when the manipulator returns to the welding start point at arc retry.

F. VOLTAGE (0 to 50.0V, 50 to 150%)
 Welding voltage output when the manipulator returns to the welding start point at arc retry.

When the twin synchronous function, etc. is used, the arc retry function cannot be used.
10.7 Arc Restart Function

When the manipulator stops because of an arc failure, a simple start would leave a break in the welding line. This is prevented by using the arc restart function.

When the arc restart function is executed, the manipulator is restarted using the method specified in the Arc Auxiliary Condition File*1.

There are three methods to restart the manipulator after an arc failure:

• With the arc OFF the controller outputs an error signal and the message “RESTARTING FOR ARC”, but continues manipulator’s movement. After exiting the arc section, the controller outputs the message “END OF ARC RESTARTING”, and continues the operation.

• With the arc ON trial, the manipulator automatically returns for the specified overlap length*2, and then continues welding.

• The manipulator stops and waits for a manual intervention. After intervention (A), the operator should return the manipulator to the original stop position (B). And then press [START] again. The manipulator returns for the specified overlap length*2 (C) and continues the work.

*1 The arc auxiliary condition file defines the following: current, voltage and speed at restart; method of restart after a gas shortage or wire shortage.
*2 The overlap length (the length of the section where welding is repeated after a restart) can be set as desired (0 to 99.9mm).

NOTE

A cursor operation resets the “restarting” status. Therefore, the arc restart function cannot be executed after the cursor operation.
10.7.1 Arc Auxiliary Condition File

10.7.1.1 Arc Restart Function Setting

A. NO. (0 to 9 times)
Maximum repetition count for the arc restart process regarding the same welding section.

B. LAP DISTANCE (0 to 99.9mm)
Overlapped welding distance in a restart process.

C. SPEED (1 to 600 cm/min)
Speed of the manipulator as it moves backward in an arc restart process.

D. CURRENT (1 to 999A)
Welding current output when the manipulator moves backward in an arc restart process.

E. VOLTAGE (0 to 50.0V, 50 to 150%)
Welding voltage output when the manipulator moves backward in an arc restart process.

F. RESTART MODE

1. **ARC FAILURE**
 (1) NO RESTART:
 - Arc restart function is not used. The manipulator stops with the arc failure alarm.
 (2) ARCOF CONTINUE:
 - With the arc OFF, the controller outputs the “Restarting for Arc” message and the manipulator keeps moving.
 - After moving through the arc section, the controller outputs the “End of Arc Restarting” message and resumes a normal welding operation.
 - The message is reset when OUT #2045 is turned ON and OFF.

3. **AUTO RESTART**:
 - The manipulator automatically restarts.

4. **SEMI-AUTO RESTART**:
 - The manipulator stops and waits for manual intervention.
 - The manipulator restarts as the operator presses [START] again.
 - The restart status is reset when OUT #2046 is turned ON and OFF.
2. GAS FAILURE
 (1) NO RESTART:
 – Arc restart function is not used. The manipulator moves with the gas shortage alarm.

 (2) ALARM AT ARC END:
 – The manipulator continues the welding operation until it reaches the welding end point, where it stops with an alarm.

 (3) SEMI-AUTO RESTART:
 – The manipulator stops and waits for manual intervention.
 – The manipulator restarts as the operator presses [START] again.
 – The restart status is reset when OUT #2046 is turned ON and OFF.

3. WIRE FAILURE
 (1) NO RESTART:
 – Arc restart function is not used. The manipulator moves with the wire shortage alarm.

 (2) ALARM AT ARC END:
 – The manipulator continues the welding operation until it reaches the welding end point, where it stops with an alarm.

 (3) SEMI-AUTO RESTART:
 – The manipulator stops and waits for manual intervention.
 – The manipulator restarts as the operator presses [START] again.
 – The restart status is reset when OUT #2046 is turned ON and OFF.

When the complete synchronization of the twin synchronous function is used, the arc restart function cannot be used.
10.8 Automatic Wire-stick Release Function

- **Automatic Wire-stick Release Function**
 The automatic wire-stick release function can be used if wire stick is detected in spite of the anti-stick process.

 When this function is used, the manipulator does not immediately output the wire sticking signal upon detecting a wire stick, but automatically attempts to release the sticking by applying a certain voltage.

 Only when the stick release process has failed for a specified number of times, the manipulator stops and outputs the wire stick signal.

 This function is specified in the arc end condition file or the ARCOF instruction’s additional items. When it is used, the voltage and number of attempts are set in the arc auxiliary condition file.

- **Manipulator Stopped by Wire Stick**
 If a wire stick occurs at the end of welding, the manipulator immediately stops in the hold status. While the manipulator remains in the hold status, the [HOLD] lamp lights and the external system output signal “Wire Sticking” is output.
10.8 Automatic Wire-stick Release Function

10.8.1 Arc Auxiliary Condition File

10.8.1.1 Automatic Wire Anti-stick Function Setting

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. (0 to 9 times)</td>
<td>CURRENT (1 to 999A)</td>
<td>VOLTAGE (0 to 50.0V, 50 to 150%)</td>
<td>CLOCK (0 to 2.00 seconds)</td>
</tr>
<tr>
<td>Maximum repetition count for the wire-sticking release process.</td>
<td>The welding current output in the wire-sticking release process.</td>
<td>The welding voltage output in the wire-sticking release process.</td>
<td>Sticking release process duration.</td>
</tr>
</tbody>
</table>

A. NO. (0 to 9 times)
- Maximum repetition count for the wire-sticking release process.

B. CURRENT (1 to 999A)
- The welding current output in the wire-sticking release process.

C. VOLTAGE (0 to 50.0V, 50 to 150%)
- The welding voltage output in the wire-sticking release process.

D. CLOCK (0 to 2.00 seconds)
- Sticking release process duration.
10.9 Wire-stick Check Function

- Anti-Stick Function
 The wire may stick to the workpiece after welding is completed (1).
 As an anti-stick process, the Power Source temporarily increases the voltage at the end of welding (2).
 After the anti-stick process, a wire stick check is performed (3).
 If the anti-stick process failed and a wire stick is detected, the manipulator enters a hold status or performs the automatic sticking release process, depending on the anti-stick condition specified.
 Time required for the anti-stick process differs depending on the Power Sources.
 The anti-stick process times for different Power Sources is registered in the Power Source characteristic file.
 The wire check is performed after the anti-stick process time has elapsed.

1. Welding End (Wire Stick Occurrence)

2. Anti-stick Process

3. Wire Stick Check
 - Wire stick check is performed after elapsing of the anti-stick process time defined in the Power Source characteristic file.

-- Wire stick check is performed after elapsing of the anti-stick process time defined in the Power Source characteristic file.

“Wire stick” refers to the contact of the wire to the workpiece as observed after the arc-OFF.
10.10 Slope Up/Down Function

The slope up/down function is used during welding to gradually change the welding condition.

This function is extremely effective in conducting heat for such operations on workpieces such as the one shown below.

During the welding of a workpiece as shown below, especially during the period before the end of welding, the tearing or dropping of metal can occur quite frequently due to heat conduction.

However, even in this example, if the welding condition is gradually decreased before the end of welding, tearing and dropping of metal can be prevented.

Reference Job

<table>
<thead>
<tr>
<th>NOP</th>
<th>NO.</th>
<th>MOVL V=500</th>
<th>ARCON AC=210 AVP=100</th>
<th>MOV C V=80</th>
<th>MOV C V=80</th>
<th>MOV C V=80</th>
<th>MOV C V=80</th>
<th>ARCCTE AC=180 AVP=100 DIS=20.0</th>
<th>MOV C V=80</th>
<th>ARCOF AC=160 AVP=80 T=0.30</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV C V=80</td>
<td></td>
<td></td>
<td></td>
<td>Main condition</td>
<td>Welding condition gradually decreases. (Slope Up/Down Func.)</td>
<td>End condition</td>
<td>Manipulator stop (0.3s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>P2</td>
<td>Pn-1</td>
<td>Pn</td>
<td>210</td>
<td>180</td>
<td>160</td>
<td>20mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.10.1 ARCCTS

10.10.1.1 Function

The ARCCTS instruction is used with a move instruction to gradually change the welding current and voltage during welding.

A gradual change in the current or voltage is specified by an aimed value and the length of the slope up/down section. The length of the slope up/down section is set from the move start point (DIS).

If no length is specified, the entire section of the move instruction is used.

10.10.1.2 Syntax

```
ARCCTS

1. WELDn

2. AC= Current output value (A)

3. AV= Voltage output value (V)

4. AVP= Percentage against the proper voltage output value (%)

5. AN3= Voltage target value (V)

6. AN4= Voltage target value (V)

7. AMP= Weaving half-amplitude

8. V= TCP speed

9. ASF= File number

9. DIS= Slope up/down section length (mm)
```
10.10.1.3 Explanation

- **WELD1/WELD2/WELD3/WELD4/WELD5/WELD6/WELD7/WELD8 [1]**
 Choose one of the following tags.

 These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.

 When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDn</td>
<td>Selects the Power Source 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

- **AC = Current output value [2]**
 This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AC = Current output value | Specifies the target value of welding current. | Current value: 1 to 999 A
The current output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. |

- **AV = Voltage output value /AVP [3] = Percentage against the proper voltage output value [4]**
 Be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AV = Voltage output value | Specifies the target value of welding voltage. | Voltage value: 0.1 to 50.0 V
The voltage output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable.
(Unit: 0.1 V) |
| AVP = Percentage against the proper voltage output value | Specifies the target value of welding voltage by the percentage against the proper output value of welding voltage. | Percentage: 50 to 150%
The voltage output value can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. |
AN3 = Voltage target value [5]
This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AN3 = Voltage target value | Specifies the voltage target value for the analog output 3. | Target value: -14.00 to +14.00 V
The voltage target value can be specified by I/LI]/ /LI[] variable.
(Uunit: 0.01 V) |

AN4 = Voltage target value [6]
This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AN4 = Voltage target value | Specifies the voltage target value for the analog output 4. | Target value: -14.00 to +14.00 V
The voltage target value can be specified by I/LI]/ /LI[] variable.
(Uunit: 0.01 V) |

DIS = Slope up/down section length [9]
This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| DIS = Slope up/down section length | Specifies the slope up/down section length where the current and voltage are gradually changed. The length is set as the distance from the move start point. If no length is specified, the entire section of the move instruction is used. | Length: 0.1 to 6553.5 mm
The slope up/down section length can be specified by B/I/D/B]/]/D[]/LB/L/LD/LB[]/LI[]/LD[] variable.
(Uunit: 0.1 mm) |

<Example>

The current and voltage are gradually changed as the manipulator moves toward the move end point specified by the move instruction. The aimed current and voltage values are 150A and 16.0V respectively. The slope up/down section length is 100mm from the move start point.

```
ARCCTS
  AC=150
  AV=16.0
  DIS=100.0

MOVL V=80
```
10.10 Slope Up/Down Function

Gradually Decreasing Current or Voltage

- Value immediately before execution of move instruction
- ARCCTS target value
- ARCCTS executed DIS = xxx
- Move section specified by move instruction
- Welding continues

Gradually Increasing Current or Voltage

- Value immediately before execution of move instruction
- ARCCTS target value
- ARCCTS executed DIS = xxx
- Move section specified by move instruction
- Welding continues

NOTE

- The ARCCTS or ARCCTE instruction is valid for only one step.
- If the move section specified by the move instruction is shorter than the distance specified by the slope up/down section length (DIS=XXX), the change is performed equally in the entire section of the move instruction.
- If the ARCCTS or ARCCTE instruction specifies the distance as zero (DIS=0.00), the change is performed equally in the entire section of the move instruction.
- A pair of ARCCTS and ARCCTE instructions can be used on one move instruction. In this case, the ARCCTS instruction is executed first, then the ARCCTE instruction is executed in the remaining part of the move section. If the remaining part of the move section is 0mm, the value instantly changes to the value specified in the ARCCTE instruction.
10.10.1.4 Registering the ARCCTS Instruction

1. Press [INFORM LIST].
 - The instruction list dialog box appears.

2. Select the ARCCTS instruction.
 - The ARCCTS instruction appears in the input buffer line.

3. Press [SELECT] and set the welding condition in the DETAIL EDIT window.
 - The DETAIL EDIT window appears.
(1) Move the cursor to the item to be set and press [SELECT].

(2) Type the welding conditions using the numeric keys and press [ENTER].

(3) To add the additional items, place the cursor on the item with the “UNUSED” condition and press [SELECT]. The selection dialog box appears.
 To delete the additional items, line up the cursor with the additional items and select “UNUSED”.

4. Press [ENTER].
 – The set contents are displayed in the input buffer line.
5. Press [ENTER].

- The set contents are registered in the job.

```
JOB CONTENT
JOB NAME: WORK A
CONTROL GROUP: R1
STEP NO: 0003
TOOL: 00
0000 NOP
0001 MOVJ VJ=80.00
0002 MOVL V=800
0003 ARCON
0004 MOVL V=50
0005 ARCCTS AC=134 AVP=100
0006 END
```

- Press [CANCEL] to return to the JOB CONTENT window when the set contents are not to be registered.

```
JOB CONTENT
JOB NAME: WORK A
CONTROL GROUP: R1
STEP NO: 0003
TOOL: 00
0000 NOP
0001 MOVJ VJ=80.00
0002 MOVL V=800
0003 ARCON
0004 MOVL V=50
0005 ARCCTS AC=200 AVP=100
0006 END
```
10.10.2 ARCCTE

10.10.2.1 Function

The ARCCTE instruction is used with a move instruction to gradually change the welding current and voltage during welding.

A gradual change in the current or voltage is specified by an aimed value and the length of the slope up/down section. The length of the slope up/down section is measured from the move end point (DIS).

If no length is specified, the entire section of the move instruction is used.

10.10.2.2 Syntax
10.10.2.3 Explanation

- **WELDn [1]**
 Choose one of the following tags.
 These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.
 When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELDn</td>
<td>Selects the Power Source 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

- **AC = Current output value [2]**
 This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AC = Current output value | Specifies the target value of welding current. | Current value: 1 to 999 A
 The current output value can be specified by B/I/D/ B[I]/D[/]/LB/LI/LD/LB[/]/ LI[/]/LD[/] variable. |

- **AV = Voltage output value /AVP [3] = Percentage against the proper voltage output value [4]**
 Be sure to choose either of the following.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| AV = Voltage output value | Specifies the target value of welding voltage. | Voltage value: 0.1 to 50.0 V
 The voltage output value can be specified by B/I/D/ B[I]/D[/]/LB/LI/LD/LB[/]/ LI[/]/LD[/] variable.
 (Unit: 0.1 V) |
| AVP = Percentage against the proper voltage output value | Specifies the target value of welding voltage by the percentage against the proper output value of welding voltage. | Percentage: 50 to 150%
 The voltage output value can be specified by B/I/D/ B[I]/D[/]/LB/LI/LD/LB[/]/ LI[/]/LD[/] variable. |
10 Arc Welding Application
10.10 Slope Up/Down Function

- **AN3 = Voltage target value [5]**
 This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN3 =</td>
<td>Specifies the voltage target value for the analog output 3.</td>
<td>Target value: -14.00 to +14.00 V</td>
</tr>
<tr>
<td>Voltage target value</td>
<td></td>
<td>The voltage target value can be specified by I/LI/I[]/LI[] variable. (Unit: 0.01 V)</td>
</tr>
</tbody>
</table>

- **AN4 = Voltage target value [6]**
 This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4 =</td>
<td>Specifies the voltage target value for the analog output 4.</td>
<td>Target value: -14.00 to +14.00 V</td>
</tr>
<tr>
<td>Voltage target value</td>
<td></td>
<td>The voltage target value can be specified by I/LI/I[]/LI[] variable. (Unit: 0.01 V)</td>
</tr>
</tbody>
</table>

- **DIS = Slope up/down section length [7]**
 This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIS =</td>
<td>Specifies the slope up/down section length where the current and voltage are</td>
<td>Length: 0.1 to 6553.5 mm</td>
</tr>
<tr>
<td>Slope up/down section length</td>
<td>gradually changed. The length is set as the distance from the move start point.</td>
<td>The slope up/down section length can be specified by B/I/D/I[]/I[]/LB/LI/LD/LB[]/LI[]/LD[] variable. (Unit: 0.1 mm)</td>
</tr>
<tr>
<td></td>
<td>If no length is specified, the entire section of the move instruction is used.</td>
<td></td>
</tr>
<tr>
<td>AEF#</td>
<td>Specifies the arc welding end condition file number. Conditions to end welding are registered in the arc welding end condition file.</td>
<td>No. 1 to 1000</td>
</tr>
<tr>
<td>(Arc welding end condition file number)</td>
<td></td>
<td>The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
</tbody>
</table>

<Example>

The current and voltage are gradually changed as the manipulator moves toward the move end point specified by the move instruction. The aimed current and voltage values are 150A and 16.0V respectively. The slope up/down section length is 100mm from the move end point.

```
ARCCTE AC=150
         Target value of welding current
AV=16.0
         Target value of welding voltage
DIS=100.0
         Slope up/down section length (distance from move end point)

MOVL V=80
```
10.10 Slope Up/Down Function

Gradually Decreasing Current or Voltage

- Value immediately before execution of move instruction
- ARCCTE target value
- ARCCTE executed
- Move section specified by move instruction
- Welding continues

Gradually Increasing Current or Voltage

- Value immediately before execution of move instruction
- ARCCTE target value
- ARCCTE executed
- Move section specified by move instruction
- Welding continues

• The ARCCTS or ARCCTE instruction is valid for only one step.
• If the move section specified by the move instruction is shorter than the distance specified by the slope up/down section length (DIS=XXX), the change is performed equally in the entire section of the move instruction.
• If the ARCCTS or ARCCTE instruction specifies the distance as zero (DIS=0.00), the change is performed equally in the entire section of the move instruction.
• A pair of ARCCTS and ARCCTE instructions can be used on one move instruction. In this case, the ARCCTS instruction is executed first, then the ARCCTE instruction is executed in the remaining part of the move section. If the remaining part of the move section is 0mm, the value instantly changes to the value specified in the ARCCTE instruction.
10.10.2.4 Registering the ARCCTE Instruction

1. Press [INFORM LIST].
 - The instruction list dialog box appears.

2. Select the ARCCTE instruction.
 - The ARCCTE instruction appears in the input buffer line.

3. Press [SELECT] and set the welding condition in the DETAIL EDIT window.
 - The DETAIL EDIT window appears.
(1) Move the cursor to the item to be set and press [SELECT].

(2) Type the welding conditions using the numeric keys and press [ENTER].

(3) To add the additional items, place the cursor on the item with the “UNUSED” condition and press [SELECT]. The selection dialog box appears. To delete the additional items, line up the cursor with the additional items and select “UNUSED”.

4. Press [ENTER].
 - The set contents are displayed in the input buffer line.
5. Press [ENTER].
 – The set contents are registered in the job.

 ![Image of JOB CONTENT window with set contents registered]

 – Press [CANCEL] to return to the JOB CONTENT window when the set contents are not to be registered.

 ![Image of JOB CONTENT window without set contents registered]
10.11 Enhanced Welding Condition File Function

The enhanced welding condition file function improves the method of setting the welding condition file. This function can be used as follows:

- Analog output to the Power Source increases by 2 channels. Therefore, Power Sources with polarity ratio control can be used.

When the type of the file changes, the welding start/end condition file is initialized.

NOTE

To load a welding condition file that has been saved on an external memory device, files that are different type from those being used cannot be loaded. Load files of the same type.
10.11 Enhanced Welding Condition File Function

10.11.1 Function Setting

To change the type of the welding condition file, set as described below.

1. While pressing [MAIN MENU], turn ON the power. Then change the security mode to the management mode.
2. Select {SYSTEM} from the main menu and select {SETUP}.

– The SETUP window appears.

3. Select “OPTION FUNCTION”.

– The OPTION FUNCTION window appears.

Change the setting of the welding condition files in the management mode.

In the operation mode or editing mode, the setting status can only be referred to.
4. Select “ARC WELDING”, then select either “STANDARD” or “ENHANCED”.
 - The selection dialog box appears.

 ![Selection Dialog Box]

 - The confirmation dialog box appears. Selecting “YES” changes the file type and initializes the related files (welding start/end condition files).

 ![Confirmation Dialog Box]

 - Selecting “NO” does not change the file type or initialize the related files.

5. Turn ON the power supply again.
10.12 Weaving Condition File

10.12.1 Weaving Basic Coordinate System

Weaving is performed based on the following coordinate system. This coordinate system is automatically generated when weaving is executed.

- **Wall Direction:** Z-direction of the robot axis
- **Horizontal Direction:** The direction to the approach point from the wall
- **Direction of Travel:** The direction in which the manipulator moves from the weaving start point to the end point

![Weaving Coordinate System Diagram](image)

SUPPLEMENT

The approach point is a point indicated by a step immediately before the step where weaving starts.

NOTE

Depending on the mounting status and shape of the workpiece, a definition of the above coordinate system may not be sufficient to generate a weaving pattern. In this case, register the reference point REFP 1 or REFP 2.

For details, refer to section 10.12.4.2 "Editing the Condition Data" on page 10-117.
10.12.1.1 Cases that Require the Registration of Reference Points

The registration of the reference point REFP1 or REFP2 is not usually required. They are required only with a special workpiece condition, etc.

The REFP1, that defines the wall direction, is a point on the wall surface or its expansion plane. The REFP2, which defines the horizontal direction, is a point at the right or left side of the wall.

Example 1 REFP1 is registered because the wall direction is not parallel to the Z-axis of the robot coordinates.

Example 2 REFP2 is registered because the approach point is at another side of the wall.
10.12.2 WVON

10.12.2.1 Function

This is the weaving start operation.

10.12.2.2 Syntax

The tag to be used varies according to the control group of job.

![Diagram of WVON function and syntax]

<table>
<thead>
<tr>
<th>Tag</th>
<th>Control Group of Job</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>RB2</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>RB3</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>WEV#</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>AMP=</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>FREQ=</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>ANGL=</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>DIR=</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

O: Available
X: Not available
10.12.2.3 Explanation

- **RBn [1]**
 Be sure to choose one of the following tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBn</td>
<td>Specifies the weaving motion of robot 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

- **WEV#** *(Weaving condition file number)*/AMP [2] = **Weaving half-amplitude [3]**
 Be sure to choose one of the following tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEV# *(Weaving condition file number)</td>
<td>Specifies the weaving condition file number.</td>
<td>No. 1 to 16</td>
</tr>
<tr>
<td></td>
<td>Conditions for the weaving motion are registered in the weaving condition file.</td>
<td>The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
<tr>
<td>AMP = Weaving half-amplitude</td>
<td>Specifies the half-amplitude of weaving.</td>
<td>Half-amplitude: 0.1 to 99.9 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The half-amplitude can be specified by B/I/LB/LI/LD/L/LD/LB/LI/LD variable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Unit: 0.1 mm)</td>
</tr>
</tbody>
</table>
FREQ = Weaving frequency [4]
Only when "AMP = Weaving half-amplitude" is selected in the above “WEV# (Weaving condition file number)/AMP [2] = Weaving half-amplitude [3]" on page 10-103, be sure to add the following tag.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| FREQ | Specifies the weaving frequency. | Frequency: 1.0 to 5.0 Hz
The frequency can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. (Unit: 0.1 Hz) |

ANGL = Weaving angle [5]
Only when “AMP = Weaving half-amplitude” is selected in the above “WEV# (Weaving condition file number)/AMP [2] = Weaving half-amplitude [3]” on page 10-103, this tag is added or omitted after “FREQ = Weaving frequency [4]” on page 10-104.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| ANGL | Specifies the weaving angle. | Angle: 0.1 to 180.0 degree
The degree can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. (Unit: 0.1) |

DIR = Starting direction of weaving [6]
This tag can be added or omitted.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
</table>
| DIR | Specifies the starting direction of weaving. | Direction: 0 to 1
0: Forward
1: Backward
The direction can be specified by B/I/D/B[]/I[]/D[]/LB/LI/LD/LB[]/LI[]/LD[] variable. |
Setting conditions for weaving

- **Weaving half-amplitude**
 Specifies the amplitude size of weaving motion.

- **Weaving angle**
 Specifies the angle of weaving motion.

- **Starting direction of weaving**
 Specifies the starting direction of weaving motion.
10.12.2.4 Registering the WVON instruction

This is the instruction to start the weaving operation.

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 – The instruction list dialog box appears.
3. Select “DEVICE”.
4. Select the WVON instruction.
 – The “WVON” instruction appears in the input buffer line.
5. Press [SELECT], and set the file number in the DETAIL EDIT window.
 – Select the file number (1 to 16).
 (1) Move the cursor to the file number and press [SELECT].
(2) Input the file number using the numeric keys and press [ENTER].

6. Press [ENTER].
 – The set contents are displayed in the input buffer line.
 – The set contents are registered in the job.

 – When the set contents are not to be registered, press [CANCEL] to return to the JOB CONTENT window.
10.12.3 WVOF Instruction

10.12.3.1 Function
This is the weaving end instruction.

10.12.3.2 Syntax
The control group of job limits the tag usage.

Table 10-3: Job Type and Control Group

<table>
<thead>
<tr>
<th>Type</th>
<th>Control Group of Job</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>Job with one manipulator (Standard)</td>
<td></td>
</tr>
<tr>
<td>Coordinated</td>
<td>Job with two manipulators</td>
<td>Option</td>
</tr>
</tbody>
</table>

Table 10-4: Tag Usage Limitation

<table>
<thead>
<tr>
<th>Tag</th>
<th>Control Group of Job</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>RB2</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>RB3</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>RB4</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

O: Available
X: Not available
10.12.3.3 Explanation

 Be sure to choose one of the following tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBn</td>
<td>Specifies the weaving motion of robot 1 to 8.</td>
<td></td>
</tr>
</tbody>
</table>

<Example>

```
NOP
MOVJ VJ=50.00       · · · Step 1
MOVL V=220          · · · Step 2
MOVL V=200          · · · Step 3
WVON WEV#(2)        · · · Weaving start
ARCON AC=220 AVP=100 T=0.50 · · · Welding start
MOVL V=138          · · · Step 4
ARCOF AC=160 AVP=90 T=0.50 · · · Welding end
WVOF                · · · Weaving end
MOVL V=200          · · · Step 5
MOVJ VJ=50.00       · · · Step 6
END
```

Diagram:

The diagram shows a weaving motion of robot arms. The robots are positioned to form a weaved pattern on a workpiece. The diagram illustrates the movement of the robots in a coordinated manner to achieve the weaving operation. Each robot arm is depicted in a sequential motion, highlighting the weaving process. The motion appears smooth and controlled, essential for maintaining the quality and precision of the weld.
10.12.3.4 Registering WVOF instruction

This is the instruction to end the weaving operation.

1. Move the cursor to the address area.
2. Press [INFORM LIST].
 - The instruction list dialog box appears.
3. Select “DEVICE”.

4. Select the “WVOF” instruction.

5. Press [ENTER].
 - The set contents are registered in the job.
10.12.4 WEAVING CONDITION Window

<table>
<thead>
<tr>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEAVING CONDITION Window

COND NO. (1 to 255)
Displays a weaving condition file number between 1 and 255.

B. MODE, C. SMOOTH
There are three weaving modes: single, triangle, and L-type. Each mode can be specified with or without smoothing.

- **Single**
- **Triangle**
- **L-type**

D. SPEED TYPE (FREQUENCY, MOTION TIME)
Specifies the setting type of the weaving motion speed.
Two types are available: setting by frequency and setting by the weaving time in each weaving section.
E. FREQUENCY

Specifies the weaving frequency if “SPEED TYPE” is set to “FREQUENCY”. Note that the maximum frequency is determined by the amplitude as illustrated in the graph below. Specify a frequency within the allowable range.

F. PATTERN

- AMPLITUDE
 Specifies the amplitude size at weaving when “MODE” is set to “SINGLE”.

- VERTICAL, HORIZONTAL
 If “MODE” is set to “TRIANGLE” or “L-TYPE”, the data for the triangle must be set to define the weaving pattern.
• **ANGLE**
 Specifies the angle of weaving motion.

• **TRAVEL ANGLE**
 Specifies the travel angle of weaving motion.
G. TIMER (MODE)

As shown below, a single weaving cycle is divided into three or four sections. The timer mode can be specified for each section.

Set one of the following timer modes:
- **WEAV STOP**: Weaving stops but manipulator moves.
- **ROBOT STOP**: Manipulator stops.

H. MOTION TIME

If “SPEED TYPE” is set to “MOTION TIME”, the weaving time specified here determines the moving speed in each of the weaving sections (explained in “TIMER (MODE)” above).

I. STOP TIMER

Specifies the timer to determine weaving stop or manipulator stop for each section (explained in “TIMER (MODE)” above).
J. HOVER WEAVING COND. (option)

- **SET (ON/OFF)**
 Specifies whether hover weaving is used or not.

- **TIMER**
 Finishes hover weaving when the time specified here ends.

- **INPUT SIGNAL**
 Finishes hover weaving when the input signal specified here is input.

Reference Job

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOP</td>
<td></td>
</tr>
<tr>
<td>MOVJ VJ=10.00</td>
<td></td>
</tr>
<tr>
<td>MOVJ VJ=25.00</td>
<td></td>
</tr>
<tr>
<td>REFP 3</td>
<td></td>
</tr>
<tr>
<td>ARCON ASF#(1)</td>
<td></td>
</tr>
<tr>
<td>WVON WEV#(1)</td>
<td></td>
</tr>
<tr>
<td>MOVL V=60</td>
<td></td>
</tr>
<tr>
<td>WVOF</td>
<td></td>
</tr>
<tr>
<td>ARCOF</td>
<td></td>
</tr>
<tr>
<td>MOVJ VJ=25.00</td>
<td></td>
</tr>
<tr>
<td>MOVJ VJ=25.00</td>
<td></td>
</tr>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

Welding start point.
Reference point for defining the direction of travel.

*Teaching by interpolation instruction, not by joint interpolation.
The same point with the welding start point.

In hover weaving, the start and end points are the same. Therefore, the weaving direction cannot be determined. For this reason, the user needs to register a reference point (REFP 3) to define the direction of travel.

Diagram

- **Wall direction**: Robot axis Z+ direction
- **Horizontal Direction**: Direction from the wall to approach point
- **Direction of Travel**: Direction from weaving start point to REFP3

In hover weaving, the start and end points are the same. Therefore, the arc retry function and arc restart function are not available.
10.12.4.1 Displaying a Weaving File

1. Select {ARC WELDING} under the main menu.

2. Select {WEAVING}.

3. Display the desired file number.

 (1) The desired file can be called up by using the page key .

 (2) Press the page key to call the next file.

 (3) Press [SHIFT]+ page key to call the previous file.
10.12.4.2 Editing the Condition Data

1. Select the item to be edited.

<table>
<thead>
<tr>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEAVING CONDITION</td>
<td>COND NO.</td>
<td>1/255</td>
<td></td>
</tr>
</tbody>
</table>

- **MODE**: SINGLE
- **SMOOTH**: ON
- **SPEED TYPE**: FREQUENCY
- **FREQUENCY**: 3.5 Hz
- **AMPLITUDE**: 2.000 mm
- **VERTICAL**: 10.000 mm
- **HORIZONTAL**: 10.000 mm
- **ANGLE**: 45.00 deg.
- **TRAVEL ANGLE**: 5.00 deg.
- **<TIMER MODE>**
 - POINT1: WEAV STOP
 - POINT2: WEAV STOP
 - POINT3: WEAV STOP

2. Input the value using the numeric keys.

<table>
<thead>
<tr>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEAVING CONDITION</td>
<td>COND NO.</td>
<td>1/255</td>
<td></td>
</tr>
</tbody>
</table>

- **MODE**: SINGLE
- **SMOOTH**: ON
- **SPEED TYPE**: FREQUENCY
- **FREQUENCY**: 5.0 Hz
- **AMPLITUDE**: 2.000 mm
- **VERTICAL**: 10.000 mm
- **HORIZONTAL**: 10.000 mm
- **ANGLE**: 45.00 deg.
- **TRAVEL ANGLE**: 5.00 deg.
- **<TIMER MODE>**
 - POINT1: WEAV STOP
 - POINT2: WEAV STOP
 - POINT3: WEAV STOP

Main Menu Simple Menu 3 (Turn on servo power)
10.12.5 Prohibiting Weaving

If the weaving instruction is registered during the “CHECK” operation in the play mode or “TEST RUN” or [FWD] key operation in the teach mode, weaving is performed as well as other move instructions.

However, in the cases when weaving should not be performed because the manipulator collides with a workpiece, etc., follow the procedure below to prohibit weaving.

10.12.5.1 Method to Prohibit Weaving During a “CHECK” operation

2. Select {UTILITY}.
3. Select {SETUP SPECIAL RUN}.
 – The SPECIAL PLAY window appears.
4. Select “WEAV PROHIBIT IN CHK-RUN”.
 – Each time [SELECT] is pressed, “VALID” and “INVALID” alternate.
10.12.5.2 Method to Prohibit Weaving During the “TEST RUN” or FWD Operation

1. Press [AREA] on the JOB CONTENT window in the TEACH mode.
2. Select {UTILITY}.
3. Select {SETUP SPECIAL RUN}.
 - The SPECIAL TEACH window appears.
4. Select “WEAV PROHIBIT IN TEST RUN/NEXT”.

10.12.5.3 Method to Prohibit Weaving by Means of a System Input Signal

The system input signal 40047 is used.

The system input signal can prohibit weaving at any time during a play operation, regardless of whether or not it is a check operation.
10.13 Changing Welding Conditions During Playback

10.13.1 ARC COND ADJUSTMENT Window

While the ARC COND ADJUSTMENT window is displayed in the play mode, the welding current and voltage can be changed using the function keys.

The arc welding performance during playback changes with the welding current and voltage. The adjusted data of the current and voltage values can be reflected in the associated instructions or welding condition files.

A. CURR (A)/VOLT (%)

The welding current value and welding voltage value are displayed.

B. DATA (Change data or No change data)

Specifies whether or not to rewrite the data of condition file or additional item.

The data are rewritten when the execution of the instruction which includes the changed condition data ends.

C. INST

The last instruction that sets the welding current or voltage is displayed. The instruction includes the following:

• ARCON

• ARCSET

NOTE Changing the welding conditions during playback is enabled only when the command condition is analog type.
10.13 Changing Welding Conditions During Playback

10.13.1.1 Displaying the ARC COND ADJUSTMENT Window

2. Select {UTILITY}.
3. Select {WELD COND. ADJUST.}.

Changing the Welding Conditions

1. Line up the cursor with the current or voltage condition to be adjusted.
 - The current and voltage can be independently changed.

2. Select {WELD COND. ADJUST.}.
 - Press the key [CUR/VOL] to increase the welding current and the welding voltage.
 - Press the key [CUR/VOL] to decrease the welding current and the welding voltage.
 - Each time the key is pressed, the current value changes in increments of 1A, and the voltage value changes in increments of 1% or 0.1V.
Editing “DATA”

1. Select “DATA”.
 - Each time [SELECT] is pressed, the setting alternates between “No change data” and “Change data”.

```
ARC COND ADJUSTMENT
CURR(A) : 200 INST : ARCON
VOLT(%) : 100 INST : ARCON
DATA : No change data

ARC COND ADJUSTMENT
CURR(A) : 200 INST : ARCON
VOLT(%) : 100 INST : ARCON
DATA : Change data
```

NOTE

Even if control jumps from one job to another job, rewriting of the arc condition for the former job is performed.
10.13.2 Notes on Modification of Welding Conditions

10.13.2.1 When Condition Data cannot be Modified

In the following cases, the window returns to the previous window of the ARC COND ADJUSTMENT window. Even if the function keys are pressed, current and voltage cannot be modified.

- When the mode is switched (to the teach mode, etc).
- When the emergency stop is activated.

The maximum current and voltage values are determined according to the voltage and current characteristics of the Power Source.

< Example >

When using a Power Source with the current characteristics as shown in the following table:

When the data points are interpolated on the graph, it can be observed that the maximum reference value (14.00V) is reached when the welding current specified by the ARCON instruction is 395 A. This becomes the maximum value.

Fig. 10-14: Welding Current Output Characteristics

<table>
<thead>
<tr>
<th>Reference Value (V)</th>
<th>Measured Value (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>110</td>
</tr>
<tr>
<td>4.40</td>
<td>165</td>
</tr>
<tr>
<td>6.40</td>
<td>220</td>
</tr>
<tr>
<td>8.30</td>
<td>265</td>
</tr>
<tr>
<td>10.50</td>
<td>315</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
10.13.2.2 ARCON Instruction

The ARCON instruction without an additional item is not subject to arc condition rewriting.

- ARCON ASF#(1) : Current and voltage values can be rewritten.
- ARCON AC=220 AVP=100: Current and voltage values can be rewritten.
- ARCON : Conditions cannot be rewritten.

10.13.2.3 ARCOF Instruction

The conditions of the ARCOF instruction cannot be rewritten.

10.13.2.4 ARCCTS and ARCCTE Instructions

The arc condition adjustment operation is invalid while the slope up/down instruction ARCCTS or ARCCTE is executed.

Even if "Change data" is set on the ARC COND ADJUSTMENT window, rewriting cannot be done after the ARCCTS or ARCCTE instruction.

Refer to section 10.8.1 "Arc Auxiliary Condition File" on page 10-80 for details regarding the ARCCTS and ARCCTE instructions.
10.14 Displaying Welding Alarm History

The historical records of welding-related alarms can be viewed on the user alarm (system section) window.

To view the detailed information about alarm occurrence, use the alarm detailed window.

10.14.1 Alarm History Windows

There are 5 types of alarm history windows:

- Major Alarm
- Minor Alarm
- User Alarm (System)
- User Alarm (User)
- Off-Line Alarm

In each window, the alarm code, occurrence date, time, and detailed information are displayed.

1. Select {SYSTEM INFO} under the main menu.
 - The sub-menu for the system information appears.

2. Select {ALARM HISTORY}.
 - The alarm history window appears.

Major Alarm

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1998/05/12 12:00</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>1998/06/15 15:25</td>
<td></td>
</tr>
</tbody>
</table>

Memory error (Parameter file)

JOB: TEST0001 Line: 0010 STEP: 010
3. Using the page key to change the window.

 – Each time the page key is pressed, the window alternates between “MAJOR ALARM”, “MINOR ALARM”, “USER ALARM (SYSTEM)”, “USER ALARM (USER)”, and “OFF-LINE ALARM”.

 ![Diagram showing alarm history table with columns for CODE, DATE, and CLOCK]
10.15 Arc Welding Management and Maintenance

10.15.1 ARC WELD DIAGNOSIS Window

An optimum arc welding requires timely contact-tip replacement and nozzle cleaning.

It is also recommended that the user check how often such functions as arc retry, arc restart, and automatic anti-stick have been used and adjust the operating environment and work conditions accordingly.

The usage of the above-mentioned functions can be controlled or confirmed on the ARC WELD DIAGNOSIS window.

For example, contact-tip replacement is initially set at 180 minutes. When the welding time reaches 180 minutes, an external output signal (system output) is output. The operator can then replace the tip or adjust as necessary.

A. WORK CONTINUE (CONT, STOP)

When the manipulator is restarted after it stops in the middle of a work section, the manipulator either performs welding over the remaining part of the section or moves without performing welding.

B. TIP REPLACE, NOZZLE CLEAN (0 to 999 minutes)

In the “SETTING” fields, specify the optimum timings for contact-tip replacement and nozzle cleaning. The initial values are 180 minutes for contact-tip replacement; 30 minutes for nozzle cleaning. The “ACCUM.” fields display an accumulated service duration.

C. RETRY, RESTART (ARC), ANTI-STICK

In each of the “SETTING” fields, specify a reference value for the number of times each function is used. As an initial setting, 10 is specified for each function. Each of the “ACCUM.” fields displays the accumulated count, showing how many times the function has been used.

ARC RETRY, ARC RESTART, and ANTI-STICK counts:

These counts are different from the maximum repetition counts specified in the arc auxiliary condition file. These counts show how many times these functions have actually been used.
10.15.2 Editing the ARC WELD DIAGNOSIS Window

1. Select {ARC WELDING} under the main menu.

2. Select {ARC WELD DIAG.}.

3. Line up the cursor with each set item and press [SELECT] to edit it.

4. Set the work continue specification.
 - Each time [SELECT] is pressed, the setting alternates between “CONT” and “STOP”.

 ![Diagram of ARC WELD DIAGNOSIS Window]

 - Work Continue: Set to “CONT” or “STOP”.
 - Tip Replace: Set the accumulation and setting time.
 - Nozzle Clean: Set the accumulation and setting time.
 - Retry: Set the number of retries.
 - Restart (Arc): Set the number of restarts.
 - Anti-Stick: Set the number of times to activate the anti-stick function.
5. Set the control value.
 – Move the cursor to the setting value to be changed and press [SELECT].

6. Input the desired value using the numeric keys and press [ENTER].

The accumulated value can be cleared by either of the following:

- ARC WELD DIAGNOSIS window
- External input signal (system input signal)
10.16 Arc Monitor Function

The arc monitor function is used to monitor, analyze and control the welding conditions (welding current and welding voltage) of the specified welding section.

- Samples the welding conditions and show them on the display.
- Calculates the average and deviation and detects an error.
- Saves the results of measurement and analysis in the file.

```
000 NOP
001 MOVJ VJ=10.00
002 MOVJ VJ=80.00
003 MOVL V=800
004 ARCON ASF#(1)   Welding start
005 ARCMONON AMF#(1) Arc monitor start
006 MOVL V=50
007 ARCMONOF         Arc monitor end
008 ARCOF AEF#(1)    Welding end
009 MOVL V=800
010 MOVJ VJ=50.00
011 END
```
10.16.1 Hardware Specification

For the arc monitor function, the following board is needed.

- Welding I/F board: JANCD-YEW02

10.16.1.1 Signal Specifications of JANCD-YEW02 Board (Analog Input/Output)

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Number/Output</td>
<td>Output: 2ch (1ch: Voltage, 2ch: Current)</td>
</tr>
<tr>
<td>(Analog Input/Output)</td>
<td>Input: 2ch (1ch: Voltage, 2ch: Current)</td>
</tr>
<tr>
<td>Analog Voltage</td>
<td>Output: -14.00 to 14.00</td>
</tr>
<tr>
<td></td>
<td>Input: 0 to +5 V</td>
</tr>
<tr>
<td>Voltage/Current Converted</td>
<td>10.0 V/V, 100 A/V</td>
</tr>
<tr>
<td>Value</td>
<td>(can be modified by the parameter)</td>
</tr>
<tr>
<td>Monitor Minimum Unit Voltage</td>
<td>Voltage: 0.1 V, Current: 1 A</td>
</tr>
</tbody>
</table>

10.16.1.2 Connection

<table>
<thead>
<tr>
<th>Signal</th>
<th>Connection Channel</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding Voltage Input</td>
<td>Analog Input (CH1)</td>
<td>CN03-11 (Voltage Input)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN03-12 (GND)</td>
</tr>
<tr>
<td>Welding Current Input</td>
<td>Analog Input (CH2)</td>
<td>CN03-8 (Current Input)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN03-28 (GND)</td>
</tr>
</tbody>
</table>

10.16.2 Arc Monitor (Sampling) Window

The following data is always displayed whether or not welding is being done.

- Welding Current Reference Value
- Welding Voltage Value
- Welding Current Measured Value
- Welding Voltage Measured Value

- Due to the variation, etc. in the electric resistance of welding power cable and the detectors, the values displayed in the sampling window may be different from the actual welding current value and welding voltage value.

NOTE

- In order to monitor the exact value, measure the actual welding current value and welding voltage value with calibrated measuring instruments and adjust the magnification and offset. (See section 10.16.7 “Parameter” on page 10-141.)
10.16.3 ARCMONON

10.16.3.1 Function
This is the instruction to start sampling the welding condition data.

10.16.3.2 Syntax

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELD1</td>
<td>Selects the Power Source 1.</td>
<td></td>
</tr>
<tr>
<td>WELD2</td>
<td>Selects the Power Source 2.</td>
<td></td>
</tr>
<tr>
<td>WELD3</td>
<td>Selects the Power Source 3.</td>
<td></td>
</tr>
<tr>
<td>WELD4</td>
<td>Selects the Power Source 4.</td>
<td></td>
</tr>
<tr>
<td>WELD5</td>
<td>Selects the Power Source 5.</td>
<td></td>
</tr>
<tr>
<td>WELD6</td>
<td>Selects the Power Source 6.</td>
<td></td>
</tr>
<tr>
<td>WELD7</td>
<td>Selects the Power Source 7.</td>
<td></td>
</tr>
<tr>
<td>WELD8</td>
<td>Selects the Power Source 8.</td>
<td></td>
</tr>
</tbody>
</table>

10.16.3.3 Explanation

- **WELD[1]/WELD[2]/WELD[3]/WELD[4]/WELD[5]/WELD[6]/WELD[7]/WELD[8]**
 Choose one of the following tags.

These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.

When there is only one application, these tags are not displayed.
AMF# (Arc monitor file number) [9]

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMF# (Arc monitor file number)</td>
<td>Specifies the arc monitor file number. The sampling results and statistical data are recorded in the arc monitor file.</td>
<td>No.: 1 to 100 The number can be specified by B/L/D/LB/LI/ LD variable.</td>
</tr>
</tbody>
</table>

10.16.4 ARCMONOF

10.16.4.1 Function

This is the instruction to end sampling the welding condition data.

10.16.4.2 Syntax

![Diagram of ARCMONOF and END tags with WELD1 to WELD8]

10.16.4.3 Explanation

- **WELD1/WELD2/WELD3/WELD4/WELD5/WELD6/WELD7/WELD8**

 Choose one of the following tags.

 These tags are enabled only when multiple applications are in use and two or more applications are set as arc welding application.

 When there is only one application, these tags are not displayed.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELD1</td>
<td>Selects the Power Source 1.</td>
<td></td>
</tr>
<tr>
<td>WELD2</td>
<td>Selects the Power Source 2.</td>
<td></td>
</tr>
<tr>
<td>WELD3</td>
<td>Selects the Power Source 3.</td>
<td></td>
</tr>
<tr>
<td>WELD4</td>
<td>Selects the Power Source 4.</td>
<td></td>
</tr>
<tr>
<td>WELD5</td>
<td>Selects the Power Source 5.</td>
<td></td>
</tr>
<tr>
<td>WELD6</td>
<td>Selects the Power Source 6.</td>
<td></td>
</tr>
<tr>
<td>WELD7</td>
<td>Selects the Power Source 7.</td>
<td></td>
</tr>
<tr>
<td>WELD8</td>
<td>Selects the Power Source 8.</td>
<td></td>
</tr>
</tbody>
</table>
10.16.5 GETFILE

10.16.5.1 Function
Retrieves the data of arc monitor file into the variable (D variable).

10.16.5.2 Syntax
GETFILE<DATA 1> Condition file specification (element number)

GETFILE 1 D/LD/ D[i]/LD[i] Variable number

2 SPR# (Application quantity correcting condition file number)

3 UDC# (Application quantity correcting condition file number)

4 WEV# (Weaving condition file number)

5 AMF# (Arc monitor file number)

A 6 (Element number)

END
10.16.5.3 Explanation

- **D Variable Number/LD Variable Number/D [Element Number]/LD [Element Number] [1]**
 Be sure to add the following tag.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Variable Number/LD Variable Number/D [Element Number]/LD [Element Number]</td>
<td>Specifies the double-precision integer type variable in which the retrieved data is stored.</td>
<td><DATA 1></td>
</tr>
</tbody>
</table>

- **SPR# (Application quantity correcting condition file number) [2]/UDC# (Application quantity correcting condition file number) [3]/WEV# (Weaving condition file number) [4]/AMF# (Arc monitor file number) [5]**
 Be sure to choose one of the following tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEV# (Weaving condition file number)</td>
<td>Specifies the weaving condition file number.</td>
<td>No.: 1 to 16 The number can be specified by B/I/D/LB/LI/LD variable.</td>
</tr>
<tr>
<td>AMF# (Arc monitor file number)</td>
<td>Specifies the arc monitor file number.</td>
<td>No.: 1 to 50 The number can be specified by B/I/D/LB/LI/LD variable. Only the arc monitor function (optional) is available.</td>
</tr>
</tbody>
</table>

- **(Element number) [6]**
 Be sure to add the following tag.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Explanation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Element number)</td>
<td>Specifies the element of the condition file from which the data are retrieved.</td>
<td>Element No.: 1 to 255 The number can be specified by B/LB variable.</td>
</tr>
</tbody>
</table>
10.16.5.4 Registering the GETFILE instruction

1. Move the cursor to the address area.

2. Press [INFORM LIST].

3. Select “ARITH”.

4. Select the GETFILE instruction.

 – The instruction is displayed on the input buffer line with the same additional items as registered previously.

5. Press [ENTER].

 – The set contents are registered in the job.
10.16.5.5 File Data and Element Number

The relation between the element numbers of GETFILE instruction and the arc monitor file is shown as follows.

The numbers below denote the element numbers.

1. STATUS
2. CURRENT
3. VOLTAGE
4. CURRENT AVERAGE
5. CURRENT DEVIATION
6. VOLTAGE AVERAGE
7. VOLTAGE DEVIATION
8. NUMBER OF DATA (NORMAL)
9. NUMBER OF DATA (ERROR)
10.16.6 Arc Monitor File

10.16.6.1 Function

One hundred files for the arc monitor function are prepared. The arc monitor file can be saved in an external memory device. (Cannot be loaded.)

10.16.6.2 Arc Monitor File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FILE NUMBER (1 to 50)</td>
<td>Shows the file number.</td>
</tr>
<tr>
<td>B. CURRENT</td>
<td>Shows the average value of current data between the last-performed ARCMONON and ARCMONOF.</td>
</tr>
<tr>
<td>C. VOLTAGE</td>
<td>Shows the average value of voltage data between the last-performed ARCMONON and ARCMONOF.</td>
</tr>
<tr>
<td>D. STATUS</td>
<td>Shows the result (normal/error) of the last-performed arc monitor.</td>
</tr>
<tr>
<td>E. CURRENT AVERAGE/DEVIATION</td>
<td>Shows the average/standard deviation of the retrieved average current value.</td>
</tr>
<tr>
<td>F. VOLTAGE AVERAGE/DEVIATION</td>
<td>Shows the average/standard deviation of the retrieved average current value.</td>
</tr>
<tr>
<td>G. NUMBER OF DATA</td>
<td>Shows the number of retrieved data (normal/error).</td>
</tr>
</tbody>
</table>
10.16.6.3 Displaying the File

Procedure 1

1. Place the cursor on the ARCMONON instruction.

2. Press the direct open key (DIRECT OPEN).
 - The arc monitor file window is displayed.
 - Press the page key (PAGE) to call the next file number.
 - Press [SHIFT] + the page key (PAGE) to call the previous file number.

Procedure 2

1. Select {ARC WELDING} under the main menu.
2. Select {ARC MONITOR} under the sub menu.
 - The arc monitor file window is displayed.
 - Press the page key (PAGE) to call the next file number.
 - Press [SHIFT] + the page key (PAGE) to call the previous file number.
File Initialization

All the files become ‘0’ after file initialization.

1. Display the arc monitor file window.
2. Select {CLEAR DATA} from the pull-down menu {DATA}.
 - Select {CLEAR DATA} and the confirmation dialog box appears.
 - {CLEAR DATA} from the arc monitor file window initializes only the displayed file number.
 - To initialize all the files, perform the initialization in the maintenance mode.

The data of arc monitor file cannot be edited.
10.16.7 Parameter

Table 10-5: Parameter

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Description</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C453</td>
<td>Current Conversion Ratio (Power Source 1)</td>
<td>200</td>
</tr>
<tr>
<td>S2C454</td>
<td>Current Conversion Offset (Power Source 1)</td>
<td>0</td>
</tr>
<tr>
<td>S2C455</td>
<td>Voltage Conversion Ratio (Power Source 1)</td>
<td>200</td>
</tr>
<tr>
<td>S2C456</td>
<td>Voltage Conversion Offset (Power Source 1)</td>
<td>0</td>
</tr>
<tr>
<td>S2C457</td>
<td>Current Conversion Ratio (Power Source 2)</td>
<td>200</td>
</tr>
<tr>
<td>S2C458</td>
<td>Current Conversion Offset (Power Source 2)</td>
<td>0</td>
</tr>
<tr>
<td>S2C459</td>
<td>Voltage Conversion Ratio (Power Source 2)</td>
<td>200</td>
</tr>
<tr>
<td>S2C460</td>
<td>Voltage Conversion Offset (Power Source 2)</td>
<td>0</td>
</tr>
<tr>
<td>S2C461</td>
<td>Current Conversion Ratio (Power Source 3)</td>
<td>200</td>
</tr>
<tr>
<td>S2C462</td>
<td>Current Conversion Offset (Power Source 3)</td>
<td>0</td>
</tr>
<tr>
<td>S2C463</td>
<td>Voltage Conversion Ratio (Power Source 3)</td>
<td>200</td>
</tr>
<tr>
<td>S2C464</td>
<td>Voltage Conversion Offset (Power Source 3)</td>
<td>0</td>
</tr>
<tr>
<td>S2C465</td>
<td>Current Conversion Ratio (Power Source 4)</td>
<td>200</td>
</tr>
<tr>
<td>S2C466</td>
<td>Current Conversion Offset (Power Source 4)</td>
<td>0</td>
</tr>
<tr>
<td>S2C467</td>
<td>Voltage Conversion Ratio (Power Source 4)</td>
<td>200</td>
</tr>
<tr>
<td>S2C468</td>
<td>Voltage Conversion Offset (Power Source 4)</td>
<td>0</td>
</tr>
<tr>
<td>S2C469</td>
<td>Current Conversion Ratio (Power Source 5)</td>
<td>200</td>
</tr>
<tr>
<td>S2C470</td>
<td>Current Conversion Offset (Power Source 5)</td>
<td>0</td>
</tr>
<tr>
<td>S2C471</td>
<td>Voltage Conversion Ratio (Power Source 5)</td>
<td>200</td>
</tr>
<tr>
<td>S2C472</td>
<td>Voltage Conversion Offset (Power Source 5)</td>
<td>0</td>
</tr>
<tr>
<td>S2C473</td>
<td>Current Conversion Ratio (Power Source 6)</td>
<td>200</td>
</tr>
<tr>
<td>S2C474</td>
<td>Current Conversion Offset (Power Source 6)</td>
<td>0</td>
</tr>
<tr>
<td>S2C475</td>
<td>Voltage Conversion Ratio (Power Source 6)</td>
<td>200</td>
</tr>
<tr>
<td>S2C476</td>
<td>Voltage Conversion Offset (Power Source 6)</td>
<td>0</td>
</tr>
<tr>
<td>S2C477</td>
<td>Current Conversion Ratio (Power Source 7)</td>
<td>200</td>
</tr>
<tr>
<td>S2C478</td>
<td>Current Conversion Offset (Power Source 7)</td>
<td>0</td>
</tr>
<tr>
<td>S2C479</td>
<td>Voltage Conversion Ratio (Power Source 7)</td>
<td>200</td>
</tr>
<tr>
<td>S2C480</td>
<td>Voltage Conversion Offset (Power Source 7)</td>
<td>0</td>
</tr>
<tr>
<td>S2C481</td>
<td>Current Conversion Ratio (Power Source 8)</td>
<td>200</td>
</tr>
<tr>
<td>S2C482</td>
<td>Current Conversion Offset (Power Source 8)</td>
<td>0</td>
</tr>
<tr>
<td>S2C483</td>
<td>Voltage Conversion Ratio (Power Source 8)</td>
<td>200</td>
</tr>
<tr>
<td>S2C484</td>
<td>Voltage Conversion Offset (Power Source 8)</td>
<td>0</td>
</tr>
</tbody>
</table>
The conversion parameter (for conversion ratio and offset) to calculate the current value and voltage value using the analog input value is available.

The input voltage is converted to the current value and voltage value according to the following charts.
10.17 Appendix 1

10.17.1 Table of Work Instructions

- < > indicates alpha-numerical data.
- If multiple items are shown in one additional item section, select one.

Table 10-6: Arc Welding Instructions (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Function</th>
<th>Outputs arc start conditions and an arc start instruction for the Power Source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCON</td>
<td>Additional Item</td>
</tr>
<tr>
<td>WELD1, WELD2, WELD3, WELD4 WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td>AC = <welding current > ASF#(<arc start condition file number>)</td>
<td>AC: 1 to 999A ASF#(): 1 to 1000</td>
</tr>
<tr>
<td>AV = <welding voltage > AVP = <percentage against proper welding voltage></td>
<td>AV: independent 0.1 to 50.0V AVP: synergic 50 to 150%</td>
</tr>
<tr>
<td>T = <manipulator stopping time></td>
<td>0.01 to 655.35 sec</td>
</tr>
<tr>
<td>V = <manipulator moving speed></td>
<td>0.1 to 1500.0 mm/sec 1 to 9000 cm/min</td>
</tr>
<tr>
<td>RETRY</td>
<td>Specifies use of arc retry function.</td>
</tr>
<tr>
<td>Example</td>
<td>ARCON AC=200 AVP=100 T=0.30 RETRY ARCON AC=200 AV=22.0 T=0.30 ARCON ASF#(1) ARCON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Outputs arc end conditions and an arc end instruction for the Power Source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCOF</td>
<td>Additional Item</td>
</tr>
<tr>
<td>WELD1, WELD2, WELD3, WELD4 WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td>AC = <welding current > AEF#(<arc end condition file number>)</td>
<td>AC: 1 to 999A AEF#(): 1 to 396</td>
</tr>
<tr>
<td>AV = <welding voltage > AVP = <percentage against proper welding voltage ></td>
<td>AV: independent 0.1 to 50.0V AVP: synergic 50 to 150%</td>
</tr>
<tr>
<td>T = <manipulator stopping time></td>
<td>0.01 to 655.35 sec</td>
</tr>
<tr>
<td>ANTSTK</td>
<td>Specifies use of wire anti-stick function.</td>
</tr>
<tr>
<td>Example</td>
<td>ARCOF AC=180 AVP=80 T=0.30 ANTSTK ARCOF AC=180 AV20.0 T=0.30 ARCOF AEF#(1) ARCOF</td>
</tr>
</tbody>
</table>
Table 10-6: Arc Welding Instructions (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>ARCSET</th>
<th>Function</th>
<th>Changes the welding conditions individually.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>WELD1, WELD2, WELD3, WELD4, WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td>AC</td>
<td><welding current></td>
<td>1 to 999A</td>
</tr>
<tr>
<td>ASF#</td>
<td><arc start condition file number></td>
<td>ASF#: 1 to 1000</td>
</tr>
<tr>
<td>AV</td>
<td><welding voltage></td>
<td>AV: independent 0.1 to 50.0V</td>
</tr>
<tr>
<td>AVP</td>
<td><percentage against proper welding voltage></td>
<td>AVP: synergic 50% to 150%</td>
</tr>
<tr>
<td>V</td>
<td><manipulator moving speed></td>
<td>0.1 to 1500.0 mm/sec 1 to 9000 cm/min</td>
</tr>
<tr>
<td>AN3</td>
<td><analog output 3></td>
<td>-14.00 to 14.00V</td>
</tr>
<tr>
<td>AN4</td>
<td><analog output 4></td>
<td>-14.00 to 14.00V</td>
</tr>
</tbody>
</table>

Example

ARCSET AC=200
ARCSET AV=20.0
ARCSET AVP=95
ARCSET V=80
ARCSET AN3=10.00

<table>
<thead>
<tr>
<th>ARCCTS</th>
<th>Function</th>
<th>Changes the welding conditions gradually during execution of welding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>WELD1, WELD2, WELD3, WELD4, WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td>AC</td>
<td><welding current></td>
<td>1 to 999A</td>
</tr>
<tr>
<td>AV</td>
<td><welding voltage></td>
<td>AV: independent 0.1 to 50.0V</td>
</tr>
<tr>
<td>AVP</td>
<td><percentage against proper welding voltage></td>
<td>AVP: synergic 50% to 150%</td>
</tr>
<tr>
<td>AN3</td>
<td><analog output 3></td>
<td>-14.00 to 14.00V</td>
</tr>
<tr>
<td>AN4</td>
<td><analog output 4></td>
<td>-14.00 to 14.00V</td>
</tr>
<tr>
<td>DIS</td>
<td><distance from the movement’s start position></td>
<td>0.00 to 6553.5 mm</td>
</tr>
</tbody>
</table>

Example

ARCCTS AC=200 AVP=100 DIS=100.0
ARCCTS AC=200 AV=22.0 AN3=10.0 DIS=5.0

<table>
<thead>
<tr>
<th>ARCCTE</th>
<th>Function</th>
<th>Changes the welding conditions gradually during execution of welding.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>WELD1, WELD2, WELD3, WELD4, WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td>AC</td>
<td><welding current></td>
<td>1 to 999A</td>
</tr>
<tr>
<td>AV</td>
<td><welding voltage></td>
<td>AV: independent 0.1 to 50.0V</td>
</tr>
<tr>
<td>AVP</td>
<td><percentage against proper welding voltage></td>
<td>AVP: synergic 50% to 150%</td>
</tr>
<tr>
<td>AN3</td>
<td><analog output 3></td>
<td>-14.00 to 14.00V</td>
</tr>
<tr>
<td>AN4</td>
<td><analog output 4></td>
<td>-14.00 to 14.00V</td>
</tr>
<tr>
<td>DIS</td>
<td><distance from the movement’s end position></td>
<td>0.00 to 6553.5 mm</td>
</tr>
</tbody>
</table>

Example

ARCCTE AC=200 AVP=100 DIS=100.0
ARCCTE AC=200 AV=22.0 AN3=10.0 DIS=5.0

<table>
<thead>
<tr>
<th>AWELD</th>
<th>Function</th>
<th>Specifies welding current by current reference value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>WELD1, WELD2, WELD3, WELD4, WELD5, WELD6, WELD7, WELD8</td>
<td>Displayed only when using multiple manipulators.</td>
</tr>
<tr>
<td><Current reference value></td>
<td></td>
<td>-14.00 to 14.00V</td>
</tr>
</tbody>
</table>

Example

AWELD 12
VWELD Function
Specifies welding voltage by voltage value.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELD1, WELD2, WELD3, WELD4, WELD5, WELD6, WELD7, WELD8</td>
<td>VWELD 2.5</td>
</tr>
<tr>
<td><code><voltage value></code></td>
<td>-14.00 to 14.00V</td>
</tr>
</tbody>
</table>

WVON Function
Starts weaving.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1, RB2, RB3, RB4, WEV#(<weaving condition file number>)</td>
<td>WVON WEV#(1)</td>
</tr>
<tr>
<td>1 to 255</td>
<td></td>
</tr>
</tbody>
</table>

WVOF Function
Ends weaving.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1, RB2, RB3, RB4</td>
<td>WVOF</td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Table 10-6: Arc Welding Instructions (Sheet 3 of 3)
10.18 Appendix 2

10.18.1 Power Source Condition File Initial Value

The initial value data for 24 Power Sources are prepared as follows:

Table 10-7: Welder Condition Data File

<table>
<thead>
<tr>
<th>Power Source No.</th>
<th>Power Source Name</th>
<th>Power Supply</th>
<th>Shielding Gas</th>
<th>Wire Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOTOWELD-E series 350A class</td>
<td>Synergic</td>
<td>MAG (or CO₂)</td>
<td>1.2 (or any)</td>
</tr>
<tr>
<td>2</td>
<td>MOTOWELD-E series 350A class</td>
<td>Independent</td>
<td>MAG (or CO₂)</td>
<td>1.2 (or any)</td>
</tr>
<tr>
<td>3</td>
<td>MOTOWELD-E series 500A class</td>
<td>Synergic</td>
<td>MAG (or CO₂)</td>
<td>1.2 (or any)</td>
</tr>
<tr>
<td>4</td>
<td>MOTOWELD-E series 500A class</td>
<td>Independent</td>
<td>MAG (or CO₂)</td>
<td>1.2 (or any)</td>
</tr>
<tr>
<td>5</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Synergic</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Synergic</td>
<td>MAG</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Independent</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Independent</td>
<td>MAG</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Synergic</td>
<td>CO₂</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>10</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Synergic</td>
<td>MAG</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>11</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Independent</td>
<td>CO₂</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>12</td>
<td>MOTOWELD-S350-AJ2/3 (without STC)</td>
<td>Independent</td>
<td>MAG</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>13</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Synergic</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Synergic</td>
<td>MAG</td>
<td>1.2</td>
</tr>
<tr>
<td>15</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Independent</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Independent</td>
<td>MAG</td>
<td>1.2</td>
</tr>
<tr>
<td>17</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Synergic</td>
<td>CO₂</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>18</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Synergic</td>
<td>MAG</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>19</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Independent</td>
<td>CO₂</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>20</td>
<td>MOTOWELD-S350-AJ2/3 (with STC)</td>
<td>Independent</td>
<td>MAG</td>
<td>0.9 (or 1.0)</td>
</tr>
<tr>
<td>21</td>
<td>SHINKO ES 350</td>
<td>Synergic</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>22</td>
<td>DAIHEN CPV 350</td>
<td>Synergic</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>23</td>
<td>MOTOWELD-S500 (without STC)</td>
<td>Synergic</td>
<td>CO₂</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>MOTOWELD-S500 (without STC)</td>
<td>Synergic</td>
<td>MAG</td>
<td>1.2</td>
</tr>
</tbody>
</table>
10.18.2 Contents of 24 Welder Condition Files

The following tables give the original contents of the provided Power Source condition files, that are associated with the Power Source numbers 1 through 24:

<table>
<thead>
<tr>
<th>POWER SOURCE NO.: 1</th>
<th>POWER SOURCE NO.: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SOURCE NAME:</td>
<td>MOTOWELD-E series 350A class</td>
</tr>
<tr>
<td>MOTOWELD-E series 350A class</td>
<td>POWER SOURCE NAME:</td>
</tr>
<tr>
<td>COMMENT: COMBINATION GAS AND WIRE</td>
<td>COMMENT: COMBINATION GAS AND WIRE</td>
</tr>
<tr>
<td>POWER SUPPLY: A (synergic)</td>
<td>POWER SUPPLY: independent</td>
</tr>
<tr>
<td>SHIELDING GAS: MAG</td>
<td>SHIELDING GAS: MAG</td>
</tr>
<tr>
<td>WIRE DIA.: 1.2 mm</td>
<td>WIRE DIA.: 1.2 mm</td>
</tr>
<tr>
<td>WIRE STICKOUT: 15 mm</td>
<td>WIRE STICKOUT: 15 mm</td>
</tr>
<tr>
<td>WIRE ANTI-STICKING: 0.1 sec</td>
<td>WIRE ANTI-STICKING: 0.1 sec</td>
</tr>
<tr>
<td>ARC FAILURE STOP: 0.6 sec</td>
<td>ARC FAILURE STOP: 0.6 sec</td>
</tr>
</tbody>
</table>

CURRENT VOLTAGE

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>30</td>
<td>0.00</td>
<td>50</td>
</tr>
<tr>
<td>1.35</td>
<td>62</td>
<td>7.20</td>
<td>99</td>
</tr>
<tr>
<td>2.70</td>
<td>94</td>
<td>7.50</td>
<td>100</td>
</tr>
<tr>
<td>10.80</td>
<td>286</td>
<td>7.80</td>
<td>101</td>
</tr>
<tr>
<td>12.15</td>
<td>318</td>
<td>14.00</td>
<td>150</td>
</tr>
<tr>
<td>13.50</td>
<td>350</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>30</td>
<td>0.00</td>
<td>50</td>
</tr>
<tr>
<td>1.35</td>
<td>62</td>
<td>7.20</td>
<td>99</td>
</tr>
<tr>
<td>2.70</td>
<td>94</td>
<td>7.50</td>
<td>100</td>
</tr>
<tr>
<td>10.80</td>
<td>286</td>
<td>7.80</td>
<td>101</td>
</tr>
<tr>
<td>12.15</td>
<td>318</td>
<td>14.00</td>
<td>150</td>
</tr>
<tr>
<td>13.50</td>
<td>350</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>1.35</td>
<td>77</td>
</tr>
<tr>
<td>2.70</td>
<td>124</td>
</tr>
<tr>
<td>10.80</td>
<td>406</td>
</tr>
<tr>
<td>12.15</td>
<td>453</td>
</tr>
<tr>
<td>13.50</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>1.35</td>
<td>77</td>
</tr>
<tr>
<td>2.70</td>
<td>124</td>
</tr>
<tr>
<td>10.80</td>
<td>406</td>
</tr>
<tr>
<td>12.15</td>
<td>453</td>
</tr>
<tr>
<td>13.50</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>1.35</td>
<td>77</td>
</tr>
<tr>
<td>2.70</td>
<td>124</td>
</tr>
<tr>
<td>10.80</td>
<td>406</td>
</tr>
<tr>
<td>12.15</td>
<td>453</td>
</tr>
<tr>
<td>13.50</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>1.35</td>
<td>77</td>
</tr>
<tr>
<td>2.70</td>
<td>124</td>
</tr>
<tr>
<td>10.80</td>
<td>406</td>
</tr>
<tr>
<td>12.15</td>
<td>453</td>
</tr>
<tr>
<td>13.50</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>0.00</td>
<td>30</td>
</tr>
<tr>
<td>1.35</td>
<td>77</td>
</tr>
<tr>
<td>2.70</td>
<td>124</td>
</tr>
<tr>
<td>10.80</td>
<td>406</td>
</tr>
<tr>
<td>12.15</td>
<td>453</td>
</tr>
<tr>
<td>13.50</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Power Source No. 5
- **Power Source Name:** MOTOWELD-S350-AJ2/3
- **Comment:** STC NO-CONTROL
- **Power Supply:** A (synergic)
- **Shielding Gas:** CO2
- **Wire Diameter:** 1.2 mm
- **Wire Stickout:** 15 mm
- **Wire Anti-Sticking:** 0.3 sec
- **Arc Failure Stop:** 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>2.00</td>
<td>145</td>
</tr>
<tr>
<td>3.50</td>
<td>185</td>
</tr>
<tr>
<td>5.00</td>
<td>230</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Power Source No. 6
- **Power Source Name:** MOTOWELD-S350-AJ2/3
- **Comment:** STC NO-CONTROL
- **Power Supply:** A (synergic)
- **Shielding Gas:** MAG
- **Wire Diameter:** 1.2 mm
- **Wire Stickout:** 15 mm
- **Wire Anti-Sticking:** 0.3 sec
- **Arc Failure Stop:** 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>95</td>
</tr>
<tr>
<td>2.00</td>
<td>150</td>
</tr>
<tr>
<td>3.50</td>
<td>200</td>
</tr>
<tr>
<td>5.00</td>
<td>240</td>
</tr>
<tr>
<td>7.00</td>
<td>280</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Power Source No. 7
- **Power Source Name:** MOTOWELD-S350-AJ2/3
- **Comment:** STC NO-CONTROL
- **Power Supply:** independent
- **Shielding Gas:** CO2
- **Wire Diameter:** 1.2 mm
- **Wire Stickout:** 15 mm
- **Wire Anti-Sticking:** 0.3 sec
- **Arc Failure Stop:** 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>2.00</td>
<td>145</td>
</tr>
<tr>
<td>3.50</td>
<td>185</td>
</tr>
<tr>
<td>5.00</td>
<td>230</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Power Source No. 8
- **Power Source Name:** MOTOWELD-S350-AJ2/3
- **Comment:** STC NO-CONTROL
- **Power Supply:** independent
- **Shielding Gas:** MAG
- **Wire Diameter:** 1.2 mm
- **Wire Stickout:** 15 mm
- **Wire Anti-Sticking:** 0.3 sec
- **Arc Failure Stop:** 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>95</td>
</tr>
<tr>
<td>2.00</td>
<td>150</td>
</tr>
<tr>
<td>3.50</td>
<td>200</td>
</tr>
<tr>
<td>5.00</td>
<td>240</td>
</tr>
<tr>
<td>7.00</td>
<td>280</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
###POWER SOURCE NO.: 9
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC NO-CONTROL
POWER SUPPLY: A (synergic)
SHIELDING GAS: CO2
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

###POWER SOURCE NO.: 10
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC NO-CONTROL
POWER SUPPLY: A (synergic)
SHIELDING GAS: MAG
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT (A)</th>
<th>VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.00</td>
<td>100</td>
</tr>
<tr>
<td>5.00</td>
<td>125</td>
</tr>
<tr>
<td>7.00</td>
<td>150</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>55</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.50</td>
<td>110</td>
</tr>
<tr>
<td>5.00</td>
<td>130</td>
</tr>
<tr>
<td>7.00</td>
<td>170</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

###POWER SOURCE NO.: 11
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC NO-CONTROL
POWER SUPPLY: independent
SHIELDING GAS: CO2
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

###POWER SOURCE NO.: 12
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC NO-CONTROL
POWER SUPPLY: independent
SHIELDING GAS: MAG
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT (A)</th>
<th>VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.00</td>
<td>100</td>
</tr>
<tr>
<td>5.00</td>
<td>125</td>
</tr>
<tr>
<td>7.00</td>
<td>150</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT (A)</th>
<th>VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>55</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.50</td>
<td>110</td>
</tr>
<tr>
<td>5.00</td>
<td>130</td>
</tr>
<tr>
<td>7.00</td>
<td>170</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Power Source No.: 13
Power Source Name: MOTOWELD-S350-AJ2/3
Comment: STC CONTROL
Power Supply: A (synergic)
Shielding Gas: CO2
Wire Dia.: 1.2 mm
Wire Stickout: 15 mm
Wire Anti-Sticking: 0.3 sec
Arc Failure Stop: 0.6 sec

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
<td>REF. (V) MEA. (%)</td>
</tr>
<tr>
<td>1.00</td>
<td>100</td>
<td>3.00</td>
</tr>
<tr>
<td>2.00</td>
<td>140</td>
<td>5.00</td>
</tr>
<tr>
<td>3.50</td>
<td>190</td>
<td>7.00</td>
</tr>
<tr>
<td>5.00</td>
<td>230</td>
<td>9.00</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
<td>10.00</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Power Source No.: 14
Power Source Name: MOTOWELD-S350-AJ2/3
Comment: STC CONTROL
Power Supply: A (synergic)
Shielding Gas: MAG
Wire Dia.: 1.2 mm
Wire Stickout: 15 mm
Wire Anti-Sticking: 0.3 sec
Arc Failure Stop: 0.6 sec

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
<td>REF. (V) MEA. (%)</td>
</tr>
<tr>
<td>1.00</td>
<td>95</td>
<td>3.00</td>
</tr>
<tr>
<td>2.00</td>
<td>150</td>
<td>5.00</td>
</tr>
<tr>
<td>3.50</td>
<td>190</td>
<td>7.00</td>
</tr>
<tr>
<td>5.00</td>
<td>240</td>
<td>9.00</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
<td>10.00</td>
</tr>
<tr>
<td>9.00</td>
<td>350</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Power Source No.: 15
Power Source Name: MOTOWELD-S350-AJ2/3
Comment: STC CONTROL
Power Supply: independent
Shielding Gas: CO2
Wire Dia.: 1.2 mm
Wire Stickout: 15 mm
Wire Anti-Sticking: 0.3 sec
Arc Failure Stop: 0.6 sec

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
<td>REF. (V) MEA. (V)</td>
</tr>
<tr>
<td>1.00</td>
<td>100</td>
<td>2.10</td>
</tr>
<tr>
<td>2.00</td>
<td>140</td>
<td>3.20</td>
</tr>
<tr>
<td>3.50</td>
<td>190</td>
<td>5.00</td>
</tr>
<tr>
<td>5.00</td>
<td>230</td>
<td>7.10</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
<td>10.80</td>
</tr>
<tr>
<td>10.00</td>
<td>350</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Power Source No.: 16
Power Source Name: MOTOWELD-S350-AJ2/3
Comment: STC CONTROL
Power Supply: independent
Shielding Gas: MAG
Wire Dia.: 1.2 mm
Wire Stickout: 15 mm
Wire Anti-Sticking: 0.3 sec
Arc Failure Stop: 0.6 sec

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
<td>REF. (V) MEA. (V)</td>
</tr>
<tr>
<td>1.00</td>
<td>95</td>
<td>1.30</td>
</tr>
<tr>
<td>2.00</td>
<td>150</td>
<td>2.10</td>
</tr>
<tr>
<td>3.50</td>
<td>190</td>
<td>3.10</td>
</tr>
<tr>
<td>5.00</td>
<td>240</td>
<td>6.40</td>
</tr>
<tr>
<td>7.00</td>
<td>270</td>
<td>10.10</td>
</tr>
<tr>
<td>9.00</td>
<td>350</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>
POWER SOURCE NO.: 17
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC CONTROL
POWER SUPPLY: A (synergic)
SHIELDING GAS: CO2
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.50</td>
<td>105</td>
</tr>
<tr>
<td>5.00</td>
<td>125</td>
</tr>
<tr>
<td>7.00</td>
<td>145</td>
</tr>
<tr>
<td>10.00</td>
<td>180</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

POWER SOURCE NO.: 18
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC CONTROL
POWER SUPPLY: A (synergic)
SHIELDING GAS: MAG
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>75</td>
</tr>
<tr>
<td>3.50</td>
<td>110</td>
</tr>
<tr>
<td>5.00</td>
<td>130</td>
</tr>
<tr>
<td>7.00</td>
<td>160</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

POWER SOURCE NO.: 19
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC CONTROL
POWER SUPPLY: independent
SHIELDING GAS: CO2
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>80</td>
</tr>
<tr>
<td>3.50</td>
<td>105</td>
</tr>
<tr>
<td>5.00</td>
<td>125</td>
</tr>
<tr>
<td>7.00</td>
<td>145</td>
</tr>
<tr>
<td>10.00</td>
<td>180</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

POWER SOURCE NO.: 20
POWER SOURCE NAME: MOTOWELD-S350-AJ2/3
COMMENT: STC CONTROL
POWER SUPPLY: independent
SHIELDING GAS: MAG
WIRE DIA.: 0.9 mm
WIRE STICKOUT: 10 mm
WIRE ANTI-STICKING: 0.3 sec
ARC FAILURE STOP: 0.6 sec

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF. (V)</td>
<td>MEA. (A)</td>
</tr>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>2.00</td>
<td>75</td>
</tr>
<tr>
<td>3.50</td>
<td>110</td>
</tr>
<tr>
<td>5.00</td>
<td>130</td>
</tr>
<tr>
<td>7.00</td>
<td>160</td>
</tr>
<tr>
<td>10.00</td>
<td>190</td>
</tr>
<tr>
<td>11.00</td>
<td>200</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>POWER SOURCE NO.: 21</td>
<td>POWER SOURCE NO.: 22</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>POWER SOURCE NAME:</td>
<td>POWER SOURCE NAME:</td>
</tr>
<tr>
<td>SHINKO ES350</td>
<td>DAIHEN CPV350</td>
</tr>
<tr>
<td>COMMENT:</td>
<td>COMMENT:</td>
</tr>
<tr>
<td>POWER SUPPLY: A (synergic)</td>
<td>POWER SUPPLY: A (synergic)</td>
</tr>
<tr>
<td>SHIELDING GAS: CO2</td>
<td>SHIELDING GAS: CO2</td>
</tr>
<tr>
<td>WIRE DIA.: 1.2 mm</td>
<td>WIRE DIA.: 1.2 mm</td>
</tr>
<tr>
<td>WIRE STICKOUT: 15 mm</td>
<td>WIRE STICKOUT: 15 mm</td>
</tr>
<tr>
<td>WIRE ANTI-STICKING: 0.3 sec</td>
<td>WIRE ANTI-STICKING: 0.3 sec</td>
</tr>
<tr>
<td>ARC FAILURE STOP: 0.6 sec</td>
<td>ARC FAILURE STOP: 0.6 sec</td>
</tr>
</tbody>
</table>

Current Voltage

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80</td>
<td>100</td>
<td>4.80</td>
<td>88</td>
</tr>
<tr>
<td>3.90</td>
<td>150</td>
<td>7.00</td>
<td>100</td>
</tr>
<tr>
<td>5.80</td>
<td>200</td>
<td>9.20</td>
<td>112</td>
</tr>
<tr>
<td>7.60</td>
<td>250</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>8.90</td>
<td>300</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>100</td>
<td>3.00</td>
<td>85</td>
</tr>
<tr>
<td>3.10</td>
<td>160</td>
<td>7.00</td>
<td>100</td>
</tr>
<tr>
<td>4.00</td>
<td>200</td>
<td>11.00</td>
<td>115</td>
</tr>
<tr>
<td>5.90</td>
<td>280</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>8.00</td>
<td>340</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>9.00</td>
<td>380</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>10.00</td>
<td>400</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>11.00</td>
<td>440</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

Current Voltage

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>100</td>
<td>3.00</td>
<td>85</td>
</tr>
<tr>
<td>3.10</td>
<td>160</td>
<td>7.00</td>
<td>100</td>
</tr>
<tr>
<td>4.00</td>
<td>200</td>
<td>11.00</td>
<td>115</td>
</tr>
<tr>
<td>5.90</td>
<td>280</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>8.00</td>
<td>340</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>9.00</td>
<td>380</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>10.00</td>
<td>400</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>11.00</td>
<td>440</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE: positive</td>
<td>RANGE: positive</td>
</tr>
<tr>
<td>ADJ.: 1.00</td>
<td>ADJ.: 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REF. (V)</th>
<th>MEA. (A)</th>
<th>REF. (V)</th>
<th>MEA. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.70</td>
<td>100</td>
<td>3.00</td>
<td>85</td>
</tr>
<tr>
<td>2.80</td>
<td>160</td>
<td>7.00</td>
<td>100</td>
</tr>
<tr>
<td>3.70</td>
<td>200</td>
<td>11.00</td>
<td>115</td>
</tr>
<tr>
<td>5.00</td>
<td>250</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>6.40</td>
<td>300</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>7.50</td>
<td>360</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>8.00</td>
<td>390</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>9.00</td>
<td>430</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>
Table of Basic Instructions

- <> indicates numerical or alphabetical data.
- If multiple items are shown in one section, select one of the items.

11.1 Move Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Moves to a taught point with joint interpolation type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVJ</td>
<td></td>
</tr>
<tr>
<td>Additional Item</td>
<td>Position data, Base axis position data, Station axis position data</td>
</tr>
<tr>
<td>VJ=<play speed></td>
<td>VJ: 0.01 to 100.00%</td>
</tr>
<tr>
<td>PL=<position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td>NWAIT</td>
<td></td>
</tr>
<tr>
<td>UNTIL statement</td>
<td></td>
</tr>
<tr>
<td>ACC=(acceleration adjustment ratio)</td>
<td>ACC: 20 to 100%</td>
</tr>
<tr>
<td>DEC=(deceleration adjustment ratio)</td>
<td>DEC: 20 to 100%</td>
</tr>
<tr>
<td>Example</td>
<td>MOVJ VJ=50.00 PL=2 NWAIT UNTIL IN#(16)=ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Moves to a taught point with linear interpolation type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVL</td>
<td></td>
</tr>
<tr>
<td>Additional Item</td>
<td>Position data, Base axis position data, Station axis position data</td>
</tr>
<tr>
<td>V=<play speed>, VR=<play speed of the posture>, VE=<play speed of external axis></td>
<td>V: 0.1 to 1500.0 mm/s 1 to 9000.0 cm/min VR: 0.1 to 180.0 deg/s VE: 0.01 to 100.00%</td>
</tr>
<tr>
<td>PL=<position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td>CR=(corner radius)</td>
<td>CR: 1.0 to 6553.5mm</td>
</tr>
<tr>
<td>NWAIT</td>
<td></td>
</tr>
<tr>
<td>UNTIL statement</td>
<td></td>
</tr>
<tr>
<td>ACC=(acceleration adjustment ratio)</td>
<td>ACC: 20 to 100%</td>
</tr>
<tr>
<td>DEC=(deceleration adjustment ratio)</td>
<td>DEC: 20 to 100%</td>
</tr>
<tr>
<td>Example</td>
<td>MOVL V=138 PL=0 NWAIT UNTIL IN#(16)=ON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Moves to a taught point with circular interpolation type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOVC</td>
<td></td>
</tr>
<tr>
<td>Additional Item</td>
<td>Position data, Base axis position data, Station axis position data</td>
</tr>
<tr>
<td>V=<play speed>, VR=<play speed of the posture>, VE=<play speed of external axis></td>
<td>Same as MOVL.</td>
</tr>
<tr>
<td>PL=<position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td>NWAIT</td>
<td></td>
</tr>
<tr>
<td>ACC=(acceleration adjustment ratio)</td>
<td>ACC: 20 to 100%</td>
</tr>
<tr>
<td>DEC=(deceleration adjustment ratio)</td>
<td>DEC: 20 to 100%</td>
</tr>
<tr>
<td>Example</td>
<td>MOVC V=138 PL=0 NWAIT</td>
</tr>
<tr>
<td>Function</td>
<td>Moves to a taught point with spline interpolation type.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Additional Item</td>
<td>Position data, Base axis position data, Station axis position data</td>
</tr>
<tr>
<td></td>
<td>V=<play speed>, VR=<play speed of the posture>, VE=<play speed of external axis></td>
</tr>
<tr>
<td></td>
<td>PL=<position level></td>
</tr>
<tr>
<td></td>
<td>NWAIT</td>
</tr>
<tr>
<td></td>
<td>ACC=(acceleration adjustment ratio)</td>
</tr>
<tr>
<td></td>
<td>DEC=(deceleration adjustment ratio)</td>
</tr>
<tr>
<td>Example</td>
<td>MOVS V=120 PL=0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Moves the specified increment from the current position with linear interpolation type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>P<variable number>, BP<variable number>, EX<variable number></td>
</tr>
<tr>
<td></td>
<td>V=<play speed>, VR=<play speed of the posture>, VE=<play speed of external axis></td>
</tr>
<tr>
<td></td>
<td>PL=<position level></td>
</tr>
<tr>
<td></td>
<td>NWAIT</td>
</tr>
<tr>
<td></td>
<td>BF,RF,TF,UF# (<user coordinate number>)</td>
</tr>
<tr>
<td></td>
<td>BF: base coordinates</td>
</tr>
<tr>
<td></td>
<td>RF: robot coordinates</td>
</tr>
<tr>
<td></td>
<td>TF: tool coordinates</td>
</tr>
<tr>
<td></td>
<td>UF: user coordinates</td>
</tr>
<tr>
<td></td>
<td>UNTIL statement</td>
</tr>
<tr>
<td></td>
<td>ACC=(acceleration adjustment ratio)</td>
</tr>
<tr>
<td></td>
<td>DEC=(deceleration adjustment ratio)</td>
</tr>
<tr>
<td>Example</td>
<td>IMOV P000 V=138 PL=1 RF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Defines a reference point (e.g. wall point for weaving).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td><reference point number></td>
</tr>
<tr>
<td></td>
<td>Position data, Base axis position data, Station axis position data</td>
</tr>
<tr>
<td>Example</td>
<td>REFP 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Sets play speed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>VJ=<joint speed>, V=<TCP speed>, VR=<play speed of the posture>, VE=<play speed of external axis></td>
</tr>
<tr>
<td></td>
<td>VJ:Same as MOVJ. V,VR,VE: Same as MOVL.</td>
</tr>
<tr>
<td>Example</td>
<td>SPEED VJ=50.00</td>
</tr>
</tbody>
</table>
When start IMOV instruction again after IMOV instruction was aborted due to execute the following operations, the manipulator moves the added values, which is set anew from the aborted position, in the linear interpolation. The values become greater than the set added value. Please do not execute the IMOV instruction when changing move distance by the abort causes a problem.

- External servo OFF signal 2 (#40066)
- Turning OFF the servo power due to alarm occurring
- Enable signal
- Mode switch
- Enable switch
11.2 I/O Instructions

<table>
<thead>
<tr>
<th>DOUT</th>
<th>Function</th>
<th>Additional Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turns the external output signals ON and OFF.</td>
<td>OT# (<output number>), OGH# (<output group number>), OG# (<output group number>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of addressed output signals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT#(xx)=1; OGH#(xx)=4(per group);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG#(xx)=8(per group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OGH#(xx) is not subject to parity check; only the binary specification is allowed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FINE With a high degree of accuracy</td>
</tr>
<tr>
<td>Example</td>
<td>DOUT OT#(12) ON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PULSE</th>
<th>Function</th>
<th>Additional Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outputs a pulse signal as an external output signal.</td>
<td>OT# (<output number>), OGH# (<output group number>), OG# (<output group number>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T=<time (seconds)> 0.01 to 655.35 s 0.30 s unless otherwise specified</td>
</tr>
<tr>
<td>Example</td>
<td>PULSE OT# (10) T=0.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIN</th>
<th>Function</th>
<th>Additional Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets input signals in variables.</td>
<td>B<variable number></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN# (<input number>), IGH# (<input group number>), IG# (<input group number>),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT# (<output number>), OGH# (<output group number>), OG# (<output group number>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIN# (<system input number>), SOUT# (<system output number>)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of addressed input signals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN#(xx)=1; IG#(xx)=4(per group);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IG#(xx)=8(per group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of addressed output signals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OT#(xx)=1; OGH#(xx)=4(per group);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OG#(xx)=8(per group)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGH#(xx) and OGH#(xx) are not subject to parity check; only the binary specification is allowed.</td>
</tr>
<tr>
<td>Example</td>
<td>DIN B016 IN#(16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIN B002 IG#(2)</td>
<td></td>
</tr>
</tbody>
</table>
Table of Basic Instructions

11.2 I/O Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAIT</td>
<td>Waits until the external input signal status matches the specified status.</td>
</tr>
<tr>
<td>AOUT</td>
<td>Outputs the specified voltage to the general-purpose analog output port.</td>
</tr>
<tr>
<td>ARATION</td>
<td>Starts the analog output corresponding to the speed.</td>
</tr>
<tr>
<td>ARATOF</td>
<td>Ends the analog output corresponding to the speed.</td>
</tr>
</tbody>
</table>

Additional Item

<table>
<thead>
<tr>
<th>WAIT</th>
<th>AOUT</th>
<th>ARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN# (<input number>), IGH# (<input group number>), IG# (<input group number>), OT# (<user output number>), OGH# (<output group number>), SIN# (<system input number>), SOUT# (<system output number>)</td>
<td>AO# (<output port number>) 1 to 40</td>
<td>AO# (<output port number>) 1 to 40</td>
</tr>
<tr>
<td><status>, B<variable number></td>
<td><output voltage(V)> -14.0 to 14.0</td>
<td>BV = <basic voltage> -14.00 to 14.00</td>
</tr>
<tr>
<td>T=<time (seconds)></td>
<td></td>
<td>V = <basic speed> 0.1 to 150.0 mm/s 1 to 9000 cm/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFV = <offset voltage> -14.00 to 14.00</td>
</tr>
</tbody>
</table>

Example

- **WAIT**: IN# (12)=ON T=10.00
- **AOUT**: AO# (2) 12.7
- **ARATION**: AO#(1) BV=10.00 V=200.0 OFV=2.00
- **ARATOF**: AO#(1)

WAIT Function

Waits until the external input signal status matches the specified status.

Example

- WAIT IN# (12)=ON T=10.00
- WAIT IN# (12)=B002

AOUT Function

Outputs the specified voltage to the general-purpose analog output port.

Example

- AOUT AO# (2) 12.7

ARATION Function

Starts the analog output corresponding to the speed.

Example

- ARATION AO#(1) BV=10.00 V=200.0 OFV=2.00

ARATOF Function

Ends the analog output corresponding to the speed.

Example

- ARATOF AO#(1)
11.3 Control Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUMP</td>
<td>Jumps to the specified label or job.</td>
<td>* <label character string>, JOB:<job name>, IG# (<input group number>), B<variable number>, I<variable number>, D<variable number>, UF# (user coordinates number)</td>
<td>JUMP JOB:TEST1 IF IN#(14)=OFF</td>
</tr>
<tr>
<td>CALL</td>
<td>Calls the specified job.</td>
<td>JOB:<job name>, IG# (<input group number>), B<variable number>, I<variable number>, D<variable number>, UF# (user coordinates number)</td>
<td>CALL JOB:TEST1 IF IN#(24)=ON</td>
</tr>
<tr>
<td>RET</td>
<td>Returns to the call source job.</td>
<td>IF statement</td>
<td>RET IF IN#(12)=OFF</td>
</tr>
<tr>
<td>END</td>
<td>Declares the end of a job.</td>
<td>IF statement</td>
<td>END</td>
</tr>
<tr>
<td>NOP</td>
<td>No operation.</td>
<td>IF statement</td>
<td>NOP</td>
</tr>
<tr>
<td>TIMER</td>
<td>Stops for the specified time.</td>
<td>T=<time (seconds)> 0.01 to 655.35 s</td>
<td>TIMER T=12.50</td>
</tr>
<tr>
<td>IF statement</td>
<td>Evaluates the specified condition and makes a judgment accordingly. Described after an instruction that specifies a certain action. Format:<item1>=,<>,<=,>=,<,><item2></td>
<td></td>
<td>JUMP *12 IF IN#(12)=OFF</td>
</tr>
</tbody>
</table>
UNTIL statement

Function
Monitors the specified input signal during an action and stops the action when the specified signal status is observed. Described after an instruction that specifies a certain action.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN# (<input number>) <status></td>
<td>MOVL V=300 UNTIL IN#(10)=ON</td>
</tr>
</tbody>
</table>

PAUSE

Function
Instructs a pause.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF statement</td>
<td>PAUSE IF IN#(12)=OFF</td>
</tr>
</tbody>
</table>

' (comment)

Function
Displays a comment.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><comment></td>
<td>'Draws 100mm size square</td>
</tr>
</tbody>
</table>

CWAIT

Function
Waits for execution of the instruction on the next line. Used with the NWAIT tag which is an additional item of a move instruction.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOVL V=100 NWAIT DOUT OT#(1) ON CWAIT DOUT OT#(1) OFF MOVL V=100</td>
</tr>
</tbody>
</table>

ADVINIT

Function
Initializes the prereading instruction processing. Used to adjust the access timing for variable data.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADVINIT</td>
</tr>
</tbody>
</table>

ADVSTOP

Function
Stops the prereading instruction processing. Used to adjust the access timing for variable data.

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADVINIT</td>
</tr>
</tbody>
</table>
11.4 Shift Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Additional Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTON</td>
<td>Starts a shift operation.</td>
<td>P<variable number>, BP<variable number>, EX<variable number>, BF, RF, TF, UF#(<user coordinate number>)</td>
</tr>
<tr>
<td>Additional Item</td>
<td></td>
<td>BF: base coordinates, RF: robot coordinates, TF: tool coordinates, UF: user coordinates</td>
</tr>
<tr>
<td>Example</td>
<td>SFTON P001 UF#(1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFTOF</td>
<td>Stops a shift operation.</td>
</tr>
<tr>
<td>Additional Item</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>SFTOF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSHIFT</td>
<td>Obtains the shift value in the specified coordinate system from Data 2 and 3, and stores the obtained element values in Data 1.</td>
</tr>
<tr>
<td>Format:</td>
<td>MSHIFT <Data1><Coordinate><Data2><Data3></td>
</tr>
<tr>
<td>Additional Item</td>
<td>Data1 PX<variable number></td>
</tr>
<tr>
<td>Coordinate</td>
<td>BF, RF, TF, UF#(<user coordinate number>), MTF</td>
</tr>
<tr>
<td>BF: base coordinates, RF: robot coordinates, TF: tool coordinates, UF: user coordinates, MTF: tool coordinates for the master</td>
<td></td>
</tr>
<tr>
<td>Data2 PX<variable number></td>
<td></td>
</tr>
<tr>
<td>Data3 PX<variable number></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>MSHIFT PX000 RF PX001 PX002</td>
</tr>
</tbody>
</table>
11.5 Operating Instructions

ADD

<table>
<thead>
<tr>
<th>Function</th>
<th>Adds Data1 and Data2, and stores the result in Data1. Format: ADD<Data1><Data2></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, BP<variable number>, EX<variable number></td>
<td>Constant, B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, BP<variable number>, EX<variable number></td>
<td>Data1 must always be a variable.</td>
</tr>
</tbody>
</table>

| Example | ADD I012 I013 |

SUB

<table>
<thead>
<tr>
<th>Function</th>
<th>Subtracts Data2 from Data1, and stores the result in Data1. Format: SUB<Data1><Data2></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, BP<variable number>, EX<variable number></td>
<td>Constant, B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, BP<variable number>, EX<variable number></td>
<td>Data1 must always be a variable.</td>
</tr>
</tbody>
</table>

| Example | SUB I012 I013 |
MUL

Function
Multiplies Data1 by Data2, and stores the result in Data1.

Format: MUL<Data1><Data2>

Data1 can be an element in a position variable.
Pxxx(0): all axis data, Pxxx(1): X-axis data,
Pxxx(2): Y-axis data, Pxxx(3): Z-axis data,
Pxxx(4): Tx-axis data, Pxxx(5): Ty-axis data,
Pxxx(6): Tz-axis data

Additional Item
- Data1
 - B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number> (<element number>), BP<variable number> (<element number>), EX<variable number> (<element number>)

Data1
Constant, B<variable number>, I<variable number>, D<variable number>, R<variable number>

Example
MUL I012 I013
MUL P000 (3) 2 (Multiply the Z-axis data by 2.)

DIV

Function
Divides Data1 by Data2, and stores the result in Data1.

Format: DIV<Data1><Data2>

Data1 can be an element in a position variable.
Pxxx(0): all axis data, Pxxx(1): X-axis data,
Pxxx(2): Y-axis data, Pxxx(3): Z-axis data,
Pxxx(4): Tx-axis data, Pxxx(5): Ty-axis data,
Pxxx(6): Tz-axis data

Additional Item
- Data1
 - B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number> (<element number>), BP<variable number> (<element number>), EX<variable number> (<element number>)

Data1
Constant, B<variable number>, I<variable number>, D<variable number>, R<variable number>

Example
DIV I012 I013
DIV P000 (3) 2 (Divide the Z-axis data by 2.)

INC

Function
Increments the value of the specified variable by 1.

Additional Item
- B<variable number>, I<variable number>, D<variable number>

Example
INC I043

DEC

Function
Decrements the value of the specified variable by 1.

Additional Item
- B<variable number>, I<variable number>, D<variable number>

Example
DEC I043
Table of Basic Instructions

11.5 Operating Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Format</th>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Obtains the AND of Data1 and Data2, and stores the result in Data1.</td>
<td>AND<Data1><Data2></td>
<td>Data1 B<variable number>; Data2 B<variable number>, Constant</td>
<td>AND B012 B020</td>
</tr>
<tr>
<td>OR</td>
<td>Obtains the OR of Data1 and Data2, and stores the result in Data1.</td>
<td>OR<Data1><Data2></td>
<td>Data1 B<variable number>; Data2 B<variable number>, Constant</td>
<td>OR B012 B020</td>
</tr>
<tr>
<td>NOT</td>
<td>Obtains the NOT of Data2, and stores the result in Data1.</td>
<td>NOT<Data1><Data2></td>
<td>Data1 B<variable number>; Data2 B<variable number>, Constant</td>
<td>NOT B012 B020</td>
</tr>
<tr>
<td>XOR</td>
<td>Obtains the exclusive OR of Data1 and Data2, and stores the result in Data1.</td>
<td>XOR<Data1><Data2></td>
<td>Data1 B<variable number>; Data2 B<variable number>, Constant</td>
<td>XOR B012 B020</td>
</tr>
<tr>
<td>SET</td>
<td>Sets Data2 to Data1.</td>
<td>SET<Data1><Data2></td>
<td>Data1 B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, S<variable number>, BP<variable number>, EXPRESS</td>
<td>SET I012 I020</td>
</tr>
<tr>
<td>SETE</td>
<td>Sets data to an element in a position variable.</td>
<td>SETE</td>
<td>Data1 B<variable number>, I<variable number>, D<variable number>, R<variable number>, P<variable number>, S<variable number>, BP<variable number>, EX<variable number></td>
<td>Data2 Constant, B<variable number>, I<variable number>, D<variable number>, R<variable number>, S<variable number>, EXPRESS</td>
</tr>
</tbody>
</table>
GETE Function
Extracts an element in a position variable.

Additional Item
- D<variable number>
- P<variable number> (<element number>), BP<variable number> (<element number>), EX<variable number> (<element number>)

Example
GETE D006 P012 (4)

GETS Function
Sets a system variable to the specified variable.

Additional Item
- B<variable number>, I<variable number>, D<variable number>, R<variable number>, PX<variable number>, $B<variable number>, $I<variable number>, $D<variable number>, $R<variable number>, $PX<variable number>, $ERRNO, Constant, B<variable number>

Example
GETS B000 $B000
GETS I001 $I[1]
GETS PX003 $PX001

CNVRT Function
Converts the position variable (Data2) into a position variable of the specified coordinate system, and stores the converted variable in Data1.

Format
CNVRT<Data1><Data2><coordinate>

Additional Item
- Data1 PX<variable number>
- Data2 PX<variable number>
- BF, RF, TF, UF# (<user coordinate number>), MTF

Example
CNVRT PX000 PX001 BF
CLEAR Function
Starting with the variable number in Data1, clears (sets to zero) as many variables as specified by a number in Data2.
Format: `CLEAR<Data1><Data2>`

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B<variable number>, D<variable number>, R<variable number>, $B<variable number>, $I<variable number>, $D<variable number>, $R<variable number>, ALL, STACK</td>
<td><number of variables>, ALL, STACK</td>
<td>clears variables of the variable number in Data1 and of all the variable numbers that follow. STACK: Clears all variables in the job call stack.</td>
</tr>
</tbody>
</table>

Example
- `CLEAR B000 ALL`
- `CLEAR STACK`

SIN Function
Obtains the sine of Data2, and stores the result in Data1.
Format: `SIN<Data1><Data2>`

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R<variable number></td>
<td><constant>, R<variable number></td>
</tr>
</tbody>
</table>

Example
- `SIN R000 R001` (Sets the sine of R001 to R000.)

COS Function
Obtains the cosine of Data2, and stores the result in Data1.
Format: `COS<Data1><Data2>`

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R<variable number></td>
<td><constant>, R<variable number></td>
</tr>
</tbody>
</table>

Example
- `COS R000 R001` (Sets the cosine of R001 to R000.)

ATAN Function
Obtains the arc tangent of Data2, and stores the result in Data1.
Format: `ATAN<Data1><Data2>`

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R<variable number></td>
<td><constant>, R<variable number></td>
</tr>
</tbody>
</table>

Example
- `ATAN R000 R001` (Sets the arc tangent of R001 to R000.)

SQRT Function
Obtains the square root of Data2, and stores the result in Data1.
Format: `SQRT<Data1><Data2>`

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Data1</th>
<th>Data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R<variable number></td>
<td><constant>, R<variable number></td>
</tr>
</tbody>
</table>

Example
- `SQRT R000 R001` (Sets the square root of R001 to R000.)
MFRAME Function

Function: Creates a user coordinate using the position data for the given three points as definition points. <Data1> indicates the definition point ORG position data, <Data2> the definition point XX position data, and <Data3> the definition point XY position data.

Format: MFRAME <user coordinate> <Data1> <Data2> <Data3>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF#(<user coordinate number>)</td>
<td>1 to 24</td>
</tr>
<tr>
<td>Data1</td>
<td>PX <variable number></td>
</tr>
<tr>
<td>Data2</td>
<td>PX <variable number></td>
</tr>
<tr>
<td>Data3</td>
<td>PX <variable number></td>
</tr>
</tbody>
</table>

Example: MFRAME UF#(1) PX000 PX001 PX002

MULMAT Function

Function: Obtains the matrix product of Data2 and Data3, and stores the result in Data1.

Format: MULMAT <Data1> <Data2> <Data3>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
<td>P <variable number></td>
</tr>
<tr>
<td>Data2</td>
<td>P <variable number></td>
</tr>
<tr>
<td>Data3</td>
<td>P <variable number></td>
</tr>
</tbody>
</table>

Example: MULMAT P000 P001 P002

INVMAT Function

Function: Obtains the inverse matrix of Data2, and stores the result in Data1.

Format: INVMAT <Data1> <Data2>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
<td>P <variable number></td>
</tr>
<tr>
<td>Data2</td>
<td>P <variable number></td>
</tr>
</tbody>
</table>

Example: INVMAT P000 P001

SETFILE Function

Function: Changes the contents data of a condition file into the numeric data of Data1. The contents data of a condition file to be changed is specified by the element number.

Format: SETFILE Contents data of a condition file Data1 Constant, D<variable number>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents data of a condition file</td>
<td>WEV#(<condition file number>)(<element number>)</td>
</tr>
<tr>
<td>Data1</td>
<td>Constant, D<variable number></td>
</tr>
</tbody>
</table>

Example: SETFILE WEV#(1)(1) D000

GETFILE Function

Function: Stores the contents data of a condition file in Data1. The contents data of a condition file to be obtained is specified by the element number.

Format: GETFILE Contents data of a condition file Data1 Constant, D<variable number>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents data of a condition file</td>
<td>WEV#(<condition file number>)(<element number>)</td>
</tr>
<tr>
<td>Data1</td>
<td>Constant, D<variable number></td>
</tr>
</tbody>
</table>

Example: GETFILE D000 WEV#(1)(1)

GETPOS Function

Function: Stores the position data of Data2 (step number) in Data1.

Format: GETPOS <Data1> <Data2>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
<td>PX <variable number></td>
</tr>
<tr>
<td>Data2</td>
<td>STEP# (<step number>)</td>
</tr>
</tbody>
</table>

Example: GETPOS PX000 STEP#(1)

VAL Function

Function: Converts the numeric value of the character string (ASCII) of Data2 into the real number, and stores the result in Data1.

Format: VAL <Data1> <Data2>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data1</td>
<td>B <variable number>, I <variable number>, D <variable number>, R <variable number></td>
</tr>
<tr>
<td>Data2</td>
<td>Character string, S <variable number></td>
</tr>
</tbody>
</table>

Example: VAL B000 “123”
ASC Function
Obtains the character code of the first letter of the character string (ASCII) of Data2, and stores the result in Data1.

Format: `ASC<Data1><Data2>`

Additional Item
- `Data1`: B <variable number>, I <variable number>, D <variable number>
- `Data2`: Character string, S <variable number>

Example
`ASC B000 "ABC"`

CHR$ Function
Obtains the character (ASCII) with the character code of Data2, and stores the result in Data1.

Format: `CHR$<Data1><Data2>`

Additional Item
- `Data1`: S <variable number>
- `Data2`: Constant, B <variable number>

Example
`CHR$ S000 65`

MID$ Function
Obtains the character string (ASCII) of any length (Data 3, 4) from the character string (ASCII) of Data2, and stores the result in Data1.

Format: `MID$<Data1><Data2><Data3><Data4>`

Additional Item
- `Data1`: S <variable number>
- `Data2`: Character string, S <variable number>
- `Data3`: Constant, B <variable number>, I <variable number>, D <variable number>
- `Data4`: Constant, B <variable number>, I <variable number>, D <variable number>

Example
`MID$ S000 "123ABC456" 4 3`

LEN Function
Obtains the total number of bytes of the character string (ASCII) of Data2, and stores the result in Data1.

Format: `LEN<Data1><Data2>`

Additional Item
- `Data1`: B <variable number>, I <variable number>, D <variable number>
- `Data2`: Character string, S <variable number>

Example
`LEN B000 "ABCDEF"`

CAT$ Function
Combines the character string (ASCII) of Data2 and Data3, and stores the result in Data1.

Format: `CAT$<Data1><Data2><Data3>`

Additional Item
- `Data1`: S <variable number>
- `Data2`: Character string, S <variable number>
- `Data3`: Character string, S <variable number>

Example
`CAT$ S000 "ABC" "DEF"`
DX100
OPERATOR’S MANUAL
FOR SPOT AND ARC WELDING USING MOTOR GUN

Specifications are subject to change without notice for ongoing product modifications and improvements.