Motoman NX100 Controller

ArcWorld IV-4000 Series
System Manual

Part Number: 149535-1CD
Revision: 0
COMPLETE OUR ONLINE SURVEY

Motoman is committed to total customer satisfaction! Please give us your feedback on the technical manuals you received with your Motoman robotic solution.

To participate, go to the following website:

http://www.motoman.com/forms/techpubs.asp
Table of Contents

Chapter 1
Introduction ... 1
1.1 About This Document .. 1
1.2 System Overview .. 2
 1.2.1 System Layout .. 3
 1.2.2 Major Components ... 3
 1.2.3 Optional Equipment ... 3
1.3 Reference to Other Documentation 4
1.4 Customer Service Information 4

Chapter 2
Safety ... 5
2.1 Introduction ... 5
2.2 Standard Conventions ... 6
2.3 General Safeguarding Tips .. 7
2.4 Mechanical Safety Devices 7
2.5 Installation Safety .. 8
2.6 Programming Safety ... 8
2.7 Operation Safety .. 9
2.8 Maintenance Safety ... 10

Chapter 3
Equipment Description .. 11
3.1 Robot Description .. 11
3.2 NX100 Controller .. 11
 3.2.1 Programming Pendant 12
3.3 Operator Station .. 16
3.4 MR2S-500 Positioner ... 17
3.5 Welding Equipment ... 18
 3.5.1 Wire Feeder .. 18
 3.5.2 GMAW Torch .. 19
 3.5.3 Power Sources .. 19
3.6 Safety Features ... 21
 3.6.1 Arc Screens .. 21
 3.6.2 Fencing .. 21
 3.6.3 Safety Light Curtains 21
 3.6.4 Emergency Stops (E-STOPS) 21
 3.6.5 ENABLE Switch ... 22
 3.6.6 Brake Release ... 22
 3.6.7 Interlocked Cell Door 22
Chapter 4
Installation ... 25
 4.1 Materials Required .. 25
 4.1.1 Customer-Supplied Items 25
 4.1.2 List of Tools .. 26
 4.2 Site Preparation .. 26
 4.3 Installing the Robot/Riser Base 27
 4.3.1 Installing the Wire Guide 28
 4.4 Installing the MSR2S Positioner 28
 4.5 Installing the Fencing ... 29
 4.6 Installing the Safety Light Curtains 34
 4.6.1 Installation .. 34
 4.6.2 Alignment ... 34
 4.6.3 Lagging the Fencing .. 34
 4.7 Installing the Auxiliary Equipment Common Base 35
 4.8 Installing the Operator Station 36
 4.8.1 Removing the Shipping Bracket 37
 4.9 Connecting Power .. 38
 4.10 Conducting a Safety/Operation Check 39
 4.11 Installation of Tooling and Fixtures 39

Chapter 5
Operation ... 41
 5.1 Programming ... 41
 5.1.1 Sweeping the Positioner 42
 5.2 Daily Operation .. 42
 5.2.1 Start-Up ... 43
 5.2.2 Robot Home Position .. 43
 5.2.3 Safety Circuit Check 44
 5.2.4 Selecting Weld Job (Initial Setup Only) 44
 5.2.5 Starting the Master Job 44
 5.2.6 Perform Operation Cycle 45
 5.2.7 Shutdown ... 45
 5.3 System Recovery ... 46
 5.3.1 Alarms and Errors .. 46
 5.3.2 E-STOP Recovery .. 46
 5.3.3 Shock Sensor Recovery 47
 5.3.4 Brake Release ... 47

Chapter 6
Maintenance .. 49

Appendix A
Anchor Requirements ... 51
Chapter 1

Introduction

The ArcWorld IV-4000 Series system is part of the ArcWorld family of standardized arc welding solutions. It is a fully integrated welding system, and is supported from wire to weld by Motoman, Inc.

1.1 About This Document

This manual is intended as an introduction and overview for personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman robot model. For more detailed information, refer to the manuals listed in Section 1.3. This manual contains the following sections:

SECTION 1 - INTRODUCTION
This section provides general information about the ArcWorld IV-4000 Series and its components, a list of reference documents, and customer service information.

SECTION 2 - SAFETY
This section provides information regarding the safe use and operation of the ArcWorld IV-4000 Series system.

SECTION 3 - DESCRIPTION OF EQUIPMENT
This section provides a detailed description of the major components of the ArcWorld IV-4000 Series system. This section also includes a table of component specifications.

SECTION 4 - INSTALLATION
This section provides instructions for set up and installation of the ArcWorld IV-4000 Series system.

SECTION 5 - OPERATION
This section provides instructions for basic operation of the ArcWorld IV-4000 Series system. This section also provides procedures for start-up, loading, normal operation, fault recovery, and shutdown. Sample robot programs are also included in this section.

SECTION 6 - MAINTENANCE
This section contains a table listing periodic maintenance requirements for the components of the ArcWorld IV-4000 Series cell.
1.2 System Overview

The ArcWorld IV-4000 family of economical robotic solutions includes high-performance, pre-engineered workcells that are ideal for welding small- to medium-size products at medium to high volumes. Fully integrated ArcWorld IV-4000 series workcells feature a high-speed, servo-driven, 3-axis reciprocating positioner, high-performance EA-series Motoman robots, NX100 controller, integrated welding packages, operator interfaces, and total safety environment. Safety features include load station(s) interlocked with dual-channel safeguards, interlocked access doors on each side of the cell, safety fencing, and light curtains. The ArcWorld IV-4200 solution features two high-performance robots and two NX controllers, with dual robot control from one programming pendant. One programming pendant simplifies programming and provides single point of control for all axes as required by ANSI/RIA 15.06-1999. Figure 1 illustrates the system layout of the ArcWorld IV-4000 series cell (AWIV-4200 shown).

![System Layout](image)

Figure 1 System Layout

Note: This manual documents a standard Motoman system. If your system is a custom or modified system, please use the drawing and Bill of Material (BOM) provided with the system for troubleshooting and spares provisioning.
1.2.1 System Layout

The robot(s) and positioner are lagged directly to the floor. The NX100 controller(s) and welding power source(s) share a common base and are located at the rear of the cell. The robotic cell is fully enclosed by safety fencing and interlocking doors on each side of the workcell. Light curtains provide a safety zone to prevent the positioner from cycling while anyone is standing within the zone. All operator controls, including those on the controller and welding power supply, are accessible from outside the robotic enclosure.

1.2.2 Major Components

The ArcWorld IV-4000 Series includes the following major components:

- Motoman EA-Series manipulators and NX100 controllers
- MSR2S-500 positioner
- Operator station
- Welding equipment, including the following:
 - Welding power sources
 - Welding torches (water-cooled or air-cooled)
 - Wire feeders
 - Applicable welding interface
 - Torch mounts
- Safety equipment, including the following:
 - Safety fencing with arc curtains
 - Interlocked light curtains
 - Interlocked cell door
 - Positioner arc screen

1.2.3 Optional Equipment

The following optional equipment is available for use with the ArcWorld IV-4000 Series:

- Torch cleaner
- Wire cutter
- Water circulator
- Touch Sense-Starting Point detection unit
- Com-Arc III seam tracking unit
1.3 Reference to Other Documentation

For additional information refer to the following:

- Motoman EA1400N Manipulator Manual (P/N 149209-1)
- Motoman EA1900N Manipulator Manual (P/N 149894-1)
- Motoman NX100 Controller Manual (P/N 149201-1)
- Motoman Operator’s Manual for Arc Welding (P/N 149235-1)
- Motoman Concurrent I/O Parameter Manual (P/N 149230-1)
- Motoman MSR2S-Series Positioner Manual (PN 149160-1)
- Motoman NX100 Maintenance Manual (P/N 150133-1)
- Vendor manuals for system components not manufactured by Motoman

1.4 Customer Service Information

If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:

- Robot Type (EA1400N, EA1900N)
- Application Type (welding)
- System Type (ArcWorld IV-4000 Series)
- Software Version (access using MAIN MENU, SYSTEM INFO, VERSION on programming pendant)
- Robot Serial Number (located on back side of robot arm)
- Robot Sales Order Number (located on front door of NX100 controller)
Chapter 2

Safety

2.1 Introduction

It is the purchaser’s responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. The robot must not be operated by personnel who have not been trained!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety section addresses the following:

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming Safety (Section 2.6)
- Operation Safety (Section 2.7)
- Maintenance Safety (Section 2.8)

2.2 Standard Conventions

This manual includes information essential to the safety of personnel and equipment. As you read through this manual, be alert to the four signal words:

DANGER!

WARNING!

CAUTION!

NOTE:

Pay particular attention to the information provided under these headings which are defined below (in descending order of severity).

⚠️ **DANGER!**

Information appearing under the DANGER caption concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

⚠️ **WARNING!**

Information appearing under the WARNING caption concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

⚠️ **CAUTION!**

Information appearing under the CAUTION caption concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

Note: Information appearing in a Note caption provides additional information which is helpful in understanding the item being explained.
2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06, section 6.13.4 and 6.13.5, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety measures are available:

- Safety fences and barriers
- Light curtains
- Door interlocks
- Safety mats
- Floor markings
- Warning lights

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 Programming Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Programming tips are as follows:

Any modifications to PART 1 of the controller PLC can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!

Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.

Back up all programs and jobs onto a floppy disk whenever program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.

The concurrent I/O (Input and Output) function allows the customer to modify the internal ladder inputs and outputs for maximum robot performance. Great care must be taken when making these modifications. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations that may damage the robot or other parts of the system.

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Be sure that all safeguards are in place.
• Check the E-STOP button on the teach pendant for proper operation before programming.
• Carry the teach pendant with you when you enter the workcell.
• Be sure that only the person holding the teach pendant enters the workcell.
• Test any new or modified program at low speed for at least one full cycle.

2.7 Operation Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Operation tips are as follows:

• Be sure that only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories are permitted to operate this robot system.
• Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
• Inspect the robot and work envelope to ensure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Ensure that all safeguards are in place.
• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
• The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
• All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
2.8 Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Maintenance tips are as follows:

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
- Back up all your programs and jobs onto a floppy disk whenever program changes are made. A backup must always be made before any servicing or changes are made to options, accessories, or equipment to avoid loss of information, programs, or jobs.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Be sure all safeguards are in place.
- Use proper replacement parts.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Chapter 3

Equipment Description

3.1 Robot Description

The Motoman six-axis EA1400N “Expert Arc” robots are specifically designed for arc welding applications. The EA1400N has a payload of 3 kg (6.6 lbs.) and features a horizontal reach of 1388-mm (54.6 inch) and a relative positioning accuracy of ±0.08 mm (±0.003 inch). The EA1900N has a payload of 3 kg (6.6 lbs.) and features a horizontal reach of 1904-mm (74.96 inch) and a relative positioning accuracy of ±0.08 mm (±0.003 inch). The EA-series robots have a patented internal cabling design that provides high flexibility and streamlines the robot profile, allowing access into confined spaces. The robot’s B-axis features an expanded range of motion which improves circumferential welding on cylindrical work pieces. The T-axis can rotate the torch ±360 degrees without cable interference.

The robots can be mounted on the floor, wall, or ceiling with minor modifications. The S-axis has been restricted by hardstops for use in this system. For more information, refer to the manipulator manual that came with your system.

3.2 NX100 Controller

The NX100 robotic controller, shown in Figure 2, features a Windows® CE programming pendant with color touch screen, high-speed processing, built-in Ethernet, and a robust PC architecture. The NX100 easily handles multiple tasks and can control up to four robots (up to 36 axes, including robots and external axes), and I/O devices. Advanced Robot Motion (ARM) control provides high-performance path accuracy and vibration control.

The NX100 coordinates the operation of the ArcWorld IV-4000 Series system. It controls manipulator movement and welding power supply, processes input and output signals, and provides the signals to operate the welding system. It maintains variable data and performs numeric processing to convert to and from different coordinate systems. In addition, the controller provides main logic functions, servo control, program and constant data memory, and power distribution. For more information, refer to the controller manual that came with your system.
3.2.1 Programming Pendant

The programming pendant (see Figure 3) is the primary user interface for the system and features a cross-shaped navigation cursor that reduces teaching time by 30 percent. The pendant has a 6.5-inch full color touch screen display (640 x 480 VGA) and provides a convenient Compact Flash slot for easy memory back-ups. The system uses the INFORM III robot language and a menu-driven interface to simplify operator interaction with the robot.

Most operator controls are located on the pendant, allowing the control cabinet to be mounted remotely. An optional on-line troubleshooting guide for expert system maintenance is also available on the pendant. By using the pendant, the operator can teach robot motion, and perform programming, editing, maintenance, and diagnostic functions. For more information, refer to the operator’s manual that came with your system.

Note: The programming pendant display goes into screen saver mode after a few minutes of inactivity. Press any key to restore screen.
Figure 3 Programming Pendant

Mode Selector Switch
The Mode Selector Switch allows the operator to select Remote, Play or Teach mode. In Remote mode, control of the system is transferred to the operator station. When Play or Teach is selected, the programming pendant controls system operation. When Play or Remote mode is selected on the programming pendant, the operator must also press the PLAY ENABLE button on the controller door to initiate Play mode.

Menu Area
The Menu Area contains menu selections for the currently selected screen.

General Purpose Display Area
The General Purpose Display Area displays the currently selected menu choice.

Emergency Stop (E-STOP)
Pressing the E-STOP button puts the controller in Emergency Stop and stops all system operation.
Keypad
The user keypad on the programming pendant serves as an input device. The keys are grouped into different functional sections to simplify operator use.

Status Area
The Status Area shows system status via the following symbols:

- Active Robot, External Axis, or Base Axis
 R1, R2, R3; S1, S2, etc.; or B1, B2, etc.
- Coordinate System
 Joint, World, Cylindrical, Tool, or User Frame
- Manual Speed Setting
 Inching, Low, Medium, or High
- Cycle Mode
 Step, I-Cycle, or Auto
- System Status
 E-Stop, Stop, Running/Start, Hold, or Alarm
- Additional Pages (when applicable)

MAIN MENU Key
The MAIN MENU key returns the pendant display to the initial start-up menu. Use the cursor key or the touch screen to choose from the following menu options:

- JOB
 This option accesses job selections including: Master Job, Select Job, Job Capacity, and Create New Job while in TEACH mode.
- ARC WELDING, GENERAL, HANDLING, and SPOT WELDING
 This option allows you to select the applications available to the controller.
- VARIABLE
 This option accesses the display and editing menu for the arithmetic variables and display of position variables.
- IN/OUT
 This option accesses DETAIL and SIMPLE displays of all I/O signals. In EDITING or MAINT. mode, Universal Outputs can be forced ON or OFF.
- ROBOT
 This option accesses robot information including: CURR.POS, POWER ON/OFF, POS, COMMAND POS, SECOND HOME POS, OPE ORIGIN POS, and TOOL and USER COORDINATE.
- SYSTEM INFO
 This option provides Version information for both hardware and software, Alarm History, and Monitoring Time.
- FD/CF
 This option accesses menu choices for FD (floppy disk) or CF (compact flash) program backup.
• SETUP
 This allows the user to set up system conditions and assign hot keys.

AREA Key
The Area key moves the cursor to the different areas of the display screen.

CURSOR Key
The Cursor key is an 8-way, directional key that moves the up, down, left or right to highlight a desired item that can then be chosen using the SELECT key.

SELECT Key
The SELECT key is used to choose the item currently highlighted by the cursor.

FLASH MEMORY Slot
The compact FLASH MEMORY card slot allows for easy memory backups.

ENABLE Switch
The ENABLE switch (see Figure 4) is a three-position switch located on the left rear of the programming pendant. It is a safety feature that controls servo power while in TEACH mode. When pressed in, this switch enables servo power to be turned on. However, should the operator release the switch, or grasp it too tightly, servo power is immediately removed, preventing further robot movement.

SERVO ON Key
When the pendant is in TEACH mode, The SERVO ON key turns servo power ON when the ENABLE switch is activated. When the pendant is in PLAY mode, the SERVO ON key turns servo power on.

Figure 4 Enable Switch.
3.3 **Operator Station**

The operator station (see Figure 5) includes a NEMA enclosure on a stand-alone pedestal. The following paragraphs describe the operator station controls.

![Operator Station Diagram](image)

Figure 5 Operator Station

Start
Pressing the START button starts the current, active job. The operator station must be enabled and servo power must be ON for the START button to function.

Robot Hold
Pressing ROBOT HOLD stops robot operation and interrupts the job until the operator presses the START button to resume operation. Operation resumes at the point in the program where the ROBOT HOLD state was initiated. Refer to the operator’s manual for more information.

Servo On
The SERVO-ON push button turns servo power ON when the robot is in PLAY mode and the operator station is enabled.

Alarm
The ALARM lamp lights red when the controller encounters an alarm condition.

Reset
Pressing the RESET button clears a minor alarm or error condition.

Emergency Stop (E-STOP)
Pressing an E-STOP button removes servo power and stops all system operation. Brakes are applied to the robot and all positioner motion is stopped.
Cycle Start/Cycle Latched

The operation of the CYCLE START/CYCLE LATCHED button is dependent on the structure of the Master job. Altering the Master job could result in injury to personnel or damage to the equipment.

The green CYCLE START/CYCLE LATCHED button, located on the operator station, initiates a positioner sweep cycle if the robot is in the Home position. If the CYCLE START button is pressed while the robot is outside the Home position, the CYCLE START command does not execute and the positioner does not sweep until the robot returns to the Home position.

The CYCLE LATCHED lamp illuminates when the CYCLE START button is pressed during operation. When the lamp is illuminated, the positioner will sweep and the robot will begin to weld immediately after the current weld cycle is complete. It is not necessary to wait for the robot to finish welding and return to the Home position before pressing the CYCLE START button to sweep the positioner. Pressing the CYCLE START button while the robot is still in motion latches the CYCLE START command into the controller. If a person enters the safety zone created by the light curtains, the CYCLE START command will unlatch and the positioner will not sweep.

Home (Three Position Joystick)

The Home joystick controls positioner rotation and user defined load positions. Moving the joystick to the right (FWD) indexes the positioner headstock clockwise at 30-degree intervals. Moving the joystick to the left (REV) indexes the positioner headstock counter-clockwise at 30-degree intervals. Home position resets the positioner headstock to zero degrees.

Positioner Auto/Manual

The POSITIONER AUTO/MANUAL selector switch is used to select AUTOMATIC or MANUAL mode for the positioner. When the selector switch is in the AUTOMATIC position, the robot processes the part after the positioner sweeps. In MANUAL mode, the robot does not process the part after the positioner sweeps, but remains in the Home position.

Note: The Positioner Auto/Manual command is dependent on the structure of the Master job.

3.4 MSR2S-500 Positioner

The highly flexible MSR2S-500 positioner provides part positioning on two stations (robot and operator) simultaneously. Servo headstocks can be coordinated with the robot, rotated while indexing, or jogged by the operator. This high-speed, high performance positioner features a 500-kg (1,102.5-lb.) payload per side with a maximum imbalanced load of 250 kg. The orbital axis on this positioner has a tooling envelope of 1.3 meters in diameter. Loading fixtures are supplied by the customer. For positioner specifications and maintenance procedures, refer to positioner manual.

A steel, sheet metal arc screen divides the positioner in half, providing two work areas labeled Side A and Side B. When Side A is in the robot’s welding zone, Side B is facing the operator and ready to be loaded or unloaded with parts, and vice versa. For positioner specifications, refer to Table 4.

Note: In high humidity areas, use surface protection to prevent corrosion of the tooling plates.
Table 4 MSR2S Positioner Specifications

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooling Envelope</td>
<td>1.3 X 2 meters (51 X 79 inches)</td>
</tr>
<tr>
<td>Maximum Tooling Weight with Part</td>
<td>500 kg (1,340 lbs) per side, with a maximum imbalance load of 250 kg</td>
</tr>
<tr>
<td>Sweep Time with Capacity</td>
<td>3.7 seconds for 180-degree sweep with maximum load of 500 kg (1,340 lbs)</td>
</tr>
<tr>
<td>Temperature Operating Range</td>
<td>4–43°C (40–110°F)</td>
</tr>
<tr>
<td>Humidity (max.)</td>
<td>Non-condensing 10–90% relative humidity</td>
</tr>
<tr>
<td>Shock (max.)</td>
<td>Less than 0.5 G</td>
</tr>
<tr>
<td>Welding Current Rating</td>
<td>800 amperes at 100% duty cycle</td>
</tr>
</tbody>
</table>

3.4.1 Arc Shield

⚠️ **DANGER!**

Do not operate this equipment unless the arc screen is in place or eye damage can occur!

The Motoman MSR2S-500 positioner has a steel sheet metal screen that runs the diameter of the positioner table and visually separates the loading zone from the welding zone. This screen acts as a shield to protect the operator from the arc radiation and sparks produced by the welding operation. Do not operate this equipment unless the arc screen is in place.

3.5 Welding Equipment

In its standard configuration, the ArcWorld system includes a welding power source, wire feeder, torche, and torch mount. Optional equipment - including water circulators, Com-Arc units, and torch tenders - may also be included with your system.

3.5.1 Wire Feeder

The wire feeder mounts on the robot arm. This 4-roll wire feeder provides reliable wire feeding at rates up to 750 inches per minute (ipm). An integral gas valve provides fast gas response time. Interchangeable feed rolls are used to accommodate different types and sizes of wire.

3.5.2 GMAW Torch

The ArcWorld system uses either an air-cooled or a water-cooled robotic/automatic GMAW torch. These are heavy-duty torches designed for quick replacement and minimum robot reprogramming. The GMAW torch is installed at the end of the robot wrist. For applications that use the water-cooled torch, the ArcWorld system includes a water circulator kit.
3.5.3 Power Sources

Motoman offers several different power sources for use with the ArcWorld IV-4000 Series system, depending on the system’s application. Figure 6 shows some of the more common power sources used. However, the power source your system uses may be different. For more specific information, refer to the vendor manual that came with your system.

Figure 6 Available Power Sources
3.6 Safety Features

The ArcWorld system includes a total safety environment. When all standard safety precautions are taken, the safety equipment helps to ensure safe operation of the robotic cell. The ANSI/RIA R15.06-1999 Robot Safety Standard stipulates the user is responsible for safeguarding.

Note: Users are responsible for determining whether the provided safeguards are adequate for plant conditions. Users must also ensure that safeguards are maintained in working order.

3.6.1 Arc Screens

WARNING!
Although the arc curtain blocks dangerous arc radiation, never look directly at the arc without protective eyewear!

Two arc screens are used on the ArcWorld system. The first is a metal arc screen on the positioner. This screen blocks arc radiation and sparks from the welding operation.

The material used to cover the safety fencing of the entire robotic cell acts as the second arc screen. This material reduces the amount of ultra-violet radiation that escapes from the robotic cell.

3.6.2 Fencing

The safety fencing provided with the ArcWorld system encloses the entire robotic cell. It forms a physical barrier preventing entry into the robot operating envelope during automatic operation.

3.6.3 Safety Light Curtains

The safety light curtains help prevent serious injury to anyone entering the positioner area during the sweeping process. In PLAY mode, if the positioner is sweeping and the operator steps into the safety zone, servo power is removed from the system and all positioner motion stops. Servo power can be reapplied and the operation resumed by pressing SERVO ON and START.

3.6.4 Emergency Stops (E-STOPs)

In addition to the safety features described above, the ArcWorld IV-4000 Series has strategically placed E-STOPs. These are operator actuated devices that, when activated, immediately stop all system operation. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped. The following is a list of their locations:

- The controller
- The programming pendant
- The operator station
3.6.5 ENABLE Switch

The ENABLE switch is a safety feature which controls servo power while in TEACH mode. When pressed in, this switch allows the operator to turn servo power ON. However, should the operator release the switch or grasp it too tightly, servo power is immediately disabled, preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the controller manual that came with your system.

3.6.6 Brake Release

The robot brakes are designed to protect the robot and other system components from damage in event of a system or robot failure. The brake release is a safety feature that allows the operator to release the brake of a specific robot axis when drive power has been removed from the system. Use the programming pendant to access the brake release function. Refer to paragraph 5.3.4 for brake release procedures.

3.6.7 Interlocked Cell Door

A safety interlock on the cell entrance door prevents entry into the cell during PLAY mode. Brakes are applied to the robot, servo power is removed from the system, and all positioner motion is stopped.
Chapter 4

Installation

The ArcWorld IV-4000 Series system can be installed easily in just a short time. Follow established safety procedures at all times throughout the installation process. Failure to use safe work practices can result in damage to the equipment and injury to the workers.

⚠️ **CAUTION!**
Installation of the ArcWorld system is not a task for the novice. The ArcWorld system is not fragile, but it is a highly sophisticated robotic system. Handle components with care. Rough handling can damage system electronic components.

4.1 Materials Required

All system hardware necessary for installing the ArcWorld IV-4000 Series system is included with the system. This section identifies customer-supplied items and tools required to complete installation.

4.1.1 Customer-Supplied Items

- Gas for welding torches
- Incoming power
- Two earth ground cables with two earth ground stakes
- Weld wire
- Incoming air supply: 0.04cmm at 620.5 kPa (1.5scfm at 90 psi) for torch tender or wire cutter options
- Forklift and/or overhead crane
4.1.2 List of Tools

- Safety glasses
- Face shields
- Gloves
- Level
- Ratchet with 3/4-inch socket
- Adjustable wrench set
- Hammer drill with appropriate concrete bits
- Phillips and flat screwdrivers
- Hammer
- Socket set
- Forklift and/or overhead crane
- Air-impact gun with 3/4-inch socket
- Open-end wrench set
- Two socket-heads (Allen)
- Wrench sets (standard and metric)

4.2 Site Preparation

To prepare your site, proceed as follows:

1. Clear floor space needed for unit (see Figure 7).

 Note: To make installation easier, allow an additional 1.2 to 1.5 m (4 to 5 ft) on all sides of cell.

![Diagram of Area Needed for Installation](image)

Figure 7 Area Needed for Installation

2. Gather all customer-supplied items and required tools listed in Section 4.1.
4.3 Installing the Robot/Riser Base

The robot/riser base and operator station are shipped on a wooden shipping skid. To install the robot/riser base, proceed as follows:

CAUTION!

Handle ArcWorld components carefully to avoid damage.

1. Unbolt robot/riser base from the wooden shipping skid using a 3/4-inch socket.

WARNING!

The robot with riser weighs 2200 kg (4409.2 lbs). Be sure that your crane or forklift is capable of handling this weight or damage to the equipment or injury to personnel can result.

2. Using an overhead crane, remove robot/riser base from wooden shipping skid (see Figure 8).
3. Place robot/riser base in position.

![Diagram of robot/riser base installation](image)

Figure 8 Installing Robot/Riser Base
4.3.1 Installing the Wire Guide

The wire guide is shipped in an accessories box. To install the wire guide, proceed as follows:

1. Remove wire guide from accessories box.
2. Install connector end of wire guide into feeder housing (see Figure 9) by turning connector clockwise until hand-tight.
3. Insert other end of wire guide into side mount; tighten thumbscrew.

![Diagram of Wire Guide Installation](image)

Figure 9 Installing the Wire Guide

4.4 Installing the MSR2S Positioner

Refer to the MSR2S-Series Positioner Manual (P/N 149160-1) for complete instructions for installing and leveling the positioner.
4.5 Installing the Fencing

The safety fencing, fence posts, doors, and associated hardware are shipped in a separate crate, and includes manufacturer’s instructions for installing fence sections. To install the fencing, proceed as follows:

1. Remove fencing, posts, and hardware from the shipping crate.
2. Inspect fence components for shipping damage.

Note: If damage is found, notify shipper immediately.

3. Make sure the fence kit for your ArcWorld cell contains the following components:
 • Three 1500-mm (59-inch) panels
 • Four 1200-mm (47-inch) panels
 • Two 400-mm (15.8-inch) panels
 • One 800-mm (31.5-inch) panel
 • One 950-mm (37.4-inch) panel
 • One 1000-mm (39-inch) door panel
 • Two 1200-mm (47-inch) wireways
 • One 1500-mm (59-inch) wireway
 • One 950-mm (37.4-inch) wireway

4. Locate fence panels/door around positioner and robot(s), observing dimensions and placement shown in Figure 10.
5. Install fence post #390-230-005M1 as shown in Step A, Figure 11, using hardware provided.

Note: Do not lay fence posts to the floor until after installation of the safety light curtains. Refer to Section 3.6.

6. Install the 1500-mm fence panel to fence post (Step A, Figure 11) using screws and nuts provided.

7. Install second fence post to 1500-mm fence panel.

8. Install 1500-mm wireway on top of fence panel, using brackets and hardware provided.

9. Install 800-mm fence panel to fence post as shown in Step B, Figure 11.
Figure 11 Installing the Fence, Steps A - F

10. Install fence post #390-230-005M1 to 800-mm fence panel.
11. Install and lag fence post for door panel as shown in Step C, Figure 11.
12. Install door panel to second fence post as shown in Step C, Figure 11.
13. Install 1200-mm fence panel to hinge on fence post. Refer to Step D, Figure 11 for placement and Figure 12 for a closeup view of the hinge. Install additional fence post as shown in Step D, attaching fence panel to hinge.
Figure 12 View of Hinges

14. Install 1200-mm fence panel as shown in Step E, Figure 11.
15. Install fence post to 1200-mm fence panel.
16. Install 400-mm fence panel to hinge on fence post as shown in Step F, Figure 11.
17. Install fence post to 400-mm fence panel.
18. Install 1500-mm fence panel to fence post as shown in Step G, Figure 13.
19. Install fence post to 1500-mm fence panel.
20. Continue fencing assembly on the right side of the cell. Install fence post for door panel as shown in Step H, Figure 13.
21. Install the 1000-mm door panel to fence post.
22. Install 950-mm wireway on top of 1000-mm door panel, using brackets and hardware provided.
23. Install 1200-mm fence panel to hinge on fence post as shown in Figure 12 and Figure 13, Step I.
24. Install fence post to 1200-mm fence panel.
25. Install 1200-mm wireway on top of 1200-mm fence panel, using brackets and hardware provided.
26. Install 1200-mm fence panel as shown in Step J, Figure 13.
27. Install fence post to 1200-mm fence panel.
28. Install 1200-mm wireway on top of 1200-mm fence panel, using brackets and hardware provided.
29. Install wireway bracket as shown in Figure 14.
30. Install 400-mm fence panel to hinge on fence post as shown in Step K, Figure 13.
31. Install fence post to 400-mm fence panel.
32. Install 1500-mm fence panel to fence post as shown in Step L, Figure 13.
33. Install fence post to 1500-mm fence panel.
Figure 13 Installing the Fence, Steps G - L

Figure 14 Installing Wireway Bracket
4.6 Installing the Safety Light Curtains

4.6.1 Installation

The light curtain components, sender and receiver, come pre-assembled and attached to the fencing installed in Steps G and L above. Locate the light curtain cables and connect between the controller and the sender and receiver according to your system prints.

4.6.2 Alignment

The sender and receiver must be aligned properly. Refer to the light curtain manufacture’s literature that accompanies the robot cell for exact alignment procedures.

4.6.3 Lagging the Fencing

Once the light curtains have been properly installed, anchor the fence posts to the concrete floor. Check the alignment of the light curtains and adjust as necessary.

4.7 Installing the Auxiliary Equipment Common Base

The auxiliary equipment common (AEC) base contains the NX100 controller and the welding power source with disconnect. It may also include the optional water circulator and/or the Com-Arc III. The AEC base is shipped on a separate wooden shipping skid. The accessories box is secured to the top of the welding power source. To install the AEC base, proceed as follows:

1. Unbolt the AEC base from the wooden shipping skid by removing the four shipping bolts using a 3/4-inch deep well socket (See Figure 15).

WARNING!
The AEC base can weigh as much as 600 kg (1320 lbs). Be sure that your crane or forklift is capable of handling this much weight or damage to the equipment or injury to personnel can result.
Figure 15 Unbolting the Auxiliary Equipment Common (AEC) Base

2. Using a forklift, lift base and remove from wooden shipping skid.
3. Place AEC base approximately 0.6 meters (2 feet) behind ArcWorld cell (see Figure 16).
4. Carefully remove protective plastic wrapping and cardboard from AEC base.
5. Remove accessories boxes from welding power source and set safely aside.
6. Inspect AEC base components for shipping damage.

Note: If damage is found, notify shipper immediately.
7. Secure AEC base to floor (refer to Appendix A for anchor requirements).

4.8 Installing the Operator Station

To install the operator station, proceed as follows:

1. Unload operator station.
2. Carefully remove protective plastic wrapping from operator station.
3. Inspect operator station for shipping damage.

Note: If damage is found, notify the shipper immediately.

4. Place operator station outside fence to front of positioner.
5. Secure operator station to floor (refer to Appendix A for anchor requirements).
4.8.1 Removing the Shipping Bracket

CAUTION!

Failure to remove shipping brackets from robot before operating the ArcWorld IV-4000 Series may result in damage to the robot drive mechanisms.

A yellow bracket (see Figure 17) prevents the robot from moving during shipping. The bracket secures the lower arm assembly to the S-axis housing. The smaller bracket on the rear of the robot prevents the S-axis housing from pivoting. After the robot is in place, remove the shipping bracket.

![Diagram of shipping bracket](image)

Figure 17 Location of Shipping Brackets
4.9 Connecting Power

After all of the system components have been properly installed, connect the power to the ArcWorld IV-4000 Series.

DANGER!
Power should be connected only by a qualified electrician. Electrical and grounding connections must comply with applicable portions of the national electrical code and/or local electrical codes.

1. Install 3-phase power wiring to main service disconnect located on the controller base. Table 5 shows size and type of wire needed.
2. Make sure the service disconnect switch is set to the OFF position.
3. Route incoming power cable into disconnect box. Knock-out holes are provided.
4. Using a cord grip, secure incoming power cable to service disconnect housing.
5. Strip the three incoming power wires and secure them to the power disconnect connections inside. Use a phillips screwdriver to tighten.
6. Strip the ground wire and secure it to the ground lug inside the service disconnect box. A ring-tongue terminal will be needed. Nut and lock-washer are provided.
7. Turn service disconnect switch to the ON position.
8. Using a volt/ohm meter, verify incoming voltage and amperage values. Refer to label on service disconnect box and system prints for correct voltage.

Note: The ArcWorld IV-4000 Series is configured for 3-phase 460/480V AC, unless other voltage was requested. If other voltage is required for your plant, you must make the necessary modifications to the transformer. For more information, refer to the manipulator manual that came with your system.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Incoming Power Specifications (Decal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lug Data</td>
<td>60/75 C wire</td>
</tr>
<tr>
<td>Catalog No.</td>
<td>TCAL.14</td>
</tr>
</tbody>
</table>
| Wire Size | #14-7 Copper
#12-8 Aluminium |
| Torque | #14-7, 4.0 N•m (35 lb-in.) |
4.10 Conducting a Safety/Operation Check

Before installing tooling and/or fixtures for your application, take a few minutes to perform a safety/operation check. To conduct a safety/operation check:

1. Check that all three yellow shipping brackets have been removed from robot (see Section 4.8.1).
2. Be sure there is a clearance of at least 2.5 cm (1 in.) on either side of the positioner.
3. Be sure the safety light curtains are aligned correctly.
4. Check that the cell door is closed and latched.
5. Check that all cable connections are tight.
6. Be sure the welding power source is set correctly (see welding power source vendor's manual).
7. Verify that incoming line power matches the input power specified on the front of the controller.

Your ArcWorld IV-4000 Series is now ready for power-up. The ArcWorld system should be operated only by personnel who have received operator training from Motoman and who are familiar with the operation of this Motoman robot model. Turn the main power ON, and continue the safety/operation check.

8. Check all system E-STOPS (pendant, op-station, breakaways, playback box).
9. Check system Hold buttons.

4.11 Installation of Tooling and Fixtures

Your ArcWorld IV-4000 Series system is now ready for the installation of tooling and fixtures for your application. Installation of tooling and fixtures should be performed by personnel who are familiar with the operation of this system. Tooling and fixtures are supplied by the customer. After tooling is installed, test the positioner for proper operation.
Chapter 5
Operation

The ArcWorld IV-4000 Series is a fully integrated robotic arc welding cell. The Master job setup, and the sub-jobs programmed within it, determine how the robot performs the welding operation or other tasks. The robot(s) weld parts on one side of the turntable positioner, while the operator loads or unloads parts on the opposite side. Once the robot(s) are finished with the welding process, they return to the Home position. The operator then sweeps the positioner placing the unwelded parts into the robot work area and the finished parts into the operator area for unloading.

5.1 Programming

The operation of this system is programming dependent. The following operating instructions are based on one possible configuration of this system. Your system configuration and job structure may differ slightly from that presented here; however, basic operation will be the same. For additional programming instructions, refer to the controller manual that came with your system.

Any changes made to your system configuration and/or job structure will alter the operation of this cell. Motoman recommends you do not modify the original jobs and system configuration that came with your system. If modifications need to be made, they should be made to copies of these jobs and not to the originals. Modifications should only be performed by personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman system. If you have questions concerning the configuration of your system please contact the 24 hour Service Hotline, at (937) 847-3200 (see Section 1.4).

A major advantage of the ArcWorld IV-4000 Series system is its high degree of flexibility. The operator can fine tune the movement of both the robots and positioner according to parts configuration. The MSR25-500 positioner proves highly versatile when configured with the EA1400N robot. The robot(s) can be programmed to weld parts with the headstock stationary, or the robot(s) and headstock can move simultaneously. The robots can be programmed to weld different seams on the same part and to move from part to part to continue welding.

With the programming pendant, the operator can develop a series of jobs for the robots. You can program the robots independently, the station axis independently, or the robots and station axis together. You must select the axis combination when teaching the job initially (see Section 5.1.4).
Motoman recommends programming the robots and station axis together to reduce the risk of interference.

Note: Refer to your system’s Independent/Coordinated Motion Manual (P/N 149648-1) for information on coordinated motion, selecting synchronization, group axes, and tooling calibration.

CAUTION!
Remember that only the Tool Center Point (TCP) location on the robot is recognized by the controller. Without careful programming, the robot arm can still damage other equipment.

5.1.1 Sweeping the Positioner

Note: To sweep the positioner, the robots must be in the Home position.

MANUAL mode allows you to sweep the positioner without activating the robots. Parts can be loaded onto the fixture to achieve the most efficient configuration and then swept into the welding zone, before teaching the robots. To sweep Side A or Side B of the positioner into the robot’s welding zone, proceed as follows:

1. Place robots in Home position (see Section 5.2.2).
2. Set the op-station POSITIONER switch to MANUAL mode and start the Master Control job (see Section 5.2.3). Normally, robot(s) will not move out of Safe position when POSITIONER switch is in MANUAL (This may vary with job structure).

Note: Cycle Start latching is not operative in Manual mode.

3. Press the CYCLE START button on operator station. The positioner sweeps each time the CYCLE START button is pressed.

Note: The Home position turns on an output when the robot tool center point is within established boundaries. If the robot moves outside the Home position, the output is lost and the positioner will not sweep. The Home position is factory set to be clear of the positioner.

5.2 Daily Operation

The procedures below represent the typical operating sequence from power up to shutdown. Yours basic operating procedures may vary depending on your situation.

- Perform Start-up Procedures (see Section 5.2.1).
- Move robot to Home position (see Section 5.2.2).
- Select master job (see Section 5.2.3).
- Perform Operation Cycle (see Section 5.2.4)
- Perform Shutdown Procedures (see Section 5.2.5)
5.2.1 Start-Up

Note: Due to the configuration of the ArcWorld IV-4200 system, the slave controllers (R2 & R3) must be energized before the primary controller (R1) or an alarm condition will occur during power up.

To start the cell from a Power-Off condition, proceed as follows:

1. Make sure the enclosure door is closed and securely latched.
2. Turn ON main service disconnect switch.
3. Set MAIN POWER switch on R2 controller to ON.
4. Set MAIN POWER switch on R1 controller to ON.
5. Set INPUT POWER switch on welding power sources to ON.
6. Turn on welding gas supply.
7. Disable operator station.
8. Make sure E-STOP buttons on programming pendant and operator station are released.
9. Select TEACH mode on programming pendant; indicator light turns on.
10. Place robots in Home position.

5.2.2 Robot Home Position

To place the robot(s) in the Home position, proceed as follows:

1. Select TEACH mode button on the programming pendant.
2. Press MAIN MENU on programming pendant.
3. Select JOB icon using cursor keys and press SELECT.
4. Cursor to SELECT JOB and press SELECT key.
5. Using cursor keys, move cursor to SAFE job and press SELECT.
6. Turn servo power ON by pressing SERVO ON, pressing TEACH LOCK and holding in the ENABLE switch.
7. Using the INTERLOCK and FWD buttons on the programming pendant, jog the robots to the Home position.
5.2.3 Safety Circuit Check

Test each of the following safety circuit items daily for proper operation. If any of these items does not work as instructed, contact Motoman service staff at (937) 847-3200 before operating the cell.

Gate Interlock
Open gate interlock while robot is in PLAY mode with servo power ON. Verify that servo power goes off.

Emergency Stop (E-Stop) Buttons
Press each E-Stop button with the robot in PLAY mode and the servo power ON. After each button is pressed, verify that servo power goes off and the programming pendant reads “Robot is Stopped.”

5.2.4 Selecting Weld Job (Initial Setup Only)

CAUTION!
Selecting the wrong job can cause unexpected robot motion. Care must be taken to ensure that the proper job is selected.

1. In the Sweep A (or B) Job, select the following line: “PStart Job:Test A (or B) sub 2.”
2. Move the cursor to highlight this line “PStart Job:Test A (or B) sub 2.” This command line appears at the bottom of the display screen.
3. Cursor to the TestA (or B) job and push SELECT. The job list is displayed.
4. Select the desired job using the cursor and press ENTER to change the job and modify the PStart command in the sweep job.

5.2.5 Starting the Master Job

With the system powered up and in TEACH mode:

1. Press the MAIN MENU key on the programming pendant.
2. Select the JOB icon using the cursor keys and press SELECT.
3. Cursor to SELECT JOB and press the SELECT key. The job list appears on display screen.
4. Using cursor keys, cursor to the Master job and press SELECT. The Master job appears on display screen.
5. Press the PLAY mode button on controller playback panel. Job playback operation is enabled.
6. Press the SERVO ON button on the programming pendant.
7. Reset the positioner by pressing the RESET button on the operator station.
8. Press the START button on operator station. The Master job cycles, waiting for a Cycle Start input from operator station.

The ArcWorld IV-4000 Series cell is now ready for operation.
5.2.6 Perform Operation Cycle

The following is the typical sequence of operation for the ArcWorld IV-4000 Series cell after start-up:

1. Load fixture on operator side of positioner table with parts to be welded.
2. Step out of safety light curtain.
3. Press the CYCLE START button on the operator station. STATION READY light comes on and positioner sweeps, placing unwelded parts into the robot work area. The robots then begin welding parts.
4. While the robots are welding, load the operator side.
5. When parts are loaded, press the CYCLE START button on operator station; CYCLE LATCHED light comes on. When the robots are finished welding, they return to Home position and the positioner sweeps, returning welded parts outside the cell and placing newly loaded, unwelded parts into the robot work area.
6. Unload welded parts from the fixture.

Note: Before sweeping at first power up, make sure the correct job has been loaded.

5.2.7 Shutdown

Use the following procedure to shut down the ArcWorld IV-4000 Series cell after operation is complete:

1. Make sure robot(s) are in the Home position.
2. Turn off system servo power by pressing E-STOP button on operator station or programming pendant.
3. Select TEACH mode on the programming pendant.
4. Set the main service disconnect switch to the OFF position.
5. Close welding gas supply.

The ArcWorld IV-4000 Series cell is now shut down.
5.3 **System Recovery**

When a system error or alarm occurs, you must clear the error or alarm to return the system to normal operation. The paragraphs below describe the different types of alarms and errors you may encounter and how to remedy them when you do.

5.3.1 **Alarms and Errors**

Alarms and errors will cause the program to stop. There are three levels of alarms and errors: Error Messages, Minor Alarms, and Major Alarms. For more detailed information about alarm recovery, refer to manipulator manual that came with your system.

5.3.1.1 **Error Messages**

These are simple errors such as pressing the START button when the robot is not in PLAY mode, or enabling the programming pendant when servo power is off. Clear these errors by pressing the CANCEL button on the programming pendant.

5.3.1.2 **Minor Alarms**

Minor alarms are usually programming errors. Minor alarms might occur if a circle has been programmed with fewer than three circular points, etc. Clear these errors by pressing the RESET (F5) soft key on the programming pendant.

5.3.1.3 **Major Alarms**

Major alarms are hardware failures. Major alarms might occur because of a servo tracking error or an abnormal speed and are usually associated with crashes. To clear these alarms, you must turn off the controller and then turn it on again.

5.3.2 **E-STOP Recovery**

An E-STOP can occur under any of the following conditions:

- Pressing E-STOP button on the operator station, programming pendant, or the playback panel.
- Opening the cell door on robot enclosure when robot is not in TEACH mode.
- Stepping into light curtain when positioner is sweeping.
- Actuating shock sensor on torch mount.

To restart the ArcWorld IV-4000 Series cell after an E-STOP condition occurs, proceed as follows:

1. To clear E-STOP condition, perform any of the following actions that apply:
 - Release E-STOP button on op, programming pendant, or controller playback panel.
 - Close cell door.
 - Step out of safety curtain.
 - Clear Shock Sensor condition (refer to Section 5.3.3).
CAUTION!
If an emergency stop condition occurs while the positioner is sweeping, the positioner will continue the sweep when system is re initialized.

1. Press SERVO ON button on operator station or programming pendant.
2. Ensure robot is in remote mode.
3. Press START button on the operator station.

The ArcWorld IV-4000 Series cell is now ready to continue operation.

5.3.3 Shock Sensor Recovery

The ArcWorld welding package includes a Motoman gun mount. This mount is designed to protect the torch from damage in case of a crash. A slight deflection of the torch activates a SHOCK SENSOR message which triggers an E-STOP condition. To clear the E-STOP condition, you must override the shock sensor and move the robot clear of the impact. To override the shock sensor, proceed as follows:

CAUTION!
It is possible to crash the robot with the Shock Sensor Override Switch left in the “Override” position. Always remember to reactivate the Shock Sensor before continuing system operation.

1. Press MAIN MENU on programming pendant.
2. Select ROBOT icon using cursor keys and press SELECT.
3. Cursor to OVERRUN-S.SENSOR and press SELECT key.
4. Select RELEASE to release shock sensor.
5. Turn servo power ON by holding ENABLE switch on the programming pendant and pressing SERVO ON.

Note: TEACH LOCK must be ON to turn servo power on in TEACH mode.

The ArcWorld IV-4000 Series cell is now ready to continue operation.

5.3.4 Brake Release

The robot brakes are designed to protect the robot and other system components from damage in the event of a system or robot failure and loss of drive power. If a system or robot failure occurs, it is often necessary to release the brakes on the robot to remove it from the crash site. To release the brakes, proceed as follows:

WARNING!
Releasing brakes can cause personal injury or machine damage. Make sure the axis to be released is properly supported BEFORE proceeding.
1. On the programming pendant, select TEACH mode and turn servo power OFF.
2. Select ROBOT on the programming pendant touch screen.
3. Select the MANUAL BRAKE RELEASE option. A Warning dialog appears.
4. Select YES in the warning dialog box.
5. Select the axis to be released using the cursor key.
6. Engage the ENABLE switch and press the Interlock and Select keys.
7. The brake for the selected axis releases.
Chapter 6
Maintenance

Table 8 provides periodic maintenance items and intervals for the ArcWorld IV-4000 Series cell. Keep in mind that the maintenance intervals serve as guidelines only. You should adjust the frequency of maintenance to suit your specific work conditions.

For periodic maintenance procedures and schedules for the individual components of your ArcWorld IV-4000 Series, including the MSR2S-500 positioner, refer to the additional manuals that came with your system.

⚠️ CAUTION!
Use only the antifreeze provided by Motoman. Automotive antifreezes contain stop-leak additives that will clog small torch water-cooling ports and damage gaskets in water circulator pump.

Table 6 Periodic Maintenance

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Component</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Water Circulator (Water-cooled Torch Application only)</td>
<td>Check the fluid in the water circulator. Add fluid as required. Use only distilled water and approved antifreeze (Motoman P/N 131224-1).</td>
</tr>
<tr>
<td>Daily</td>
<td>Safety Circuit Check</td>
<td></td>
</tr>
</tbody>
</table>

H=Hours of operation
Notes
Appendix A
Anchor Requirements

It is the purchaser’s responsibility to determine and supply all anchoring and foundation requirements for their installation. Before installing your ArcWorld IV-4000 Series cell, refer to Table 16 to determine the anchor and foundation requirements for all the equipment used in your cell.

⚠️ WARNING!
Do not mount robots directly to the floor without the indicated floor plate. Failure to follow floor plate requirements can result in severe damage or personal injury.

Table 7 Minimum Recommended Equipment Anchor Requirements

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Minimum "Hilti" Anchor Rod Diameter and Type</th>
<th>Minimum Floor Plate Requirements</th>
<th>Minimum Foundation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robots: UP6, UP20, UP20-6, EA1400, EA1900</td>
<td>(4) 5/8" HVA Chemical Style anchor (See Note 3)</td>
<td>600 x 600 x 38.1</td>
<td>30" x 30" x 7" thick, 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Robots: UP20M, UP50, SP80 (See Note 2)</td>
<td>(4) 7/8" HVA Chemical Style anchor (See Note 3)</td>
<td>900 x 900 x 50.8</td>
<td>60" x 60" x 9" thick, 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Robots: UP120, UP130, UP165, SP100, SP160, SP250, SP400 (See Note 2)</td>
<td>(4) 7/8" HVA Chemical Style anchor (See Note 3)</td>
<td>1200 x 1200 x 50.8</td>
<td>72" x 72" x 9" thick, 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Robots: UP200</td>
<td>(8) 7/8" HVA Chemical Style anchor (See Note 3)</td>
<td>1200 x 1200 x 50.8</td>
<td>72" x 72" x 9" thick, 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Robots: UP350, UP500, SK300X</td>
<td>(8) 7/8" HVA Chemical Style anchor (See Note 3)</td>
<td>1500 x 1500 x 50.8</td>
<td>72" x 72" x 9" thick, 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Rotary Turntable Positioners:</td>
<td>5/8" HVA Chemical Style anchor (See Note 3)</td>
<td>Not Applicable</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Minimum Recommended Equipment Anchor Requirements

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Minimum "Hilti" Anchor Rod Diameter and Type</th>
<th>Minimum Floor Plate Requirements</th>
<th>Minimum Foundation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunion Style Positioners:</td>
<td>7/8" HVA Chemical Style anchor (See Note 3)</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>Peripheral Equipment:</td>
<td>1/2" Kwik Bolt II Style anchor (See Note 4)</td>
<td>Not Applicable</td>
<td>3" min Thick or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>Cell Fence Posts:</td>
<td>3/8" Kwik Bolt II Style anchor (See Note 4)</td>
<td>Not Applicable</td>
<td>3" min Thick or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
</tbody>
</table>

Note: (1) Minimum Robot Lagging Requirements are based on Maximum Repulsion Forces and Hilti Anchor Design Program V3.3b.
(2) SP series robots require base plates and/or risers to be level within 2 degrees. Grout if necessary.
(3) Reference source: Hilti Product Technical Guide Section 4.2.1 for hardware specifications or equivalent.
(4) Reference source: Hilti Product Technical Guide Section 4.3.3 for hardware specifications or equivalent.
(5) Robot manual requirements calling for cast-in anchors may be substituted with the recommendations listed.
See also us.hilti.com or ca.hilti.com for further information.
Index

A
Alarm 16
Alarms and Errors 46
Anchor Requirements 51
ANSI/RIA 5
Arc Screens 21
AREA Key 15
Auto/Manual 17
B
Brake Release 15, 22
C
Components 3
CURSOR Key 15
Customer Service 4
Cycle Start 17
D
Daily Operation 42
Documentation 4
E
Emergency Stop 17
Emergency Stop (E-STOP) 13
Emergency Stops 21
ENABLE 22
ENABLE Switch 15
Equipment Description 11
Error Messages 46
E-STOP 46
E-STOPs 21
F
Fencing 21
Fixtures 39
FLASH MEMORY Slot 15
G
General Purpose Display Area 13
GMAW Torch 19
H
Hold 16
I
Installation 25
Installation Safety 8
Introduction 1
K
Keypad 14
L
Layout 2, 3
Light Curtains 21
M
MAIN MENU Key 14
Maintenance 49
Maintenance Safety 10
Major Alarms 46
Master Job 44
Materials Required 25
Menu Area 13
Minor Alarms 46
Mode Selector Switch 13
N
NX100 Controller 11
O
Operation 41
Operation Cycle 45
Operation Safety 9
Operator Station 16
Optional Equipment 3
Overview 2
P
Positioner 17
Power 38
Power Sources 19
Programming 41
Programming Pendant 12
Programming Safety 8
R
Recovery 46
Reset 17
Robot Description 11
Robotic Industries Association 5
S
Safeguarding Tips 7
Safety 5, 21
Safety Circuit 49
Safety Devices 7
SELECT Key 15
Servo On 16
SERVO ON Key 15
Shipping Bracket 37
Shock Sensor 47
System Manual

Index

Shutdown 45
Site Preparation 26
Start 16
Start-Up 43
Status Area 14
Sweeping the Positioner 42
System Layout 3
System Overview 2

T
Tooling 39

W
Water Circulator 49
Welding 18
Wire Feeder 18