YRC1000micro OPTIONS
INSTRUCTIONS
FOR INDEPENDENT/COORDINATED CONTROL FUNCTION

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS

YRC1000micro INSTRUCTIONS
YRC1000micro OPERATOR’S MANUAL
YRC1000micro MAINTENANCE MANUAL
YRC1000micro ALARM CODES (MAJOR ALARMS) (MINOR ALARMS)

The YRC1000micro alarm codes above consists of “MAJOR ALARMS” and “MINOR ALARMS”.

Please have the following information available when contacting Yaskawa Customer Support:
• System
• Primary Application
• Software Version (Located on Programming Pendant by selecting:
 {Main Menu} - {System Info} - {Version})
• Robot Serial Number (Located on robot data plate)
• Robot Sales Order Number (Located on controller data plate)

Part Number: 181263-1CD
Revision: 0
DANGER

- This manual explains the independent/coordinated control function of the YRC1000micro system. Read this manual carefully and be sure to understand its contents before handling the YRC1000micro. Any matter not described in this manual must be regarded as "prohibited" or "improper".
- General information related to safety are described in "Chapter 1. Safety" of the YRC1000micro INSTRUCTIONS. To ensure correct and safe operation, carefully read "Chapter 1. Safety" of the YRC1000micro INSTRUCTIONS.

CAUTION

- In some drawings in this manual, protective covers or shields are removed to show details. Make sure that all the covers or shields are installed in place before operating this product.
- YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids the product warranty.

NOTICE

- The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.
- YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.
- If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the YRC1000micro.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, or “NOTICE”.

DANGER
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Safety Signs identified by the signal word DANGER should be used sparingly and only for those situations presenting the most serious hazards.

WARNING
Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury. Hazards identified by the signal word WARNING present a lesser degree of risk of injury or death than those identified by the signal word DANGER.

CAUTION
Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury. It may also be used without the safety alert symbol as an alternative to “NOTICE”.

NOTICE
NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol should not be used with this signal word. As an alternative to “NOTICE”, the word “CAUTION” without the safety alert symbol may be used to indicate a message not related to personal injury.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “WARNING” and “CAUTION”.
Before operating the manipulator, make sure the servo power is turned OFF by performing the following operations. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.
– Press the emergency stop button on the programming pendant or on the external control device, etc.
– Disconnect the safety plug of the safety fence. (when in the play mode or in the remote mode)

If operation of the manipulator cannot be stopped in an emergency, personal injury and/or equipment damage may result.

Fig. : Emergency Stop Button

Before releasing the emergency stop, make sure to remove the obstacle or error caused the emergency stop, if any, and then turn the servo power ON.

Failure to observe this instruction may cause unintended movement of the manipulator, which may result in personal injury.

Fig. : Release of Emergency Stop

Observe the following precautions when performing a teaching operation within the manipulator’s operating range:
– Be sure to perform lockout by putting a lockout device on the safety fence when going into the area enclosed by the safety fence. In addition, the operator of the teaching operation must display the sign that the operation is being performed so that no other person closes the safety fence.
– View the manipulator from the front whenever possible.
– Always follow the predetermined operating procedure.
– Always keep in mind emergency response measures against the manipulator’s unexpected movement toward a person.
– Ensure a safe place to retreat in case of emergency.

Failure to observe this instruction may cause improper or unintended movement of the manipulator, which may result in personal injury.

Confirm that no person is present in the manipulator’s operating range and that the operator is in a safe location before:
– Turning ON the YRC1000micro power
– Moving the manipulator by using the programming pendant
– Running the system in the check mode
– Performing automatic operations

Personal injury may result if a person enters the manipulator’s operating range during operation. Immediately press an emergency stop button whenever there is a problem. The emergency stop button is located on the right of the programming pendant.

Read and understand the Explanation of the Warning Labels before operating the manipulator.
DANGER

• In the case of not using the programming pendant, be sure to supply the emergency stop button on the equipment. Then before operating the manipulator, check to be sure that the servo power is turned OFF by pressing the emergency stop button. Connect the external emergency stop button to the 4-14 pin and 5-15 pin of the Safety connector (Safety).

• Upon shipment of the YRC1000micro, this signal is connected by a jumper cable in the dummy connector. To use the signal, make sure to supply a new connector, and then input it.

If the signal is input with the jumper cable connected, it does not function, which may result in personal injury or equipment damage.

WARNING

• Perform the following inspection procedures prior to conducting manipulator teaching. If there is any problem, immediately take necessary steps to solve it, such as maintenance and repair.
 – Check for a problem in manipulator movement.
 – Check for damage to insulation and sheathing of external wires.

• Return the programming pendant to a safe place after use.

If the programming pendant is left unattended on the manipulator, on a fixture, or on the floor, etc., the Enable Switch may be activated due to surface irregularities of where it is left, and the servo power may be turned ON. In addition, in case the operation of the manipulator starts, the manipulator or the tool may hit the programming pendant left unattended, which may result in personal injury and/or equipment damage.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the YRC1000micro controller, manipulator cables, the YRC1000micro programming pendant (optional), and the YRC1000micro programming pendant dummy connector (optional).

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRC1000micro controller</td>
<td>YRC1000micro</td>
</tr>
<tr>
<td>YRC1000micro programming pendant</td>
<td>Programming pendant (optional)</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
<tr>
<td>YRC1000micro programming pendant dummy connector</td>
<td>Programming pendant dummy connector (optional)</td>
</tr>
</tbody>
</table>

Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td>Character Keys /Symbol Keys</td>
</tr>
<tr>
<td>Axis Keys /Number Keys</td>
<td>[Axis Key] and [Numeric Key] are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a "+" sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td>Mode Key</td>
<td>Three kinds of modes that can be selected by the mode key are denoted as follows: REMOTE, PLAY, or TEACH</td>
</tr>
<tr>
<td>Button</td>
<td>Three buttons on the upper side of the programming pendant are denoted as follows: HOLD button, START button, EMERGENCY STOP button</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with {}. e.g. {JOB}</td>
</tr>
<tr>
<td>PC Keyboard</td>
<td>The name of the key is denoted. e.g. Ctrl key on the keyboard</td>
</tr>
</tbody>
</table>
Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • •” means that the cursor is moved to the object item and [SELECT] is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and TM are omitted.
Contents

1 Independent/Coordinated Control Function ... 1-1
 1.1 Coordinated Control .. 1-1
 1.2 Independent Control ... 1-1

2 Coordinated Positioner System ... 2-1
 2.1 Outline ... 2-1
 2.2 Function Keys ... 2-2
 2.2.1 General Application ... 2-2
 2.3 Example of Job Teaching ... 2-4
 2.4 System Setup ... 2-5
 2.4.1 Registering Group Combination .. 2-5
 2.4.2 Calibration between Manipulator and Station ... 2-7
 2.4.2.1 Calibration Tool Setting ... 2-7
 2.4.2.2 Teaching Positions for Calibration ... 2-8
 2.4.2.3 Calibration .. 2-11
 2.5 JOB CONTENT Window .. 2-15
 2.6 Synchronized/Single ... 2-16
 2.6.1 Synchronized .. 2-16
 2.6.2 Single .. 2-17
 2.7 Selecting Axis to Be Handled .. 2-18
 2.7.1 When There Is an Edit Job ... 2-18
 2.7.2 When There Is No Edit Job .. 2-18
 2.8 Registering Job .. 2-19
 2.9 Registering Move Instruction (S)MOV □ + MOVJ .. 2-20
 2.9.1 Operating Master Side (Station) .. 2-20
 2.9.2 Operating Slave Side (Manipulator) ... 2-21
 2.9.3 (S) MOV □ + MOVJ Rate Specification ... 2-22
 2.9.3.1 Rate Specification in a Multiple Line Shift Command 2-22
 2.9.3.2 Rate Specification at Coordination Interpolation (SMOV □) 2-22
 2.10 Registering Reference Point Instruction (SREFP) .. 2-24

3 Jigless System .. 3-1
 3.1 Outline ... 3-1
 3.2 Example of Teaching Job ... 3-2
 3.3 System Setup ... 3-3
 3.3.1 Registering Group Combination .. 3-3
Contents

3.3.2 Calibration between Manipulators ... 3-5
 3.3.2.1 Calibration Tool Setting ... 3-5
 3.3.2.2 Teaching Position for Calibration .. 3-6
 3.3.2.3 Calibration ... 3-7

3.4 Job Content Display .. 3-11

3.5 Synchronized/Single ... 3-12
 3.5.1 Synchronized ... 3-12
 3.5.2 Single ... 3-13

3.6 Selecting Axis to Be Handled .. 3-14
 3.6.1 When There Is an Edit Job ... 3-14
 3.6.2 When There Is No Edit Job .. 3-14

3.7 Registering Job .. 3-15

3.8 Registering Move Instruction (S)MOV □ +MOV □ ... 3-16
 3.8.1 Operating Master Side (Workpiece) ... 3-16
 3.8.2 SMOV □ + MOV □ Rate Specification ... 3-17
 3.8.2.1 Rate Specification in a Multiple Line Shift Command 3-17
 3.8.2.2 Rate Specification at Coordination Interpolation (SMOV □) 3-17
 3.8.3 Operating Slave Side (Work tools) ... 3-19

3.9 Registering Reference Point Instruction (SREFP) .. 3-20

3.10 Other Convenient Features ... 3-21
 3.10.1 Example of Movement .. 3-21
 3.10.2 Operation Method ... 3-22
 3.10.3 Manipulator Movement .. 3-23
 3.10.3.1 Basic Axes .. 3-23
 3.10.3.2 Wrist Axes ... 3-24
 3.10.3.3 Synchronized/Single ... 3-24

4 Station Twin Synchronous System .. 4-1
 4.1 Outline ... 4-1
 4.2 Function Keys .. 4-3
 4.2.1 General Application .. 4-3
 4.3 Job Configuration ... 4-5
 4.4 Leader and Follower ... 4-6
 4.5 Synchronizing with TSYNC .. 4-8
 4.5.1 Syntax ... 4-8
 4.5.2 Procedure .. 4-8

ix
4.5.3 Items to Note When Using a TSYNC Command .. 4-12
 4.5.3.1 When a Cursor Shift Occurs during Operation ... 4-12
 4.5.3.2 If Three Jobs Were Set When the Number of TSYNC Synchronizations Was Set to “Unused” .. 4-13

4.6 Job Example ... 4-14

4.7 JOB CONTENT Window .. 4-15

4.8 Synchronized/Single ... 4-16
 4.8.1 Synchronized/Single Movement between Station and Manipulator 4-16
 4.8.1.1 Synchronized ... 4-16
 4.8.1.2 Single .. 4-17
 4.8.2 Job Synchronized Mode for Subtask 1 and 2 ... 4-18

4.9 Selecting Axis to Be Handled ... 4-20
 4.9.1 When There Is an Edit Job ... 4-20
 4.9.2 When There Is No Edit Job .. 4-20

4.10 Registering Job .. 4-21

4.11 Registering Move Instruction (S)MOV □ + MOVJ ... 4-22
 4.11.1 Operating Master Side (Station) ... 4-22
 4.11.2 Operating Slave Side (Manipulator) .. 4-23
 4.11.3 (S) MOV □ + MOVJ Rate Specification ... 4-24
 4.11.3.1 Rate Specification in a Multiple Line Shift Command 4-24
 4.11.3.2 Rate Specification at Coordination Interpolation (SMOV □) 4-24

4.12 Registering Reference Point Instruction (SREFP) .. 4-26

4.13 Switching Tasks ... 4-27

4.14 Creating a Job in a Subtask - Method 1 and 2 ... 4-28
 4.14.1 Method 1: Copy One Subtask Job and Create Another Job 4-29
 4.14.2 Teaching and Mirror Shift .. 4-29
 4.14.2.1 Converting ... 4-30
 4.14.2.2 Execute Conversion ... 4-30
 4.14.2.3 Jobs Not to Be Converted ... 4-31
 4.14.2.4 Group Axes for Conversion ... 4-31
 4.14.2.5 Position Type Variables ... 4-31
 4.14.2.6 Parameter .. 4-32
 4.14.3 Correcting Positional Dislocation ... 4-33
 4.14.3.1 Setting the Items for Conversion .. 4-33
 4.14.3.2 Setting the Shift Value ... 4-35
 4.14.3.3 Executing Conversion ... 4-38
 4.14.4 Method 2: Perform Teaching for Each Manipulator 4-39
 4.14.4.1 Procedure ... 4-39

4.15 Job in Master Task .. 4-47
Contents

4.16 Confirming Operation... 4-49

4.16.1 Procedure .. 4-49

4.16.2 Precautions for Confirming Operation ... 4-51

4.16.2.1 Stops during Operation .. 4-51

4.16.2.2 When “Multi-job operation mode” Is Set in the TEACHING CONDITION Window .. 4-51

4.16.2.3 If the Master Task Is Stopped by TSYNC .. 4-52

4.17 Playback ... 4-53

4.17.1 Start ... 4-53

4.17.2 Automatic Correction of Shift Value .. 4-54

5 Coordinated Control .. 5-1

5.1 Outline .. 5-1

5.2 Group Combination .. 5-2

5.3 Coordinated and Individual Interpolations .. 5-3

5.3.1 Coordinated Interpolation ... 5-3

5.3.2 Individual Interpolation ... 5-3

5.3.3 Changing Interpolation Mode .. 5-3

5.4 Restriction ... 5-4

6 Independent Control .. 6-1

6.1 Independent Control .. 6-1

6.2 Startup Method .. 6-4

6.2.1 Starting a Job Always Fixed (Master Job) .. 6-4

6.2.2 Starting Various Jobs .. 6-5

6.3 Job Examples .. 6-8

6.3.1 Non-Synchronous Operation ... 6-8

6.3.2 Synchronous Operation ... 6-9

6.4 Switching Task Window .. 6-10

6.5 Synchronizing with TSYNC ... 6-11

6.5.1 Items to Note When Using a TSYNC Command .. 6-11

6.5.1.1 When a Cursor Shift Occurs during Operation ... 6-12

6.5.1.2 If Three Jobs Were Set When the Number of TSYNC Synchronizations Was Set to “Unused” .. 6-13

6.6 Registering Instructions .. 6-14

6.6.1 PSTART Instruction .. 6-14

6.6.2 PWAIT Instruction ... 6-17

6.6.3 TSYNC Instruction .. 6-19
Contents

6.7 Registering Job.. 6-22
 6.7.1 Robot Job ... 6-22
 6.7.2 Concurrent Job .. 6-24

6.8 Confirming Operation.. 6-26
 6.8.1 FWD/BWD Operation and Test Run... 6-26
 6.8.1.1 Confirming the Operation of the Task Being Displayed.................. 6-26
 6.8.1.2 Confirming the Operation of All Tasks.. 6-26
 6.8.2 Switching Operating Method... 6-26
 6.8.2.1 Switching on TEACHING CONDITION Window.............................. 6-27
 6.8.3 BWD Operation of Concurrent Job... 6-28

6.9 Playback.. 6-29
 6.9.1 Procedure ... 6-29
 6.9.2 Registering Master Job.. 6-30
 6.9.2.1 Registering .. 6-30
 6.9.2.2 Canceling Registration ... 6-32
 6.9.3 Calling Master Job.. 6-33
 6.9.3.1 When the Master Job in the Master Task Is Called.......................... 6-34
 6.9.3.2 When the Master Job in a Subtask 1/2/3 Is Called.............................. 6-34
 6.9.4 Registration of Root (Startup) Job... 6-35
 6.9.4.1 Registering .. 6-36
 6.9.4.2 Canceling Registration ... 6-38
 6.9.5 Confirming Operating Status (SUPERVISORY Window)............................ 6-39
 6.9.6 Precautions.. 6-41
 6.9.6.1 Stopping .. 6-41
 6.9.6.2 Restarting ... 6-41
 6.9.6.3 Stopping and Restarting a Subtask Alone... 6-41

7 Robot Language (INFORM) Instructions... 7-1
 7.1 Coordinated Motion Instructions ... 7-1
 7.2 Independent Control Instructions... 7-4

8 CONVSFT Instruction (Coordinate System Conversion Instruction of the Shift Value)......... 8-1
 8.1 Outline .. 8-1
 8.2 CONVSFT Instruction ... 8-2
 8.2.1 Explanation of CONVSFT .. 8-2
 8.3 Example of Conversion.. 8-4
 8.4 Alarm.. 8-6
 8.5 Supplementary Note ... 8-7
Contents

9 The Linear Interpolation during the Axis Operation (Switching the Cartesian Coordinate)........ 9-1
 9.1 Outline ... 9-1
 9.2 More Details About the Linear Coordinate... 9-2
 9.3 Setting Procedures .. 9-5
 9.4 Setting the Parameter .. 9-6
1 Independent/Coordinated Control Function

With the YRC1000micro, a system can be configured to control multiple manipulators or stations simultaneously with a single controller.

With the independent/coordinated control function, manipulators and/or stations can be operated together or individually. Operation can be optimized for the jobs.

1.1 Coordinated Control

With this function, manipulators or stations execute jobs in a coordinated motion.

<Example>
Using two coordinated manipulators to execute a job.

![Diagram of coordinated control](image)

1.2 Independent Control

With this function, manipulators and/or stations execute jobs independently without synchronization.

<Example>
While executing a work job at one station, the other station executes a job to return to the home position for the next job.

![Diagram of independent control](image)
2 Coordinated Positioner System

2.1 Outline

The coordinated positioner system is a system which coordinates a job where a positioner (hereinafter called “station”) holds a workpiece while a manipulator holds a tool.

In order to operate a station and a manipulator simultaneously, a coordinated job is needed.

In the coordinated job, there are two operations: a coordinated interpolation where a station and a manipulator perform a reciprocal movement as master and slave, and an individual interpolation where a station and a manipulator move individually.

The move instruction in a coordinated job displays two lines: The first line is for the slave side (manipulator), and the second line is for the master side (station).
2.2 Function Keys

The function keys for the coordinated positioner system are assigned to the Numeric keys as shown in the figures below.

2.2.1 General Application
2.2 Function Keys

Registers the TOOLON instruction.

If [INTERLOCK] is pressed simultaneously, the TOOLON operation is executed.

Registers the TOOLOF instruction.

If [INTERLOCK] is pressed simultaneously, the TOOLOFF operation is executed.

Registers the CALL instruction for the reserved job TOOLONxx.

Registers the CALL instruction for the reserved job TOOLOFxx.

Changes the type of movement for the manipulator when teaching a coordinated job.

Each time this key is pressed, the movement type changes.

SYNCRO: The mark for “synchronized” appears in the status display area. When the master side is moved, the slave side will follow the movement of the master.

SINGLE: Only the selected group axis moves.

Selects either a coordinated or an individual interpolation when teaching a coordinated job.

Each time this key is pressed, the operation type changes.

Coordinated: All the move instructions that are registered in this mode become coordinated instructions.

Individual: The master-slave relationship is canceled. Each manipulator and station moves independently.

[7:SYNCRO/SINGLE] and [4: SMOV] keys are available only when “FUNCTION” setting for each key is specified to “MAKER” in both KEY ALLOCATION(EACH) screen and KEY ALLOCATION(SIM) screen.
2.3 Example of Job Teaching

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Coordinated Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>MOVJ VJ=50.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td>Stand-by</td>
</tr>
<tr>
<td>002</td>
<td>SMOVL V=200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td>Starting</td>
</tr>
<tr>
<td></td>
<td>DOUT OT#(1) ON</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>SMOVL V=200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td>Ending</td>
</tr>
<tr>
<td></td>
<td>DOUT OT#(1) OFF</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>SMOVL V=200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>SMOVL V=200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>MOVJ VJ=50.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>MOVJ VJ=50.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+MOVJ</td>
<td></td>
</tr>
</tbody>
</table>

The torch moves to the cleaner. The workpiece is unloaded.
2.4 System Setup

2.4.1 Registering Group Combination

Register a combination of a station and a manipulator.

1. Select {SETUP} under the main menu.
2. Select {GRP COMBINATION}.
 - The GROUP COMBINATION window appears.
3. Press [SELECT].
 - The selection dialog box appears.
4. Select “ADD GROUP”.
 - The GROUP COMBI SET window appears.
5. Press [SELECT].

- The selection dialog box appears.

6. Select a group axis to be set.

- Set a station as "MASTER".

7. Select [EXECUTE].

- The GROUP COMBINATION window reappears.
2.4 System Setup

2.4.2 Calibration between Manipulator and Station

For a coordinated motion between a manipulator and a station, prior registration of the settings for mutual positioning is required. This relationship is set by calibration between the manipulator and the station.

2.4.2.1 Calibration Tool Setting

1. Mount a tool for calibration on the manipulator.
 – Use a tool whose exact dimensions are known.

2. Select {ROBOT} under the main menu.
3. Select {TOOL}.
 – The TOOL window appears.

4. Enter the tool dimensions.
5. Press [ENTER].
2.4.2.2 Teaching Positions for Calibration

For a station with one rotating axis

1. Determine an arbitrary point (point P) on the turntable of the station axis. Point P should be as far as possible from the turntable rotation center. Align the TCP of the manipulator with point P, and register it as C1.

![Diagram of point P, C1, and turntable]

2. Turn the station axis. The amount of turning is not limited but should be 30° or more. It does not matter if the rotational direction is positive or negative. Then, align the TCP of the manipulator to point P, and register it as C2.

![Diagram of turn and C2]

3. Turn the station axis further in the same direction as in step 2. Then, align the TCP of the manipulator to point P, and register it as C3.

![Diagram of further turn and C3]

NOTE

- To minimize teaching error, attach a tool with a pointed end tool on the station axis as shown in the figure above, and use this pointed end as an arbitrary point (point P) when teaching.
- When registering C2 and C3, the manipulator tool should keep as much as possible the same orientation as when C1 was registered.
- The manipulator at teaching should have its L-axis at a 90° angle to the ground and its U-axis parallel to the ground.
- Do not teach with the L-axis and U-axis fully extended or tightly contracted. Otherwise, inaccurate calibration will result.
For a station with two rotating axes
1. Determine an arbitrary point (point P) on the turntable. Point P should be as far as possible from the rotation center of the turntable. With the 1st station axis parallel to the ground, align the TCP of the manipulator to point P, and register it as C1.

2. Turn the 2nd station axis about 30°. Align the TCP of the manipulator to point P, and register it as C2.

3. Turn the 2nd station axis again for about 30°. Align the TCP of the manipulator to point P, and register it as C3.

4. Turn the 1st station axis about 30°. Align the TCP of the manipulator to point P, and register it as C4.
5. Turn the 1st station axis again for about 30°. Align the TCP of the manipulator to point P, and register it as C5.

NOTE

- To minimize teaching error, attach a tool with a pointed end tool on the station axis as shown in the figure above, and use this pointed end as an arbitrary point (point P) when teaching.
- When registering C2 to C5, the manipulator tool should keep as much as possible the same orientation as when C1 was registered.
- The manipulator at teaching should have its L-axis at a 90° angle to the ground and its U-axis parallel to the ground.
- Do not teach with the L-axis and U-axis fully extended or tightly contracted. Otherwise, inaccurate calibration will result.
- For C1, C2, and C3, the position of the 1st station axis must be the same.
- The position of the 2nd station axis for C4 and C5 must be the same as that for C3.
2 Coordinated Positioner System

2.4 System Setup

2.4.2.3 Calibration

1. Select {ROBOT} under the main menu.

2. Select {ROBOT CALIB}.

 – The ROBOT CALIBRATION list window appears.

3. Select a robot calibration No.

 – The ROBOT CALIBRATION window for teaching appears.
4. Select “ROBOT”.
 - The selection dialog box appears.

(1) Select a control group for calibration.

5. Select a group axis combination for calibration.
 - The teaching positions are displayed.
6. Select “POSITION”.
 - The selection dialog box appears.
 - Select a position to be taught.

(1) Select a position to be taught.

7. Press the axis key to move the manipulator to the desired position.

8. Press [MODIFY] and [ENTER].
 - The positions for calibration are registered.
 - Repeat Operations 6 and 8 to teach set positions C1 to C3.
 - On the window, “●” indicates that the teaching is completed while “○” indicates that the teaching is not completed.
 - The calibration positions appear according to the selected group axis.
 - Press [PAGE] to change the window.
9. Select “COMPLETE”.

- The robots are calibrated.
- When the calibration is completed, the ROBOT CALIBRATION list window reappears.

<table>
<thead>
<tr>
<th>Alarm Number</th>
<th>Alarm Name</th>
<th>Sub Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4497</td>
<td>DEFECTIVE TAUGHT POINT(CALIB)</td>
<td>1</td>
<td>Some of the teaching points for master-group are on the same point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Some of the teaching points for slave-group are on the same point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>The 2nd-axis positions of C3, C4, and C5 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>The 1st-axis positions of C1, C2, and C3 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>The 2nd-axis positions of C1, C2, and C3 of station axes are the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>The 1st-axis rotation direction of C3, C4, and C5 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>The 1st-axis (elevation axis) positions of C1, C2, and C3 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>The 1st-axis (elevation axis) positions of C3, C4, and C5 of station axes are not the same.</td>
</tr>
</tbody>
</table>
2 Coordinated Positioner System
2.5 JOB CONTENT Window

2.5 JOB CONTENT Window

An example of the contents of a coordinated job is shown below.

1 Instructions
For a coordinated job, the move instruction is displayed in two lines:
The first line is the instruction to the slave side; the second line is the
instruction to the master side.
SMOVL V=138 ← Slave, a manipulator
+MOVJ ← Master, a station

2 Synchronized/Single
Synchronized/single are the types of movement available for the manip-
ulator during axis operation.
This mark appears when synchronized movement is selected.
Switch between movements by pressing [SYNCRO/SINGLE].

3 Group axis being handled
Displays the group axis being handled.
Pressing [ROBOT] selects the manipulator.
Pressing [EX. AXIS] selects the station.

4 Coordinated interpolation/Individual interpolation
Switch between coordinated interpolation and individual interpolation by
pressing [SMOV].
2.6 Synchronized/Single

There are two ways to handle axes when teaching: “Synchronized” and “Single”.

Switch between movements by pressing [SYNCRO/SINGLE].

- **Synchronized**: The slave follows the motion of the master.
- **Single**: The slave does not follow the motion of the master.

2.6.1 Synchronized

If the axes are handled in the “Synchronized” mode, the slave (manipulator) follows the master (station) when the master moves.

This feature is used to keep the position of the manipulator relative to the station.

However, the master does not move when the slave is moved.

- **A master axis is moved:**
2.6.2 Single

If an axis is handled in “Single” mode, the manipulator or the station whose axis has been handled, moves.

This feature is used where a manipulator and a station each execute an individual job.

- **A slave axis is moved:**

- **A master axis is moved:**

NOTE

- The selected mode, Synchronized or Single, is maintained until the next selection is made.
- When an edit job is changed, "Single" is automatically selected.
2.7 Selecting Axis to Be Handled

In a coordinated system with multiple numbers of group axes, select a group axis to be handled in the following manner.

2.7.1 When There Is an Edit Job

When the edit job is displayed, the group axes registered in the displayed job is the one to be handled.

- Pressing [ROBOT] selects a manipulator for axis handling.

- Pressing [EX. AXIS] selects a station for axis handling.

2.7.2 When There Is No Edit Job

When there is no edit job, move a manipulator in the following manner.

1. Select the group axes to be moved, and then move it by pressing the axis key.
 - Press [SHIFT]+[ROBOT] to change the manipulator for axis handling.
 The LED of [ROBOT] flashes.
 - Press [SHIFT]+[EX. AXIS] to change the station for axis handling.
 The LED of [EX. AXIS] flashes.

2. Press [ROBOT] or [EX. AXIS] to return to the original window.
2.8 Registering Job

1. Select {JOB} under the main menu.
2. Select {CREATE NEW JOB}.
 – The NEW JOB CREATE window appears.

3. Enter a job name.
 – Select “JOB NAME”, and then enter a job name by entering the characters.
 Refer to “Chap.1.2.6 Character Input” in “YRC1000micro OPERATOR’S MANUAL (RE-CSO-A058)”.
4. Press [ENTER].
5. Select “GROUP SET”.
6. Select a group combination.
7. Select {EXECUTE}.
 – The job name is registered in the memory of YRC1000micro, and the JOB CONTENT window appears.
2.9 Registering Move Instruction (S)MOV □ +MOVJ

Register a move instruction in the following manner.

2.9.1 Operating Master Side (Station)

1. Call the JOB CONTENT window in teach mode.
2. Press [EX. AXIS].
 – The master side (station) is selected for axis handling.

3. Select either “synchronized” or “single”.
 – Press [SYNCRO/SINGLE] to select either “synchronized” or “single”.
 – When “synchronized” is selected, the mark in the window below appears.
 When the slave side is supposed to follow the master side motion, select “synchronized”.

4. Press the axis key to move to the desired position.
2.9 Registering Move Instruction (S)MOV □ +MOVJ

2.9.2 Operating Slave Side (Manipulator)

1. Press [ROBOT].
 – The slave side (manipulator) is selected for axis handling.

2. Press the axis key to move to the desired position.

3. Select either a coordinated interpolation or an independent interpolation.
 – Press [SMOV] to select either interpolation.

4. Select an interpolation type.
 – Press [MOTION TYPE] to select an interpolation type.

5. Confirm the speed.

6. Press [ENTER].
 – The registration is completed as follows.

 ![Registration Completed]

 • When joint interpolation is set for the slave side (manipulator), teaching cannot be done during a coordinated operation.
 • When “JOINT” is selected, the interpolation type will not change to a coordinated interpolation, even if [SMOV] is pressed.
 • When “JOINT” is selected during coordinated interpolation, a coordinated move instruction such as “SMOVL” in the input buffer line changes to “MOVJ”, and the interpolation type becomes individual interpolation.

Parameter Contents and Set Value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C213</td>
<td>+MOV INSTRUCTION INTERPOLATION INPUT</td>
</tr>
</tbody>
</table>

This parameter specifies which interpolation is permitted for move instructions for the master robot in a coordinated job.

(bit specification)

- D0: +MOVJ
- D1: +MOVL
- D2: +MOVC
- D3: +MOVS

| Initial Value | 2 |
2.9.3 (S) MOV □ + MOVJ Rate Specification

2.9.3.1 Rate Specification in a Multiple Line Shift Command

The relationship between the rate specification in a shift command which causes multiple groups such as "MOV □ + MOVJ" or "SMOV □ + MOVJ" to operate (i.e. to be configured by multiple lines), simultaneously, and the actual operation rate, is as follows.

- Each shift time for the robot (or station) is obtained according to the rate specified for each line.
- The maximum of the respective shift times is obtained, and all groups are operated according to this maximum shift time.

<Example>
MOVL V = 500.0 ...The shift time over the shift distance is 2 seconds at V = 500
+MOVJ VJ = 25.00 ...The shift time for the shift amount is 4 seconds at VJ = 25
*This "MOVL + MOVJ" functions when the shift time is 4 seconds.

Note that for lines in which the rate specification is omitted, the shift time is calculated based on the assumption that the maximum rate has been specified.

<Example>
MOVL V = 500.0 ...The shift time over the shift distance is 2 seconds at V = 500
+MOVJ VJ ...The shift time for the shift amount is 1 seconds at VJ = 25
*This "MOVL + MOVJ" functions when the shift time is 2 seconds.

2.9.3.2 Rate Specification at Coordination Interpolation (SMOV □)

The rate specification for the manipulator on the slave side at coordination interpolation (SMOV □) is specified as “relative rate” as seem from the master side.

For example, in the case where the slave side manipulator holds the work tools, this “relative rate” becomes the “work rate” with respect to the work piece, so it is important to maintain this rate.

In this case, by omitting the rate specification on the master side, the shift rate will be basically determined by the “relative rate”.

<Example>
MOVL V = 100.0 ...The shift time at V = 100 over the relative shift distance on the slave side with respect to the master is 5 seconds.
+MOVJ VJ ...The shift time at VJ = 100 for the master shift amount is 2 seconds.
*This “SMOVL + MOVJ” functions when the shift time is 5 seconds.
2.9 Registering Move Instruction (S)MOV □ +MOVJ

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C212</td>
<td>+MOV INSTRUCTION SPEED INPUT</td>
<td>0</td>
</tr>
</tbody>
</table>

Specifies whether the speed inputting for move instructions of the master side robot in a coordinated job is permitted or not.

Example
- **0: Not Provided**
 - SMOVL V=100
 - +MOVJ
 - Master side speed specification not provided

- **1: Provided**
 - SMOVL V=100
 - +MOVJ VJ=10.00
 - Master side speed specification provided
2.10 Registering Reference Point Instruction (SREFP)

Register a reference point instruction (SREFP) for a coordinated interpolation in the following manner.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor.
 – Move the cursor to the line immediately before the line where the reference point instruction is to be registered.
4. Grasp the Enable switch.
 – Turn ON the servo power with the Enable switch.
5. Press the axis key.
 – Move the manipulator to the position which will be a reference point.
6. Press [REF PNT].
 – The reference point instruction appears in the input buffer line.
7. Change the reference point number.
 (1) Move the cursor to the reference point number, and press [SHIFT] + the cursor key to change the reference point number.
 (2) If you use the Numeric keys to change the reference point number, press [SELECT] when the cursor is on the reference point number. Input the number and press [ENTER].
8. Press [INSERT].
 – The [INSERT] key lamp lights up.
 – When registering immediately before the END instruction, pressing [INSERT] is not needed.
9. Press [ENTER].
 – The REFP instruction is registered.
3 Jigless System

3.1 Outline

A jigless system is a system that welds by coordinating two manipulators; one holding the workpiece while the other holds the work tools.

To coordinate the movements of the two manipulators, a coordinated job is needed.

In a coordinated job, there is a coordinated operation where two manipulators, master and slave, perform a reciprocal movement, and an individual operation where each of the two manipulators performs an independent movement.

Coordinated operation

Individual operation

A move instruction in coordinated jobs displays two lines. The first line is for the slave side (work tools); the second line is for the master side (workpiece).
3 Jigless System
3.2 Example of Teaching Job

3.2 Example of Teaching Job

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>MOVJ VJ=50.00 +MOVJ</td>
<td>Stand-by</td>
</tr>
<tr>
<td>002</td>
<td>SMOVL V=200 +MOVL</td>
<td>Starting</td>
</tr>
<tr>
<td></td>
<td>DOUT OT#(1) ON</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>SMOVL V=200 +MOVL</td>
<td>During an operation</td>
</tr>
<tr>
<td></td>
<td>DOUT OT#(1) OFF</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>SMOVL V=200 +MOVL</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>MOVJ VJ=50.00 +MOVJ</td>
<td>Ending</td>
</tr>
<tr>
<td>006</td>
<td>MOVJ VJ=50.00 +MOVJ</td>
<td>Separate from the workpiece</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The torch moves to the cleaner. The workpiece is unloaded.</td>
</tr>
</tbody>
</table>

Coordinated operation

During an operation

The torch moves to the cleaner. The workpiece is unloaded.
3.3 System Setup

3.3.1 Registering Group Combination

Register a combination of two manipulators.

1. Select {SETUP} under the main menu.
2. Select {GRP COMBINATION}.
 – The GROUP COMBINATION window appears.

3. Press [SELECT].
 – The selection dialog box appears.

4. Select “ADD GROUP”.
 – The GROUP COMBI SET window appears.
5. Press [SELECT].
 – The selection dialog box appears.

6. Select a group axis to be set.
 – Set R2: ROBOT1 as “MASTER”.

7. Select [EXECUTE].
 – The GROUP COMBINATION window reappears.
3.3.2 Calibration between Manipulators

For a coordinated operation between manipulators, prior registration of the settings for mutual positioning is required. This relationship is set by calibration between manipulators.

3.3.2.1 Calibration Tool Setting

1. Mount a tool for calibration on the manipulator.
 - Use a tool whose exact dimensions are known.

2. Select {ROBOT} under the main menu.
3. Select {TOOL}.
 - The TOOL window appears.

4. Enter the tool dimensions.
5. Press [ENTER].
3.3.2.2 Teaching Position for Calibration

Calibrate the control point for two manipulators at three arbitrary points (C1 to C3) in the space between the manipulators.

1. Move a manipulator to an arbitrary position. Align the tool center point of the other manipulator or to the tool center point of the first manipulator by handling the axis. Register it as C1.

2. Register C2 and C3 in the same manner as C1.

NOTE
- When registering C2 and C3, the manipulator tool should keep as much as possible the same orientation as when C1 was registered.
- The standard distance between C-1 and C-2, C2 and C3, and C3 and C1 should be 1 m or more.
- Teach C1, C2, and C3 so that a triangle, not a straight line, is formed.
- Do not teach with the LU axis fully extended or tightly contracted. Otherwise, inaccurate calibration will result.
3.3.3 Calibration

1. Select {ROBOT} under the main menu.

2. Select {ROBOT CALIB}.
 - The ROBOT CALIBRATION list window appears.

3. Select a robot calibration No.
 - The ROBOT CALIBRATION window for teaching appears.
3 Jigless System
3.3 System Setup

4. Select “ROBOT”.
 - The selection dialog box appears. Select a control group for calibration.

5. Select a group axis combination for calibration.
 - The teaching positions are displayed.

6. Select a group axis combination.
 - The selection dialog box appears. Select a position to be taught.
7. Select “POSITION”.

8. Press the axis key to move the manipulator to the desired position.

9. Press [MODIFY] and [ENTER].
 - The positions for calibration are registered.
 - Repeat Operations 6 to 8 to teach set positions C1 to C3.
 - On the window, “●” indicates that the teaching is completed while “〇” indicates that the teaching is not completed.
 - The calibration positions appear according to the selected group axis.
 - Press [PAGE] to change the window.

10. Select “COMPLETE”.
 - The robots are calibrated.
 - When the calibration is completed, the ROBOT CALIBRATION list window reappears.
3 Jigless System

3.3 System Setup

- **Alarm which is emitted when trouble occurs during calibration teaching**

<table>
<thead>
<tr>
<th>Alarm Number</th>
<th>Alarm Name</th>
<th>Sub Code</th>
<th>Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4497</td>
<td>DEFECTIVE TAUGHT POINT(CALIB)</td>
<td>1</td>
<td>Some of the teaching points for master-group are on the same point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Some of the teaching points for slave-group are on the same point.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>The 2nd-axis positions of C3, C4, and C5 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>The 1st-axis positions of C1, C2, and C3 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>The 2nd-axis positions of C1, C2, and C3 of station axes are the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>The 1st-axis rotation direction of C3, C4, and C5 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>The 1st-axis (elevation axis) positions of C1, C2, and C3 of station axes are not the same.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>The 1st-axis (elevation axis) positions of C3, C4, and C5 of station axes are not the same.</td>
</tr>
</tbody>
</table>
3.4 Job Content Display

The contents of a coordinated job are displayed as shown below.

- **Instructions**
 - For coordinated jobs, the move instruction, the weaving instruction, the shift instruction, and others are displayed in two lines.
 - The first line is the instruction to the slave side; the second line is the instruction to the master side.
 - **SMOVL V=138** ← Slave, the manipulator working
 - **+MOVL** ← Master, the manipulator holding a workpiece

- **Synchronized/Single**
 - Synchronized/single are the types of movement available for the manipulator during axis operation.
 - This mark appears when synchronized movement is selected.
 - Switch between movements by pressing [SYNCRO/SINGLE].

- **Group axis being handled**
 - Displays the group axis being handled.
 - Press [ROBOT] to change the group axis to be handled.

- **Coordinated operation/Individual operation**
 - Switch between coordinated operation and individual operation by pressing [SMOV].
3.5 Synchronized/Single

There are two ways to handle axes when teaching: “Synchronized” and “Single”.

Switch between movements by pressing [SYNCRO/SINGLE].

3.5.1 Synchronized

If the axes are handled in the “Synchronized” mode, the slave (work tools) follows the master (workpiece) when the master moves.

This feature is used to keep the position of the manipulator relative to the other manipulator.

However, the master does not move when the slave is moved.
3.5.2 Single

If an axis is handled in “Single" mode, only the manipulator whose axis is being handled moves.

This feature is used where each of the two manipulators executes an individual job.

NOTE

• The selected mode, Synchronized or Single, is maintained until the next selection is made.
• When an edit job is changed, “Single" is automatically selected.
3.6 Selecting Axis to Be Handled

This section explains the methods to select a manipulator to be handled in teach mode.

3.6.1 When There Is an Edit Job

Each time [ROBOT] is pressed, a manipulator to be handled changes.

- Pressing [ROBOT] selects a manipulator for axis handling.

- Pressing [EX. AXIS] selects a station for axis handling.

3.6.2 When There Is No Edit Job

When there is no edit job, move the manipulator in the following manner.

1. Press [SHIFT]+[ROBOT] to change the manipulator to be handled.
 - The LED of [ROBOT] flashes.

2. Select the group axes to be moved, and then move it by pressing the axis key.

3. Press [ROBOT] to return to the original display.
3.7 Registering Job

1. Select {JOB} under the main menu.

2. Select {CREATE NEW JOB}.
 – The NEW JOB CREATE window appears.

3. Enter a job name.
 – Select “JOB NAME”, and then enter a job name by entering the characters.
 – Refer to “Chap.1.2.6 Character Input” in “YRC1000micro OPERATOR’S MANUAL (RE-CSO-A058)”.

4. Press [ENTER].

5. Select “GROUP SET”.

6. Select a group combination.

7. Select {EXECUTE}.
 – The job name is registered in the memory of YRC1000micro, and the JOB CONTENT window appears.
3.8 Registering Move Instruction (S)MOV □ +MOV □

Register a move instruction in the following manner.

3.8.1 Operating Master Side (Workpiece)

1. Call the JOB CONTENT window in teach mode.
2. Press [ROBOT].
 - The master side (manipulator) is selected for axis handling.

![Utility Screen]

3. Select either “synchronized” or “single”.
 - Press [SYNCRO/SINGLE] to select either “synchronized” or “single”.
 - When “synchronized” is selected, the mark in the window below appears.
 When the slave side is supposed to follow the master side motion, select “synchronized”.

![Utility Screen]
Synchronized→

 - When “single” is selected, the mark in the window below appears.

![Utility Screen]
Single→

4. Press the axis key to move to the desired position.
5. Select an interpolation type.
 - Press [MOTION TYPE] to select an interpolation type.
3.8 Registering Move Instruction (S)MOV □ + MOV □

3.8.2 SMOV □ + MOV □ Rate Specification

3.8.2.1 Rate Specification in a Multiple Line Shift Command

The relationship between the rate specification in a shift command which causes multiple groups such as “MOV □ + MOVJ” or “SMOV □ + MOVJ” to operate (i.e., to be configured by multiple lines), simultaneously, and the actual operation rate, is as follows.

- Each shift time for the robot (or station) is obtained according to the rate specified for each line.
- The maximum of the respective shift times is obtained, and all groups are operated according to this maximum shift time.

<Example>
MOVL V = 500.0 — The shift time over the shift distance is 2 seconds at V = 500
+MOVJ VJ = 25.00 — The shift time for the shift amount is 4 seconds at VJ = 25
*This “MOVL + MOVJ” functions when the shift time is 4 seconds.

Note that for lines in which the rate specification is omitted, the shift time is calculated based on the assumption that the maximum rate has been specified.

<Example>
MOVL V = 500.0 — The shift time over the shift distance is 2 seconds at V = 500
+MOVJ VJ — The shift time for the shift amount is 1 seconds at VJ = 25
*This “MOVL + MOVJ” functions when the shift time is 2 seconds.

3.8.2.2 Rate Specification at Coordination Interpolation (SMOV □)

The rate specification for the manipulator on the slave side at coordination interpolation (SMOV □) is specified as “relative rate” as seem from the master side.

For example, in the case where the slave side manipulator holds the work tools, this “relative rate” becomes the “work rate” with respect to the work piece, so it is important to maintain this rate.

In this case, by omitting the rate specification on the master side, the shift rate will be basically determined by the “relative rate”.

<Example>
MOVL V = 100.0 — The shift time at V = 100 over the relative shift distance on the slave side with respect to the master is 5 seconds.
+MOVJ VJ — The shift time at VJ = 100 for the master shift amount is 2 seconds.
*This “SMOVL + MOVJ” functions when the shift time is 5 seconds.
3 Jigless System

3.8 Registering Move Instruction (S)MOV □ +MOV □

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C212</td>
<td>+MOV INSTRUCTION SPEED INPUT</td>
<td>0</td>
</tr>
</tbody>
</table>

Specifies whether the speed inputting for move instructions of the master side robot in a coordinated job is permitted or not.

<Example>

<table>
<thead>
<tr>
<th>0: Not Provided</th>
<th>1: Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOV L V=100</td>
<td>SMOV L V=100</td>
</tr>
<tr>
<td>+MOVJ</td>
<td>+MOVJ</td>
</tr>
</tbody>
</table>

← Master side Speed specification not provided

← Master side Speed specification provided
3.8 Registering Move Instruction (S)MOV □ +MOV □

3.8.3 Operating Slave Side (Work tools)

1. Press [ROBOT].
 - The slave side (manipulator) is selected for axis handling.

2. Press the axis key to move to the desired position.

3. Select either a coordinated interpolation or an independent interpolation.
 - Press [SMOV] to select either interpolation.

4. Select an interpolation type.
 - Press [MOTION TYPE] to select an interpolation type.

5. Confirm the speed.

6. Press [ENTER].
 - The registration is completed as follows.

NOTE

- When joint motion is set for the slave side (work tools), teaching cannot be done during a coordinated operation.
- When “JOINT” is selected, the interpolation type will not change to a coordinated operation, even if [SMOV] is pressed.
- When “JOINT” is selected during coordinated interpolation, a coordinated move instruction such as “SMOVL” in the input buffer line changes to “MOVJ”, and the interpolation type becomes individual interpolation.
3 Jigless System
3.9 Registering Reference Point Instruction (SREFP)

3.9 Registering Reference Point Instruction (SREFP)

Register a reference point instruction (SREFP) for a coordinated operation in the following manner.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor.
 - Move the cursor to the line immediately before the line where the reference point instruction is to be registered.
4. Grasp the Enable switch.
 - Turn ON the servo power with the Enable switch.

5. Press the axis key.
 - Move the manipulator to the position which will be a reference point.
6. Select the coordinated interpolation.
 - Press [SMOV] to select either interpolation.
7. Press [REF PNT].
 - The reference point instruction appears in the input buffer line.
8. Change the reference point number.
 - Move the cursor to the reference point number, and press [SHIFT] + the cursor key to change the reference point number.
 - If you use the Numeric keys to change the reference point number, press [SELECT] when the cursor is on the reference point number. Enter the number and press [ENTER].
9. Press [INSERT].
 - The [INSERT] key lamp lights up.
 - When registering immediately before the END instruction, pressing [INSERT] is not needed.
10. Press [ENTER].
 - The REFP instruction is registered.
In a jigless system, the control point of slave side manipulator can be set as a reference point so that the master side manipulator can be moved.

3.10.1 Example of Movement
3 Jigless System
3.10 Other Convenient Features

3.10.2 Operation Method

1. Select the tool coordinate system.
 – Press [COORD] and select a tool coordinate system.

2. Press [SHIFT] + [COORD].
 – The switch to tool coordination display is shown.

3. Select a operation tool coordinate.
 – Select a manipulator with whose tool center point the manipulator is moved.
 – At turning ON the power supply, the tool center point of the currently selected manipulator is shown.
3.10.3 Manipulator Movement

The operation by the axis keys is the same as that on normal tool coordinate system.

<table>
<thead>
<tr>
<th>Axis Name</th>
<th>Axis Key</th>
<th>Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic axes</td>
<td></td>
<td>Moves in parallel to X, Y, and Z-axis of tool coordinates of the selected manipulator.</td>
</tr>
</tbody>
</table>
| Wrist axes | | With the tool center point of the selected manipulator as a reference point, TCP fixed operation is executed.

3.10.3.1 Basic Axes

![Diagram of Basic Axes](image)
3.10.3.2 Wrist Axes

Executing a TCP fixed operation by wrist axes, can change only the wrist orientation without changing its position, with the tool center point of the slave side manipulator as a reference point.

3.10.3.3 Synchronized/Single

- **When “synchronized” is selected:**
 The master moves with the tool center point of the slave as a reference point.
 The slave follows the master.

- **When “single” is selected:**
 The master moves with the tool center point of the slave as a reference point.
 The slave remains stationary.
4 Station Twin Synchronous System

4.1 Outline

The station twin synchronous system is a system where two manipulators operate in coordination for one station.

In this system, two coordinated jobs are done at the same time.

- A coordinated job for one manipulator and the station (R1+S1)
- A coordinated job for the other manipulator and the station (R2+S1)

A concurrent job or a robot job without control groups starts these two jobs and implements I/O control.

The master task job uses the independent control function to start the robot jobs of subtasks 1 and 2.
Two robot jobs can be created by the following two methods.

- **Method 1:**
 Copy one subtask job to create another subtask job.

 ![Diagram of Method 1](image)

 This method is useful when two movement paths are symmetrical. Use the mirror shift function to convert a job path and copy it. The same teaching operation does not have to be repeated.

- **Method 2:**
 Perform teaching for each manipulator.

 ![Diagram of Method 2](image)

 Where there are not many similarities in the paths and movements of the two manipulators, create jobs in Method 2.
4. Function Keys

The function keys for the station twin synchronous system are assigned to the Numeric keys as shown in the figures below.

4.2.1 General Application
4 Station Twin Synchronous System
4.2 Function Keys

Registers the TOOLON instruction.

If [INTERLOCK] is pressed simultaneously, the TOOLON operation is executed.

Registers the TOOLOF instruction.

If [INTERLOCK] is pressed simultaneously, the TOOLOFF operation is executed.

Registers the CALL instruction for the reserved job TOOLONxx.

Registers the CALL instruction for the reserved job TOOLOFxx.

Changes the type of movement for the manipulator when teaching a coordinated job.
Each time this key is pressed, the movement type changes.

SYNCRO: The mark for “synchronized” appears in the status display area. When the master side is moved, the slave side will follow the movement of the master.
SINGLE: Only the selected group axis moves.

Selects either a coordinated or an individual interpolation when teaching a coordinated job.
Each time this key is pressed, the operation type changes.

Coordinated: All the move instructions that are registered in this mode become coordinated instructions.
Individual: The master-slave relationship is canceled. Each manipulator and station moves independently.

[7:SYNCRO/SINGLE] and [4: SMOV] keys are available only when “FUNCTION” setting for each key is specified to “MAKER” in both KEY ALLOCATION(EACH) screen and KEY ALLOCATION(SIM) screen.
4.3 Job Configuration

Using the independent control function, configure jobs so that the concurrent job or robot job without control groups of master task operates the robot jobs in subtask 1 and 2.

Master task: Concurrent job (or robot job without control groups)
 Starts subtasks 1 and 2, and controls I/Os.

Subtask 1: Robot job
 A coordinated job for one manipulator + the station

Subtask 2: Robot job
 A coordinated job for the other manipulator + the station

Subtasks 1 and 2 are determined as leader or follower with a tag SYNC in PSTART instruction.
4.4 Leader and Follower

Set either the subtask 1 or the subtask 2 as the follower.

To set a follower, add a tag SYNC and the leader subtask to the PSTART instruction of the master task.

The subtask to which a tag SYNC is added is follower while the subtask without a tag is leader.

The station axis is controlled by the leader job, and the follower job follows the movement of station axis.

If the PSTART command is not executed correctly, alarm 4103 will be emitted.

When an alarm is emitted, check the sub-code, and correct the job.

<Example>

PSTART JOB : R1S1 SUB1
PSTART JOB : R2 SUB1
... AL-4103: [1] Sub task being executed:
 During execution of SUB1, an attempt is being made to start a different job in the same SUB1.

PSTART JOB : R1S1 SUB1
 (R1S1: A job for the robot 1 and the station 1)
PSTART JOB : R2S1 SUB2
 (R2S1: A job for the robot 2 and the station 1)
... AL-4103 [2] Group axis being used:
 An attempt is being made to execute a job containing station 1 in SUB2, despite the fact that station 1 is being used by SUB1.

PSTART JOB : R2S1 SUB2 SYNC SUB1
PSTART JOB : R1S1 SUB1
... “Station twin coordination” is being correctly executed.

NOTE

Register a PSTART instruction so that the follower job starts first.
4.4 Leader and Follower

<table>
<thead>
<tr>
<th>Alarm Number</th>
<th>Alarm Name</th>
<th>Sub Code</th>
<th>Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4103</td>
<td>PARALLEL START INSTRUCTION ERROR</td>
<td>1</td>
<td>Sub task being executed: Although a job is being executed by instructed sub task, an attempt was made to execute another job by the sub task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Group axis being used: The job operated by another sub task uses the same group axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Multiple start of same job: timing for start command again. The job that was tried to be started was executed by another sub task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Unregistered master job: Although the master job was not registered, an attempt was made to execute PSTART SUB (job name omitted).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Synchronization instruction error: When restarted by PSTART, synchronization instruction status of the sub task under interruption was different from the status to restart.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Stopped by an alarm: An attempt was made to start the sub task which is stopped by an alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Synchronization task specification of SYNC instruction omit error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>The task is specified by synchronization task of SYNC instruction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>I/O jog being executed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Separate group axis being used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>The servo power supply is OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Twin synchronous task ID error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>PSTART instruction is the old specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>PWAIT instruction is the old specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>Sub task to be set PSTART has been already executed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>An attempt was made to start up the control group where IO speed control is activated by a job.</td>
</tr>
</tbody>
</table>
4.5 Synchronizing with TSYNC

4.5.1 Syntax

During the execution of the jobs, a deviation between the movements of the two manipulators may occur. In the steps where the movements of the two manipulators should be exactly the same, execute a TSYNC instruction immediately before these steps.

When a TSYNC instruction is executed in one of the robot jobs, the manipulator waits until the same synchronized signal, TSYNC, is executed in the other robot job.

Set the number of synchronized tasks.

When setting “SYNCHRO NUM” to “UNUSED”, the number of tasks is the same as when “SNUM=2”.

1. Move the cursor to the line just above the line where TSYNC instruction is to be registered.
2. Press [INFORM LIST].
 – The instruction list appears.
3. Select “TSYNC”.
 – A TSYNC instruction is displayed in the input buffer line.
4. Change additional items.

 – <To register items as displayed in the input buffer line>
 Proceed to Operation 5.

 – <To change the numerical data>

 (1) Move the cursor to the numerical data.

 (2) Press [SHIFT] and the cursor key simultaneously to increment or decrement the number.

 (3) To enter a number by pressing the Numeric keys, press [SELECT] to display the input line.

 (4) Enter a number and press [ENTER], then the number in the input buffer line is changed.

 (5) After having changed the numerical data, press [ENTER]. The DETAIL EDIT window is closed and the JOB CONTENT window reappears.

 – <To edit additional items>

 (1) To edit additional items, move the cursor to the instruction in the input buffer line, then press [SELECT]. The DETAIL EDIT window appears.
4 Station Twin Synchronous System

4.5 Synchronizing with TSYNC

(2) To change the synchronization number, select “1” of “SYNCHRO NO.”
When the number input status enters, enter the synchronization number, “SYNCHRO NO.” by pressing the Numeric keys, and press [ENTER].

(3) To add the number of synchronized tasks, select “UNUSED” of “SYNCHRO NUM”.
The selection dialog box appears. Select “SNUM=”.

(4) After changed or added the additional items, press [ENTER].

(5) The DETAIL EDIT window is closed, and the JOB CONTENT window appears.
5. Press [INSERT] and [ENTER].

- The instruction displayed in the input buffer line is registered.

```
NOP  TSYNC 1
  MOVJ
    +MOVJ
    SMOV
    +MOVJ
  TSYNC 2
    SMOV
    +MOVJ
  TSYNC 3
    DOUT OT#(1) OFF
    MOVJ
    +MOVJ
END
```

Synchronizes at the start of job.

```
NOP  TSYNC 1
  MOVJ
    +MOVJ
    SMOV
    +MOVJ
  TSYNC 2
    SMOV
    +MOVJ
  TSYNC 3
    DOUT OT#(2) OFF
    MOVJ
    +MOVJ
END
```

Synchronizes just before the start of work.

```
Synchronizes just after the end of work.
```
4.5.3 Items to Note When Using a TSYNC Command

Note that even when TSYNC is being used, the steps of two manipulators will fail to match each other if the following operations are performed.

4.5.3.1 When a Cursor Shift Occurs during Operation

If the cursor position is shifted to a different step during the execution of a job of one of the two sub-tasks when the robot stops during operation, and the robot is restarted while remaining in this condition, the steps will become misaligned, resulting in the risk of interference from the jig, for example.

Start both jobs from the same position (step).

If the set number of synchronizations is less than the number of tasks to be synchronized, the robot will be commanded as soon as the TSYNC commands corresponding to the set number of synchronizations are output, and the jobs that cannot be synchronized will remain stopped.

In this case, the steps become misaligned, which may cause the manipulator to interfere with the work piece or the jig.

In this case, the steps do not become misaligned, so normal operation can take place.
4.5.3.2 If Three Jobs Were Set When the Number of TSYNC Synchronizations Was Set to “Unused”

The two jobs that become synchronized first continue to move, and the third job remains stopped.

The two jobs that become synchronized first continue to move.

The job cannot be synchronized, and remains stopped.
4.6 Job Example

Master task
(Concurrent job or robot job without control groups)

Jobs in subtasks 1 and 2

Home position return job

Waiting JOB

Tip replacement JOB

Work JOB (coordinated job)

- NOP
- ‘G
- ‘RESET
- DOUT OG#(1) 0
- DOUT OG#(2) 0
- DOUT OG#(4) 0
- DOUT OG#(8) 0

‘RETURN TO HOME 1
PSTART JOB:R1 HOME 1 SUB1 (R1+S1)
PSTART JOB:R2 HOME 1 SUB2 (R2)
PWAIT SUB1
PWAIT SUB2

‘WAITING FOR THE FIRST START
WAIT IN#(1)=ON
PSTART JOB:R1 WAIT SUB1 (R1)
PSTART JOB:R2 WAIT SUB2 (R2)
PWAIT SUB1
PWAIT SUB2

‘TIP REPLACEMENT
JUMP ‘A IF IN#(2)=OFF
PSTART JOB:R1 TIP SUB1 IF IN#(2)=ON (R1)
PSTART JOB:R2 TIP SUB2 IF IN#(2)=ON (R2)
PWAIT SUB1
PWAIT SUB2
JUMP ‘G

‘WAITING FOR THE SECOND START
WAIT IN#(10)=ON
‘RETURN TO HOME 1
JUMP ‘B IF IG#(3)=99
PSTART JOB:R1 HOME 1 SUB1 (R1+S1)
PSTART JOB:R2 HOME 1 SUB2 (R2)
PWAIT SUB1
PWAIT SUB2
JUMP ‘G

‘WORK JOB
JUMP ‘C IF IG#(3)=0

‘WORK 1
JUMP ‘E IF IG#(3)=1
PSTART JOB:TES11-R1 SUB1 SYNC SUB2 (R1+S1)
PSTART JOB:TES11-R2 SUB2 (R2+S1)
PWAIT SUB1
PWAIT SUB2

‘WORK 2
JUMP ‘F IF IG#(3)=2
PSTART JOB:TES12-R1 SUB1 SYNC SUB2 (R1+S1)
PSTART JOB:TES12-R2 SUB2 (R2+S1)
PWAIT SUB1
PWAIT SUB2

JUMP ‘H IF IN#(2)=OFF
PSTART JOB:R1 CHIP SUB1 (R1)
PSTART JOB:R2 CHIP SUB2 (R2)
PWAIT SUB1
PWAIT SUB2

DOUT OG#(4) 15
JUMP ‘C
END

Work JOB

- TSYNC 1
- MOVJ+MOVJ
- SMOVL+MOVJ
- TSYNC 2
- SMOVL+MOVJ
- TSYNC 3
- DOUT OT#(1) OFF
- MOVJ+MOVJ
END

- TSYNC 1
- MOVJ+MOVJ
- SMOVL+MOVJ
- TSYNC 2
- SMOVL+MOVJ
- TSYNC 3
- DOUT OT#(2) OFF
- MOVJ+MOVJ
END

- NOP
- TSYNC 1
- MOVJ+MOVJ
- SMOVL+MOVJ
- TSYNC 2
- SMOVL+MOVJ
- TSYNC 3
- DOUT OT#(2) OFF
- MOVJ+MOVJ
END
4.7 JOB CONTENT Window

The contents of coordinated job are displayed as shown below.

1. **Instructions**
 For coordinated jobs, the move instruction is displayed in two lines. The first line is the instruction to the slave side; the second line is the instruction to the master side.

 SMOVL V=138 ← Slave, a manipulator
 +MOVJ ← Master, a station

2. **Synchronized/Single**
 Synchronized/single are the types of movement available for the manipulator during axis operation.
 This mark appears when synchronized movement is selected.
 Switch between movements by pressing [SYNCRO/SINGLE].

3. **Group axis being handled**
 Displays the group axis being handled.
 Pressing [ROBOT] selects the manipulator.
 Pressing [EX. AXIS] selects the station.

4. **Coordinated interpolation/Individual interpolation**
 Changes between coordinated interpolation and individual interpolation by pressing [SMOV].
4.8 Synchronized/Single

4.8.1 Synchronized/Single Movement between Station and Manipulator

There are two ways to handle axes when teaching: “Synchronized” and “Single”.

Switch between movements by pressing [SYNCRO/SINGLE].

4.8.1.1 Synchronized

If the axes are handled in the “Synchronized” mode, the slave (manipulator) follows the master (station) when the master moves.

This feature is used to keep the position of the manipulator relative to the station.

However, the master does not move when the slave is moved.

- A master axis is moved:
4.8.1.2 Single

If an axis is handled in “Single” mode, the manipulator or the station whose axis has been handled, moves.

This feature is used where a manipulator and a station each executes an individual job.

- **A slave axis is moved:**

- **A master axis is moved:**

 - The selected mode, Synchronized or Single, is maintained until the next selection is made.
 - When an edit job is changed, “Single” is automatically selected.
4.8 Synchronized/Single

4.8.2 Job Synchronized Mode for Subtask 1 and 2

When moving only the leader manipulator in FWD/BWD operation, the follower manipulator in stop status may interfere with a workpiece.

To prevent this, using “job synchronized mode” can move the follower synchronizing the motion of the leader.

The follower manipulator moves, keeping the relative position to the station.

Pressing [SHIFT] + [SYNCRO/SINGLE] changes the job synchronized mode.

Also in the TEACHING CONDITION window, the job synchronized mode can be set and confirmed.

1. Select (SETUP) under the main menu.
2. Select (TEACHING COND).
 - The TEACHING CONDITION window appears.
3. Select “STATION TWIN”.

- Each time [SELECT] is pressed, “VALID” and “INVALID” is selected alternately.

NOTE
The job synchronized mode is enabled only when “SINGLE” is selected in “INDEPENDENT:MOTION OF NEXT/TEST” for the follower manipulator.
4.9 Selecting Axis to Be Handled

In a coordinated system with multiple numbers of group axes, select a group axis to be handled in the following manner.

4.9.1 When There Is an Edit Job

When the edit job is displayed, the group axes registered in the displayed job is the one to be handled.

- Pressing [ROBOT] selects a manipulator for axis handling.
- Pressing [EX. AXIS] selects a station for axis handling.

4.9.2 When There Is No Edit Job

When there is no edit job, move a manipulator in the following manner.

1. Select the group axes to be moved, and then move it by pressing the axis key.
 - Press [SHIFT] + [ROBOT] to change the manipulator for axis handling.
 The LED of [ROBOT] flashes.
 - Press [SHIFT] + [EX. AXIS] to change the station for axis handling.
 The LED of [EX. AXIS] flashes.
2. Press [ROBOT] or [EX. AXIS] to return to the original window.
4.10 Registering Job

1. Select {JOB} under the main menu.

2. Select {CREATE NEW JOB}.
 - The NEW JOB CREATE window appears.

3. Enter a job name.
 - Select “JOB NAME”, and then enter a job name by entering the characters.
 - Refer to “Chap.1.2.6 Character Input” in “YRC1000micro OPERATOR’S MANUAL (RE-CSO-A058)”.

4. Press [ENTER].

5. Select “GROUP SET”.

6. Select a group combination.

7. Select {EXECUTE}.
 - The job name is registered in the memory of YRC1000micro, and the JOB CONTENT window appears.
4.11 Registering Move Instruction (S)MOV □ +MOVJ

Register a move instruction in the following manner.

4.11.1 Operating Master Side (Station)

1. Call the JOB CONTENT window in teach mode.
2. Press [EX. AXIS].
 - The master side (station) is selected for axis handling.
 ![Utility Panel]
3. Select either “synchronized” or “single”.
 - Press [SYNCRO/SINGLE] to select either “synchronized” or “single”.
 - When “synchronized” is selected, the mark in the window below appears.
 When the slave side is supposed to follow the master side motion, select “synchronized”.
 ![Utility Panel]
 - When “single” is selected, the mark in the window below appears.
 ![Utility Panel]
4. Press the axis key to move to the desired position.
4.11 Registering Move Instruction (S)MOV/ +MOVJ

4.11.2 Operating Slave Side (Manipulator)

1. Press [EX. AXIS].
 - The slave side (manipulator) is selected for axis handling.

2. Press the axis key to move to the desired position.
 - Select either a coordinated interpolation or an independent interpolation.
 - Press [SMOV] to select either interpolation.

3. Select an interpolation type.
 - Press [MOTION TYPE] to select an interpolation type.

4. Confirm the speed.
5. Press [ENTER].
 - The registration is completed as follows.

NOTE
- When joint motion is set for the slave side (manipulator), teaching cannot be done during a coordinated interpolation.
- When "JOINT" is selected, the interpolation type will not change to a coordinated interpolation, even if [SMOV] is pressed.
- When "JOINT" is selected during coordinated interpolation, a coordinated move instruction such as "SMOVL" in the input buffer line changes to "MOVJ", and the interpolation type becomes individual interpolation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C213</td>
<td>+MOV INSTRUCTION INTERPOLATION INPUT</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>This parameter specifies which interpolation is permitted for move instructions for the master robot in a coordinated job (bit specification)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D0 : +MOVJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1 : +MOVL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2 : +MOVC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3 : +MOVS</td>
<td></td>
</tr>
</tbody>
</table>
4.11 Registering Move Instruction (S)MOV □ + MOVJ

4.11.3 (S) MOV □ + MOVJ Rate Specification

4.11.3.1 Rate Specification in a Multiple Line Shift Command

The relationship between the rate specification in a shift command which causes multiple groups such as “MOV □ + MOVJ” or “SMOV □ + MOVJ” to operate (i.e. to be configured by multiple lines), simultaneously, and the actual operation rate, is as follows.

• Each shift time for the robot (or station) is obtained according to the rate specified for each line.
• The maximum of the respective shift times is obtained, and all groups are operated according to this maximum shift time.

<Example>
MOVL V = 500.0
+MOVJ VJ = 25.00

The shift time over the shift distance is 2 seconds at V = 500
The shift time for the shift amount is 4 seconds at VJ = 25
*This “MOVL + MOVJ” functions when the shift time is 4 seconds.

Note that for lines in which the rate specification is omitted, the shift time is calculated based on the assumption that the maximum rate has been specified.

<Example>
MOVL V = 500.0
+MOVJ VJ

The shift time over the shift distance is 2 seconds at V = 500
The shift time for the shift amount is 1 second at VJ = 25
*This “MOVL + MOVJ” functions when the shift time is 2 seconds.

4.11.3.2 Rate Specification at Coordination Interpolation (SMOV □)

The rate specification for the manipulator on the slave side at coordination interpolation (SMOV □) is specified as “relative rate” as seem from the master side.

For example, in the case where the slave side manipulator holds the work tools, this “relative rate” becomes the “work rate” with respect to the work piece, so it is important to maintain this rate.

In this case, by omitting the rate specification on the master side, the shift rate will be basically determined by the “relative rate”.

<Example>
MOVL V = 100.0
+MOVJ VJ

The shift time at V = 100 over the relative shift distance on the slave side with respect to the master is 5 seconds.
The shift time at VJ = 100 for the master shift amount is 2 seconds.
*This “SMOVL + MOVJ” functions when the shift time is 5 seconds.
4 Station Twin Synchronous System

4.11 Registering Move Instruction (S)MOV □ +MOVJ

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C212</td>
<td>+MOV INSTRUCTION SPEED INPUT</td>
<td>0</td>
</tr>
</tbody>
</table>

Specifies whether the speed inputting for move instructions of the master side robot in a coordinated job is permitted or not.

Example

- **0: Not Provided**
 - SMOV
 +MOVJ
 V=100
 +MOVJ
 Master side
 Speed specification not provided

- **1: Provided**
 - SMOV
 +MOVJ
 V=100
 +MOVJ
 Master side
 Speed specification provided
4.12 Registering Reference Point Instruction (SREFP)

Register a reference point instruction (SPEFP) for a coordinated interpolation in the following manner.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor.
 - Move the cursor to the line immediately before the line where the reference point instruction is to be registered.
4. Grasp the Enable switch.
 - Turn ON the servo power with the Enable Switch.
5. Press the axis key.
 - Turn ON the servo power with the Enable switch. Move the manipulator to the position which will be a reference point.
6. Select the coordinated interpolation.
 - Press [SMOV] to select a coordinated operation.
7. Press [REF PNT].
 - The reference point instruction appears in the input buffer line.
8. Change the reference point number.
 - Move the cursor to the reference point number, and press [SHIFT] + the cursor key to change the reference point number.
 - If you use the Numeric keys to change the reference point number, press [SELECT] when the cursor is on the reference point number. Input the number and press [ENTER].
9. Press [INSERT].
 - The [INSERT] key lamp lights up.
 - When registering immediately before the END instruction, pressing [INSERT] is not needed.
10. Press [ENTER].
 - The REFP instruction is registered.
4.13 Switching Tasks

To call the JOB CONTENT window for master task, subtask 1 or subtask 2, proceed the following operation.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Press [PAGE].
4.14 Creating a Job in a Subtask - Method 1 and 2

Subtasks 1 and 2 are robot jobs.
Subtask 1: Job of one manipulator + the station
Subtask 2: Job of the other manipulator + the station

There are two methods to create a robot job for a subtask.

- **Method 1:**
 Copy one subtask job to create another subtask.

 ![Diagram](image)

 This method is useful when two movement paths are symmetrical.

 Use the mirror shift function to convert a job path and copy it. The same teaching operation does not have to be repeated.

- **Method 2**
 Perform teaching for each manipulator.

 ![Diagram](image)

 Where there are not many similarities in the paths and movements of the two manipulators, create jobs in Method 2.
4.14 Creating a Job in a Subtask - Method 1 and 2

4.14.1 Method 1: Copy One Subtask Job and Create Another Job

When two movement paths are symmetrical, one subtask job can be created by using the job taught by the other manipulator.

1. Perform teaching for either R1 + S1 or R2 + S1.
2. Use the mirror shift to create a job for the other manipulator.

![Diagram showing method 1](image)

The mirror shift is a function for copying jobs, which creates a job by reversing the signs of the position data for the S-axis, R-axis, and T-axis.

![Diagram showing mirror shift](image)

4.14.2 Teaching and Mirror Shift

1. Teach the job for one manipulator + the station, and confirm the movement.
2. After having completed the teaching, perform mirror shift the job.

![Diagram showing teaching and mirror shift](image)
4.14 Creating a Job in a Subtask - Method 1 and 2

4.14.2.1 Converting

Call the JOB CONTENT window for the job to be converted.

- **For the job currently selected**
 1. Select {JOB} under the main menu.
 2. Select {JOB}.

- **To call another job**
 1. Select {JOB} under the main menu.
 2. Select {SELECT JOB}.
 - The JOB LIST window appears.
 3. Select a job to be displayed.

4.14.2.2 Execute Conversion

Fig. 4-1: MIRROR SHIFT window

①**SOURCE JOB**
Selects the conversion source job.
To select another job to be converted, move the cursor to the name and press [SELECT] to call up the list of jobs. Select the desired job and press [SELECT].

②**SOURCE CTRL GROUP**
Displays the control group of the conversion source job.

③**STEP SELECTION**
Specifies the steps to be converted.
From the first step to the last step of the selected job are specified as initial value.

④**DESTINATION JOB**
Specifies the converted job name.
To enter the name, move the cursor to the name and press [SELECT].
The name of the conversion source job is displayed in the input line as initial value. When "***" is displayed, the name for the converted job is to be the same as that of the conversion source job.
DEST CTRL GROUP
Selects the control group for the converted job. When the destination job name is entered, the same control group as the conversion source job is automatically set. To change it, move the cursor to the control group and press [SELECT] to call up the selection dialog box.

COORDINATES
Specifies the coordinates used for conversion. "PULSE", "ROBOT", or "USER" can be selected. The initial value is "PULSE":
- PULSE: Executes the pulse mirror-shift conversion.
- ROBOT: Executes the mirror-shift conversion on the basis of the Cartesian coordinates.
- USER: Executes the mirror-shift conversion on the basis of the specified user coordinates.

USER COORD NO.
Specifies the user coordinates number when "USER" is selected in ⑥. "01" is automatically set as initial value when the "USER" is selected in ⑥. This item cannot be set when "PULSE" or "ROBOT" is selected in ⑥.

TARGET
Specifies the coordinate where conversion is to be done when "ROBOT" or "USER" is selected in ⑦. "XY", "XZ", or "YZ" can be selected. The "XZ" is automatically set as initial value when "ROBOT" or "USER" is selected in ⑦. The "XZ" is automatically set as initial value when "ROBOT" or "USER" is selected in ⑦. Always specify "XZ" for "ROBOT".

EXECUTE
Executes the conversion. When the conversion destination job name is entered, the converted job is created with that name as a new job. When the conversion destination job name is not entered, the conversion source job is converted and overwritten.

4.14.2.3 Jobs Not to Be Converted
The jobs and relative jobs without group axes cannot be converted.

4.14.2.4 Group Axes for Conversion
When the group axes for the SOURCE JOB in the multiple group axes system, the axis configuration, etc. of each group axes for SOURCE JOB and DESTINATION JOB must be the same.
- Robot axis: Same type
- Base axis: Same axis configuration
- Station axis: Same axis configuration

4.14.2.5 Position Type Variables
The position type variables are not for mirror-shift.
4.14.2.6 Parameter

Which axis is to be shifted (reverse the sign) is specified by the following parameter.

S1C×G065: Mirror shift sign reversed axis specification

- E T B R U L S
- 1st axis (0: Not reversed, 1: Reversed)
- 7th axis
4.14.3 Correcting Positional Dislocation

In the job after mirror shift, a position may be dislocated due to the installation error.

In this case, all steps should be corrected by the same shift amount.

For this operation, the parallel shift job conversion function is used.

4.14.3.1 Setting the Items for Conversion

1. Select {JOB} under the main menu.
2. Select {JOB} – The JOB CONTENT window appears.
3. Select {UTILITY} under the pull-down menu.
4. Select {PARALLEL SHIFT JOB}.
 – The PARALLEL SHIFT JOB window appears.

5. Specify the conversion items.
 – Specify the following items.

 SOURCE JOB
 Selects the job before conversion.
 The job which is shown in the JOB CONTENT window is set initially.
 To change the job, perform the following procedure.
 Move the cursor to the job name and press [SELECT]. The JOB LIST window appears. Select the desired job.

 STEP SECTION (Start Step → End Step)
 Specifies the step section of the source job.
 All the steps are set initially.
 If there is no steps in the source job, “***” is displayed.
 To change the section, perform the following procedure.
 Move the cursor to the step section indication and press [SELECT]. The input buffer line appears. Input the step number and press [ENTER].
DESTINATION JOB
Specifies the converted job.
If this is not specified ("*******" is displayed), the source job is specified.
If the converted job is specified, the source job is copied and converted.
To change the job, perform the following procedure.
Move the cursor to the converted job name indication and press [SELECT]. The character input line appears. The source job name is displayed in the input line. To enter job name without using the source job name, press [CANCEL] and then input a job name.

COORDINATES
Selects the conversion coordinates.
Move the cursor to the coordinates name and press [SELECT]. The selection dialog box appears. Select the desired coordinates. When the user coordinates are selected, the input buffer line appears. Input the desired user coordinate number and press [ENTER].
4.14.3.2 Setting the Shift Value

There are two methods for specifying the shift value.

- Directly input the shift value by numerical value.
- Calculate the shift value by teaching the original base point and converted base point.

Numerical Value Input

1. Display the PARALLEL SHIFT JOB window. Select the shift value to be set.
 - The number can now be entered.

2. Type the shift value using the Numeric keys.

3. Press [ENTER].
 - The shift value is set.
4 Station Twin Synchronous System
4.14 Creating a Job in a Subtask - Method 1 and 2

- **Calculation by Teaching**

1. Display the PARALLEL SHIFT JOB window.
 Select “TEACH SETTING” in the item of “BASE POINT”.
 - The BASE POINT window appears.

2. Select “BASE POINT(SRC)”.
3. Move the manipulator to the original base point by the axis keys.
4. Press [MODIFY] and [ENTER].
 - The original base point is set.

5. Select “BASE POINT(DEST)”.
6. Move the manipulator to the converted base point by the axis keys.
4. Station Twin Synchronous System
4.14 Creating a Job in a Subtask - Method 1 and 2

7. Press [MODIFY] and [ENTER].
 - The conversion base point is set.

8. Select [EXECUTE].
 - The difference is calculated by the two teaching points and set as a shift value.
4.14.3.3 Executing Conversion

1. Display the PARALLEL SHIFT JOB window. Select {EXECUTE}.
 - The confirmation dialog box appears when the converted job is not specified. Select “YES” then the conversion is executed.
 - The JOB CONTENT window appears when the conversion is completed.

 ![Image of PARALLEL SHIFT JOB window]

 - If the converted results are outside the range of motion of the robot, the tag “/OV” will be attached. Correct this step manually.

 ![Image of JOB CONTENT window]
4.14.4 Method 2: Perform Teaching for Each Manipulator

4.14.4.1 Procedure

First, perform teaching a job for the combination of leader manipulator and station.

Next, perform teaching a job for the combination of follower manipulator and station.

For this operation, perform teaching so that the follower manipulator follows the motion of station by FWD operation of the leader job.

For Method 2, there are two ways of teaching depending on whether the master task is used or not.

- Teaching using Master Task
- Teaching using SUPERVISORY Window
Teaching using Master Task

Using the master task can omit the operation to register a job name in the SUPERVISORY window.

1. Teach the coordinated job of leader subtask.
 - Teach all the steps of coordinated job for one manipulator + the station.

2. New job registration for the coordinated job of follower subtask.
 - Register as a new job the coordinated job for the other manipulator + the station.
 For new job registration, refer to chapter 4.10 “Registering Job”

3. New job registration of master task.
 - Newly register the master task as concurrent job.
 For concurrent job, refer to chapter 6.7.2 “Concurrent Job”.
4. Register PSTART instruction.

(1) Register a PSTART instruction to start the job newly registered at Operation 2.
 To specify this subtask as the follower, add a tag SYNC and the leader subtask.

(2) Then, register a PSTART instruction to start the job taught at Operation 1.

5. Set to “Single job operation mode”.
 – Set the operation mode at FWD operation to “Single job operation mode”.
 – Pressing [SHIFT] + [SMOV] switches the operation mode.

6. Move the cursor to the first PSTART instruction.

7. Press [INTERLOCK] + [FWD].
 – Starts the follower subtask.

8. Move the cursor to the second PSTART instruction.

9. Press [INTERLOCK] + [FWD].
 – Starts the leader subtask.

10. Press [PAGE] to change to the leader subtask.
 – Each time [PAGE] is pressed, the contents of the JOB CONTENT window change in order of master task, subtask 1, and subtask 2.

11. Move the cursor to the step 1.

12. Press [FWD].

13. Press [PAGE] to switch to the follower subtask.
 – Each time [PAGE] is pressed, the contents of the JOB CONTENT window change in order of master task, subtask 1, and subtask 2.
14. Register the step 1 of the follower subtask.

- After the FWD operation of step 1 of leader, switch to the follower and register the position of the follower manipulator relative to the station current position.

15. Register the step 2 and onward of the follower subtask.

(1) Change to the leader’s JOB CONTENT window, and perform a FWD operation to the next step.

- To maintain the follower manipulator position relative to the station, press [SHIFT] + [SYNCRO/SINGLE] to set the job synchronized mode.

(2) Change to the follower’s JOB CONTENT window, and register the follower manipulator position relative to the station current position.

(3) Teach the follower job by repeating the above operations (1) and (2).
4 Station Twin Synchronous System
4.14 Creating a Job in a Subtask - Method 1 and 2

Teaching using SUPERVISORY Window
When teaching without master task, it is necessary to register the startup job (ROOT JOB) in the SUPERVISORY window.

1. Teach a coordinated job of leader subtask.
 - Teach all the steps of the coordinated job of one manipulator + the station.

2. New job registration of a coordinated job of follower subtask.
 - Register as a new job the coordinated job of the other manipulator + the station.
 For new job registration, refer to chapter 4.10 “Registering Job”.

3. Select {JOB} under the main menu.
4. Select {CTRL MASTER}.
 - The SUPERVISORY window appears.

5. Select the root job of master task.
6. Select “CANCEL ROOT JOB”.
 - The root jobs of master task, subtask 1, and subtask 2 are canceled.

 ![Image of job interface]

7. Select the root job of subtask 1.
8. Select “REGISTER ROOT JOB”.
 - The root jobs for subtask 1 and subtask 2 are registered.

 ![Image of job interface]

9. Select a job to be registered as root job.
10. Select the root job of subtask 2.
11. Select “REGISTER ROOT JOB”.

 ![Image of job interface]
12. Select a job to be registered as root job.
 – The root jobs for subtask 1 and subtask 2 are registered.

13. Select the synchronous task of subtask 1.

14. Select “SUB2”.
 – Specify SUB2 of leader task to synchronize the synchronous task of subtask 1.

15. Select “Single job operation mode”.
 – Set “Single job operation mode” for the operation mode at FWD operation.
 – Pressing [SHIFT] + [SMOV] switches the operation mode.

16. Select {JOB} under the main menu.

17. Select {JOB}.

18. Press [PAGE] to change to leader subtask.
 – Each time [PAGE] is pressed, the contents of the JOB CONTENT window change in order of master task, subtask 1, and subtask 2.

19. Move the cursor to the step 1.

20. Press [FWD].
21. Press [PAGE] to change to the leader subtask.
 - Each time [PAGE] is pressed, the contents of the JOB CONTENT window change in order of master task, subtask 1, and subtask 2.

22. Register the step 1 of follower subtask.
 - to change to leader subtask.*After the FWD operation of step 1 of leader, switch to follower and register the position of the follower manipulator relative to the station current position.

23. Register the step 2 and onward of follower subtask.
 (1) Change to the leader's JOB CONTENT window and perform FWD operation to the next step.
 - To maintain the follower manipulator position relative to the station, press [SHIFT] + [SYNCRO/SINGLE] to set the job synchronized mode.
 (2) Change to the follower's JOB CONTENT window, and register the follower manipulator position relative to the station current position.

 (3) Teach the follower job by repeating the above operations (1) and (2).
4.15 Job in Master Task

The job of master task is a concurrent job or a robot job without control groups.

1. Select {JOB} under the main menu.
2. Select {CREATE NEW JOB}.
 - The NEW JOB CREATE window appears.

3. Enter a job name.
 - Move the cursor to JOB NAME and press [SELECT], and enter a job name by entering the characters.
4. Set “GROUP SET”.
 - Selecting “R1” of “GROUP SET” displays the selection dialog box. Select “NON GROUP”.
5. Set “CONCURRENT JOB”.
 - Select “ROBOT JOB” of “JOB TYPE”.
 Each time [SELECT] is pressed, “ROBOT JOB” or “CONCURRENT JOB” is selected alternately.
6. Press [ENTER].
7. Select [EXECUTE].

- The job is registered in the memory of YRC1000micro, and the JOB CONTENT window appears. NOP and END instructions are registered automatically.

NOTE

- If a tag SYNC is added to neither of PSTARTs, an alarm occurs.
- If the synchronous task is set to "UNUSED", the follower task, if it is SUB1, performs the same motion as the leader task SUB2, and if it is SUB2, performs the same motion as the leader task SUB1.
4.16 Confirming Operation

4.16.1 Procedure

For confirming operation, set to “Multi-job operation mode”. In the multi-job operation mode, the jobs in all the tasks operate. (The operation procedures are explained below.)

If the follower subtask is operated individually, only the follower manipulator moves but not the station.

As the follower manipulator moves following to the station current position, an alarm may occur and the manipulator may interfere the station as a result.

To verify the individual operation of the follower manipulator itself, call the job by job selection operation and confirm the individual operation of the job, but not in the twin synchronization.

1. Create a concurrent job.
 - For procedure, refer to chapter 4.15 “Job in Master Task”.
2. Select {JOB} under the main menu.
3. Select {CTRL MASTER}.
 - The SUPERVISORY window appears.
4. Move the cursor to the task where the master job is to be registered.
5. Press [SELECT].
6. Select “SETTING MASTER JOB”.
7. Select a job to be the master job.
8. Press [SHIFT] + [SYNCRO/SINGLE].
 – Set to “Multi-job operation mode”.
 Each time [SHIFT] + [SYNCRO/SINGLE] are pressed, the operation mode changes between “Multi-job operation mode” and “Single job operation mode”.

 – When a PSTART instruction is executed, the manipulator and the station move.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4C286</td>
<td>Specifies the user output number to externally output the “Multi-job operation mode” status at teaching. 0: Not output 1 to 1024: User output number</td>
<td>0</td>
</tr>
</tbody>
</table>
4.16.2 Precautions for Confirming Operation

In the following operations, the steps of two manipulators will not coincide.

4.16.2.1 Stops during Operation

<Example>
- When the manipulator stops during operation, move the cursor position to another step of the job in one of the subtasks.
- Call the master job only by one of the subtasks.

When restarting the operation in the states as explained above, an interference with jig, etc. may be caused.

Restart both jobs from the same position (step).

4.16.2.2 When “Multi-job operation mode” Is Set in the TEACHING CONDITION Window

<Example>
If the manipulator stops after operating to a certain step, and the step position of the follower R1 is changed and performs FWD operation again, the leader R2 proceeds to the next step but the R1 does not move.

As a result, the R2 goes forward by one step ahead.

This is because, in the FWD operation after position change, the step after the change is usually re-executed.

In the above figure, at the FWD operation after the position change, the leader R2, whose step has not been changed, move to the step 3.

However, since position of the follower R1 is changed, the step after the change is executed again. As a result, operation is performed at the same position and it does not proceed to the next step.

In this way, the steps of the leader and follower do not correspond each other.

To make the steps of two sides correspond each other at the FWD operation after the position change in the above case, move the cursor to the next step for the job where a change has been made, then perform FWD operation, TEST run, and playback.
4.16.2.3 If the Master Task Is Stopped by TSYNC

If teaching that causes the master task station to move violently is carried out during the step following TSYNC, the locus of the slave robot may drift very slightly when the master task is put into a standby status first by TSYNC.

In this case, either carry out teaching in such a way that the station of the master task is not moved by the step following TSYNC, or add an ADVSTOP command after the TSYNC command.

==Phenomenon==

MASTER SIDE

<SUB1>

SMOVL + MOVJ

TSYNC 3

MOVJ + MOVJ

DOUT OTR#(1) OFF

MOVJ + MOVJ

END

SMOVL + MOVJ

TSYNC 3

MOVJ + MOVJ

DOUT OTR#(1) OFF

MOVJ + MOVJ

END

The station axis moves greatly.

SLAVE SIDE

<SUB2>

SMOVL + MOVJ

MOVJ + MOVJ

DOUT OTR#(1) OFF

MOVJ + MOVJ

END

SMOVL + MOVJ

MOVJ + MOVJ

DOUT OTR#(1) OFF

MOVJ + MOVJ

END

The slave robot position drifts very slightly.

==Measure(1)==

Add the same point immediately after TSYNC.
(The position of the station axis is the same.)

==Measure(2)==

Add ADVSTOP after TSYNC.
4.17 Playback

4.17.1 Start

Call the master job in the following operation and perform a playback.
A job in the subtask is started by a PSTART instruction.

1. Select {JOB} under the main menu.
2. Select {CTRL MASTER}.
 – The SUPERVISORY window appears.
3. Move the cursor to MASTER JOB of MASTER.
4. Press [SELECT].
5. Select “CALL MASTER JOB”.
6. Press [START].
 – The called master job is executed from the beginning and the subtask is executed by a PSTART instruction.

Performing the Operation 6 clears the job of subtask.
Therefore, if the master task is called while the subtask is interrupted in the middle of its execution, the information relating to the state of subtasks that are halted is lost.
4.17.2 Automatic Correction of Shift Value

During playback operation, as the station is controlled by the leader job, the follower job controls only the follower manipulator.

If there is a shift between the teaching position of the leader job station and the station current position (controlled by the leader job), the follower manipulator moves correcting automatically the shift value in order to keep the position on the station at teaching.

![Diagram showing automatic correction of shift value](image)

The shift between the teaching position and the station current position is always monitored. If the shift amount exceeds the set value of parameter, the following message is displayed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3C1101</td>
<td>Maximum shift angle of station axis in twin (triple) synchronous system</td>
<td>Differs depending on system</td>
</tr>
<tr>
<td></td>
<td>(in units of 0.1°)</td>
<td></td>
</tr>
</tbody>
</table>

The control method of manipulator posture during correction is set by the following parameter.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C420</td>
<td>Control method of follower manipulator posture in twin (triple) synchronous system</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0: Follow the motion of station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Constant to the earth</td>
<td></td>
</tr>
</tbody>
</table>
5 Coordinated Control

5.1 Outline

The coordinated control is the function of controlling multiple manipulators and stations at the same time.

A job to implement the coordinated control is a coordinated job.
A coordinated job controls two group axes at the same time.
5.2 Group Combination

The group combination in a coordinated job is to specify two group axes to be coordinated.

The master-slave relationship must be assigned between two group axes.

When executing a coordinated instruction, the slave side executes relative interpolation on the tool coordinate system of the master side.

A group combination is set at the registration of new job name.

When a coordinated job is taught, as shown below, a move instruction is normally displayed in two lines: the first line is for slave side, and the second line marked with “+” is for master side.

<table>
<thead>
<tr>
<th>Step</th>
<th>Instruction</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>SMOVL</td>
<td>Slave side</td>
</tr>
<tr>
<td></td>
<td>+MOVL</td>
<td>Master side</td>
</tr>
<tr>
<td>002</td>
<td>MOVL</td>
<td>Slave side</td>
</tr>
<tr>
<td></td>
<td>+MOVL</td>
<td>Master side</td>
</tr>
</tbody>
</table>
5.3 Coordinated and Individual Interpolations

Two types of operation are available for a coordinated job.

5.3.1 Coordinated Interpolation

The coordinated interpolation is performed by two group axes in a master-slave relationship.

The slave executes a relative interpolation on the tool coordinate system of the master side.

This feature is used in works that require coordinating to the movement of workpiece.

5.3.2 Individual Interpolation

The individual interpolation is performed with the master-slave relationship canceled.

The master side and the slave side both perform their own individual movements, but the starts and the ends of the movements taught to each are the same.

This operation is used when, after the master side and the slave side completed a job of the coordinated operation, each side is to perform its own job.

<Example>
Example of play speed slowed down with individual interpolation

If an identical speed is given to two group axes, in order that they might finish works as far as the step 2 simultaneously, the group axis 2 is given movement slower than $V=276$.

5.3.3 Changing Interpolation Mode

Each time [SMOV] is pressed, the instruction in the input buffer line changes between coordinated interpolation and individual interpolation.
5.4 Restriction

Only MOVJ instruction can be used as move instructions for the station.
6 Independent Control

6.1 Independent Control

The YRC1000micro is configured to be able to decode and execute four jobs (with option, maximum 6 jobs) each independently.

A multitask control performed by this mechanism is called "independent control".

Four mechanisms which execute jobs are called as follows:

- Master task
- Subtask 1
- Subtask 2
- Subtask 3

The subtask 1, subtask 2, and subtask 3 are the tasks to execute jobs that are started by the master task.

A job which is able to use move instructions is called a robot job. A job which does not use a move instruction is called a concurrent job.

<table>
<thead>
<tr>
<th>Robot job</th>
<th>A job which moves robot axes or station axes with move instructions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concurrent job</td>
<td>This is used as a job to start robot jobs, or as specialized job to control calculations and I/O.</td>
</tr>
</tbody>
</table>

The jobs of subtask 1, subtask 2, and subtask 3 (hereinafter, referred to as “subtask 1/2/3”) are started by the PSTART instruction.

To start a job always fixed, it is convenient to use the master job.

NOTE Since a robot job without control groups can start another robot job, it can be used as a master task job.
When executing two robot jobs, make the master task a concurrent job.
<Example>

When implementing control of calculations or I/O, make the subtask 1 a concurrent job.

```
Master task

Robot job

Start

Subtask 1

Concurrent job
```
6.2 Startup Method

6.2.1 Starting a Job Always Fixed (Master Job)

To execute a job always fixed in each task, it is convenient to use a master job.

One master job (a series of jobs including related jobs) can be registered for each task.

Always register a master job for master tasks.

If there is no master job registered, it cannot function as a master task.

For subtasks, if a master job is registered, the job name which starts with a PSTART instruction can be omitted.

- PSTART SUB1 ...The master job of subtask 1 starts automatically.
- PSTART SUB2 ...The master job of subtask 2 starts automatically.

Even if a master job is registered, another unrelated job can be started. Refer to chapter 6.2.2 “Starting Various Jobs”.

![Diagram showing master job and subtasks]
6.2.2 Starting Various Jobs

When a job executed in each task is not fixed, set each job name to be started with a PSTART instruction.

PSTART JOB: job name SUB □...A specified job is started in a specified task.
If the PSTART command is not executed correctly, alarm 4103 will be emitted.

When an alarm is emitted, check the sub-code, and correct the job.

Example

```
PSTART JOB       : R1S1 SUB1
PSTART JOB       : R2   SUB1
... AL-4103: [1] Sub task being executed:
   During execution of SUB1, an attempt is being made to start a different job in the same SUB1.

PSTART JOB       : R1S1 SUB1 (R1S1: A job for the robot 1 and the station 1)
PSTART JOB       : R2S1 SUB2 (R2S1: A job for the robot 2 and the station 1)
... AL-4103 [2] Group axis being used:
   An attempt is being made to execute a job containing station 1 in SUB2, despite the fact that station 1 is being used by SUB1.
```
6 Independent Control

6.2 Startup Method

<table>
<thead>
<tr>
<th>Alarm Number</th>
<th>Alarm Name</th>
<th>Sub Code</th>
<th>Meanings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4103</td>
<td>PARALLEL START INSTRUCTION ERROR</td>
<td>1</td>
<td>Sub task being executed: Although a job is being executed by instructed sub task, an attempt was made to execute another job by the sub task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Group axis being used: The job operated by another sub task uses the same group axis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Multiple start of same job: timing for start command again. The job that was tried to be started was executed by another sub task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Unregistered master job: Although the master job was not registered, an attempt was made to execute PSTART SUB (job name omitted).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Synchronization instruction error: When restarted by PSTART, synchronization instruction status of the sub task under interruption was different from the status to restart.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Stopped by an alarm: An attempt was made to start the sub task which is stopped by an alarm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Synchronization task specification of SYNC instruction omit error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>The task is specified by synchronization task of SYNC instruction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>I/O jog being executed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Separate group axis being used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>The servo power supply is OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Twin synchronous task ID error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>PSTART instruction is the old specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>PWAIT instruction is the old specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>Sub task to be set PSTART has been already executed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>An attempt was made to start up the control group where IO speed control is activated by a job.</td>
</tr>
</tbody>
</table>
6.3 Job Examples

6.3.1 Non-Synchronous Operation

The example below is a job configuration for the manipulators 1 and 2 to perform entirely separate operations in non-synchronous mode.

Set a concurrent job as the master task, and start the R1 job in subtask 1, and the R2 job in subtask 2 from the master task.

Whether each subtask has completed or not can be confirmed in the master task.

```
Master task
Job name: MASTER
(concurrent job)

NOP
* Initial start
PSTART JOB:R1JOB SUB1
PSTART JOB:R2JOB SUB2

* Waiting for completion
PWAIT SUB1
PWAIT SUB2
END

Subtask 1
Job name: R1JOB
(R1: robot job)

NOP
JUMP JOB:R1ABC
END

Job name: R1ABC
(R1: robot job)

NOP
MOVJ VJ=50.0
MOVJ VJ=50.0
MOVL V=100.0
END

Subtask 2
Job name: R2JOB
(R2: robot job)

NOP
JUMP JOB:R2ABC
END

Job name: R2ABC
(R2: robot job)

NOP

MOVJ VJ=50.0
MOVJ VJ=50.0
MOVL V=100.0
END

Subtask 1 completed

Subtask 2 completed
```
6 Independent Control

6.3 Job Examples

6.3.2 Synchronous Operation

The example below is a job configuration for the manipulators 1 and 2 to achieve detailed synchronization mode.

This is used when an interference area exists between manipulators.

Set a concurrent job as the master task, and start the R1 job in subtask 1, and the R2 job in subtask 2.

The synchronization of each subtask is executed by TSYNC instruction.

```
NOP
TSYNC 1
MOVJ + MOVJ
MOVJ + MOVJ
MOVJ + MOVJ
SMOVL + MOVJ
TSYNC 2
SMOVL + MOVJ
SMOVL + MOVJ
TSYNC 3
DOUT OT#(1) OFF
MOVJ + MOVJ
END
```

```
NOP
JUMP JOB:R1DEF
END
```

```
NOP
JUMP JOB:R2DEF
END
```

```
NOP
* Initial start
PSTART JOB:R1JOB SUB1
PSTART JOB:R2JOB SUB2
* Waiting for completion
PWAIT SUB1
PWAIT SUB2
END
```

```
NOP
JUMP JOB:R1DEF
END
```

```
NOP
JUMP JOB:R2DEF
END
```
6.4 Switching Task Window

To call the JOB CONTENT window of the master task and subtask 1/2/3, take the following procedure.

1. Select {JOB} under the main menu.
2. Select {JOB}
3. Press [PAGE].
 - Each time [PAGE] is pressed, the contents of the JOB CONTENT window change in order of Master task, Subtask 1, Subtask 2, and Subtask 3.
 - The JOB CONTENT window of the task where no job is registered, is not shown.
6.5 Synchronizing with TSYNC

During the execution of the jobs, a deviation between the movements of the two manipulators may occur. In the steps where the movements of the two manipulators should be exactly the same, execute a TSYNC instruction immediately before these steps.

When a TSYNC instruction is executed in one of the robot jobs, the other robot job is also executed.

Set the number of synchronized tasks. When setting “SYNCHRO NUM” to “UNUSED”, the number of tasks is the same as when “SNUM=2”.

- Syntax

6.5.1 Items to Note When Using a TSYNC Command

Note that even when TSYNC is being used, the steps of two manipulators will fail to match each other if the following operations are performed.
6.5.1.1 When a Cursor Shift Occurs during Operation

If the cursor position is shifted to a different step during the execution of a job of one of the two sub-tasks when the robot stops during operation, and the robot is restarted while remaining in this condition, the steps will become misaligned, resulting in the risk of interference from the jig, for example.

Start both jobs from the same position (step).

If the set number of synchronizations is less than the number of tasks to be synchronized, the robot will be commanded as soon as the TSYNC commands corresponding to the set number of synchronizations are output, and the jobs that cannot be synchronized will remain stopped.
6 Independent Control
6.5 Synchronizing with TSYNC

6.5.1.2 If Three Jobs Were Set When the Number of TSYNC Synchronizations Was Set to “Unused”

The two jobs that become synchronized first continue to move, and the third job remains stopped.

The two jobs that become synchronized first continue to move.

The job cannot be synchronized, and remains stopped.
6 Independent Control
6.6 Registering Instructions

6.6 Registering Instructions

Register an instruction when the cursor is in the address area in the JOB CONTENT window in teach mode.

1. Select {JOB} under the main menu.
2. Select {JOB}.
3. Move the cursor to the address area.

6.6.1 PSTART Instruction

1. Move the cursor to the line just above the place where PSTART instruction is to be registered.
2. Press [INFORM LIST].
 - The instruction list appears.
3. Select “PSTART”.
 - A PSTART instruction is displayed in the input buffer line.
3. Change additional items.

 – <To register items as displayed in the input buffer line>
 Proceed to Operation 5.

 – <To edit additional items>

 (1) When the job name is to be changed, move the cursor to the job
 name, then press [SELECT].

 – The window for job name selection appears. Select a job to be
 changed.

 (2) To edit additional items, move the cursor to the instruction in the
 input buffer line, then press [SELECT]. The DETAIL EDIT window
 appears.

 (3) To change the target task, move the cursor to “JOB:”, then press
 [SELECT].

 – The selection dialog box appears. Select a target job to be
 changed with.
(4) To change the startup task, select “SUB1” of “STARTUP TASK”.
 - The selection dialog box appears. Select the startup task to be changed with.

(5) After changed or added the additional items, press [ENTER].
(6) The DETAIL EDIT window is closed and the JOB CONTENT window appears.

4. Press [INSERT] and [ENTER].
 - The instruction displayed in the input buffer line is registered.
6.6.2 PWAIT Instruction

1. Move the cursor to the line just above the place where PWAIT instruction is to be registered.

2. Press [INFORM LIST].
 - The instruction list appears.

3. Select “PWAIT”.
 - A PWAIT instruction is displayed in the input buffer line.

4. Change additional items.
 - <To register items as displayed in the input buffer line>
 Proceed to Operation 5.
 - <To edit additional items>

 (1) To edit additional items, move the cursor to the instruction in the input buffer line, then press [SELECT]. The DETAIL EDIT window appears.
(2) To change the target task, select “SUB1” of “TARGET TASK”.
 - The selection dialog box appears. Select a target task to be changed with.

(3) To add a condition, select “UNUSED” of “CONDITION”.

(4) The selection dialog box appears. Select “IF”.
 - “IF” is shown in the DETAIL EDIT window.

(5) Press [ENTER] to add “IF”.

(6) After changed or added the additional items, press [ENTER].

(7) The DETAIL EDIT window is closed, and the JOB CONTENT window appears.

5. Press [INSERT] and [ENTER].
 - The instruction displayed in the input buffer line is registered.
6.6.3 TSYNC Instruction

1. Move the cursor to the line just above the place where TSYNC instruction is to be registered.

2. Press [INFORM LIST].
 – The instruction list appears.

3. Select “TSYNC”.
 – A TSYNC instruction is displayed in the input buffer line.

4. Change the numerical data.
 – <To register items as displayed in the input buffer line>
 Proceed to Operation 5.
 – <To change the numerical data>
 (1) Move the cursor to the numerical data.
 (2) Press [SHIFT] and the cursor key simultaneously to increment or decrement the number.
 – To enter a number by pressing the Numeric keys, press [SELECT] to display the input buffer line.
 (3) Enter a number, then press [ENTER]. The number displayed in the input buffer line is changed.
 (4) After changed the numerical data, press [ENTER].
 – The DETAIL EDIT window is closed, and the JOB CONTENT window appears.
6 Independent Control
6.6 Registering Instructions

- <To edit additional items>

(1) Enter a number, then press [ENTER]. The number displayed in the input buffer line is changed. To edit additional items, move the cursor to the instruction in the input buffer line, then press [SELECT]. The DETAIL EDIT window appears.

(2) To change the synchronization number, select “1” of “SYNCHRO NO.”

- When the number input status enters, enter the synchronization number, “SYNCHRO NO.” by pressing the Numeric keys, and press [ENTER].
(3) To add the number of synchronized tasks, select “UNUSED” of “SYNCHRO NUM”.

- The selection dialog box appears. Select “SNUM=”.

(4) After changed or added the additional items, press [ENTER].

(5) The DETAIL EDIT window is closed, and the JOB CONTENT window appears.

5. Press [INSERT] and [ENTER].

- The instruction displayed in the input buffer line is registered.
6 Independent Control

6.7 Registering Job

6.7 Registering Job

6.7.1 Robot Job

Register a job in the subtasks.

The robot jobs in subtasks are registered task by task.

1. Select {JOB} under the main menu.

2. Select {CREATE NEW JOB}.

 – The NEW JOB CREATE window appears.

3. Enter a job name.

 – Move the cursor to the job name, then press [SELECT]. Enter a job name by character input operation.

4. Set “GROUP SET”.

 – Select “R1” of “GROUP SET”. The selection dialog box appears.

 Select a group combination or “NON GROUP”.

5. Set “ROBOT JOB”.

 – Set “ROBOT JOB” for “JOB TYPE”.

6. Press [ENTER].
6 Independent Control
6.7 Registering Job

7. Select {EXECUTE}.

– The job name is registered in the memory of YRC1000micro, then the JOB CONTENT window appears.

– NOP and END instructions are automatically registered.
6.7.2 Concurrent Job

Register a job in the master task.
1. Select {JOB} under the main menu.
2. Select {CREATE NEW JOB}.
 - The NEW JOB CREATE window appears.
3. Enter a job name.
 - Move the cursor to the job name, then press [SELECT]. Enter a job name by character input operation.
4. Set “GROUP SET”.
 - Select “R1” of “GROUP SET”. The selection dialog box appears. Select “NON GROUP”.
5. Set “CONCURRENT JOB”.
 - Move the cursor to “ROBOT JOB” of “JOB TYPE”, then press [SELECT]. Each time [SELECT] is pressed, “ROBOT JOB” and “CONCURRENT JOB” is shown alternately.
6. Press [ENTER].
6 Independent Control
6.7 Registering Job

7. Select {EXECUTE}.

- The job name is registered in the memory of YRC1000micro, and the JOB CONTENT window appears.
- NOP and END instructions are automatically registered
6.8 Confirming Operation

6.8.1 FWD/BWD Operation and Test Run

6.8.1.1 Confirming the Operation of the Task Being Displayed

When confirming operation in FWD/BWD operation or a test run, usually only the job of the task currently being displayed is targeted.

Operation can be confirmed with [FWD], [BWD], and [TEST START].

6.8.1.2 Confirming the Operation of All Tasks

To operate all tasks at the same time, perform the following operations 1 to 4.

1. Set the operation mode at independent control to “Multi-job operation mode”.

2. Register a concurrent job as the master job.

3. Perform FWD operation on the concurrent job, and execute PSTART instruction.

4. Continue performing FWD operation so that all the tasks simultaneously perform FWD operation.

Sometimes operation is performed at a different speed from the playback speed.

Exercise full caution to any interference between manipulators.

6.8.2 Switching Operating Method

There are two operating methods during FWD/BWD operation and a test run:

- Operate only the task currently being displayed ---“Single job operation mode”
- Operate all tasks ---“Multi-job operation mode”

These two operating methods can be switched on the TEACHING CONDITION window.
6 Independent Control
6.8 Confirming Operation

6.8.2.1 Switching on TEACHING CONDITION Window

1. Select {SETUP} under the main menu.
2. Select {TEACHING COND}.
 – The TEACHING CONDITION window appears.

3. Select “INDEPENDENT:MOTION OF NEXT/TEST”.
 – Each time [SELECT] is pressed, the setting changes between “ALL” and “SINGLE”.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4C286</td>
<td>Specifies the user output number to externally output the “Multi-job operation mode” status at teaching.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0: Not output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 1024: User output number</td>
<td></td>
</tr>
</tbody>
</table>
6.8.3 BWD Operation of Concurrent Job

During BWD operation, a concurrent job and a job without control groups can be set so that they do not back, on the TEACHING CONDITION window. For the operation procedures, refer to chapter 6.8.2 “Switching Operating Method”.
6.9 Playback

6.9.1 Procedure

A playback is performed in the manner described in the following diagram. Executing PSTART instruction in master task, starts the job in subtasks. The operation status of each task can be checked on the SUPERVISORY window.

For information about playback, refer to “YRC1000micro OPERATOR’S MANUAL (RE-CSO-A058)”. This manual explains the independent control characteristic operations.
6.9.2 Registering Master Job

6.9.2.1 Registering

Register a master job in teach mode.

1. Select \{JOB\} under the main menu.
2. Select \{CTRL MASTER\}.
 - The SUPERVISORY window appears.

3. Move the cursor to the task where a master job is to be registered.
4. Press [SELECT].
 - The selection dialog box appears.
6 Independent Control
6.9 Playback

5. Select “SETTING MASTER JOB”.
 – The JOB NAME window appears.

6. Select a job to be registered as a master job.
 – The selected job is registered as a master job.
6.9.2.2 Canceling Registration

1. Move the cursor to the task whose registration is to be canceled.
2. Press [SELECT].
3. Select “CANCEL MASTER JOB”.
 - The selection dialog box appears.
6 Independent Control
6.9 Playback

6.9.3 Calling Master Job

1. Move the cursor to the master job whose task is to be called.
2. Press [SELECT].
 - The selection dialog box appears.
3. Select “CALL MASTER JOB”.
 - The master job is called.
6.9 Playback

6.9.3.1 When the Master Job in the Master Task Is Called

The master job of the master task is called, and the jobs of the subtasks are cleared.

6.9.3.2 When the Master Job in a Subtask 1/2/3 Is Called

Only the master job in a specified subtask is called. The jobs in other tasks are as they were before calling.

NOTE

For the subtask 1/2/3, it can be selected whether the master job is to be called or the root job (job started by PSTART) is to be called.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Contents and Set Value</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2C232</td>
<td>Call the master job: 0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Call the root job: 1</td>
<td></td>
</tr>
</tbody>
</table>
6.9.4 Registration of Root (Startup) Job

The root job is a job executed at starting up each task.

As the root job is determined automatically according to the job configuration, normally it is not necessary to be registered.

However, when the currently active job is to be changed forcibly, register a desired root job to start the task.

The task is executed from the registered root job.

<Example>
During execution of a series of jobs in the subtask 1 as shown in the figure below, the task is stopped in the middle of “Work-P”.
To restart the task from “Work-Q” without executing the remaining of “Work-P”, register “Work-Q” for “ROOT JOB” in the SUPERVISORY window.

![Diagram of job flow and supervisory window](image-url)
6.9.4.1 Registering

Register a root job in teach mode.
1. Select {JOB} under the main menu.
2. Select {CTRL MASTER}.
 - The SUPERVISORY window appears.

3. Move the cursor to the task where a root job is to be registered.
4. Press [SELECT].
 - The selection dialog box appears
6 Independent Control
6.9 Playback

5. Select “REGISTER ROOT JOB”.
 – The JOB NAME window appears.

6. Select a job to be registered as a root job.
 – The selected job is registered as a root job.
6.9.4.2 Canceling Registration

1. Move the cursor to the task whose registration is to be canceled.
2. Press [SELECT].
 - The selection dialog box appears.
3. Select “CANCEL ROOT JOB”.
 - The root job registration is canceled.
6.9.5 Confirming Operating Status (SUPERVISORY Window)

The operating status of each task can be confirmed on the SUPERVISORY window.

1. Select (JOB) under the main menu.
2. Select (CTRL MASTER).
 - The SUPERVISORY window appears.

 ① MASTER JOB
 Displays the master job of each task.

 ② ROOT JOB
 Displays a job at starting each task.
 It is displayed when “1” (call a root job) is set to the parameter S2C232.

 ③ EXEC JOB/EDIT JOB
 In play mode, displays the currently active job.
 In teach mode, displays the currently editing job.
 The line number and step number of the current cursor position of the EXEC JOB/EDIT JOB are displayed in “LINE NO.” and “STEP NO.” respectively.
6 Independent Control
6.9 Playback

STATUS

Displays the status of execution of the task.

- **START:** Displays during playback or during a test run.
- **RUN:** Displays while executing FWD/BWD operation.
- **STOP:** Displays while stopped.
- **ALARM:** Displays while an alarm is occurring.
- **HOLD:** Displays while holding.
- **E.STOP:** Displays during emergency stop.
- **PWAIT1:** Displays while waiting completion of subtask 1.
- **PWAIT2:** Displays while waiting completion of subtask 2.
- **PWAIT3:** Displays while waiting completion of subtask 3.
6.9.6 Precautions

6.9.6.1 Stopping

If a hold or an emergency stop procedure is performed, all currently executing jobs are stopped.

6.9.6.2 Restarting

The following methods are available for restarting after a hold or an emergency stop.

- **To continue operation**
 If operation is restarted from the stopped position, the master task and subtasks 1/2/3/4/5 all continue their execution from the line (step) number at the time of the stop.

 However, if a job selection is made and the message “SUB task restart impossible” is displayed, subtasks 1/2/3/4/5 cannot continue their execution. Only the master task is restarted.

- **To execute only one of the subtasks from the beginning**
 Before conducting start procedures, first turn ON the system input signal “Sub task Master job call” (40071 to 40075 of the subtask to be executed from the beginning), and press the start button.

 The job of the subtask for which this signal is ON, is executed from the beginning.
 The jobs of other tasks continue execution from the line (step) number at the time of the stop.

- **To execute jobs of both subtasks from the beginning**
 First turn ON the system input signal “Master job call” (40070), then press the start button.

 When the master job of the master task is called, subtasks 1/2/3/4/5 which were stopped in the middle are canceled.
 When PSTART instruction is executed in the job of the master task, the jobs of both subtasks start and are executed from the beginning.

6.9.6.3 Stopping and Restarting a Subtask Alone

During operation of subtasks 1/2/3/4/5, with an I/O alarm or a PAUSE instruction, only a specified subtask can be stopped. Refer to the system inputs 40021 to 40025, and the system outputs 50621 to 50625, for I/O alarm.

When subtask 1/2/3/4/5 is halted, the system output signal 50601 to 50605 “HELD” is output.

The system output signal 50070 “RUN” stays ON, but the start lamp on the programming pendant flashes when a subtask is halted.

To restart the halted subtask 1/2/3/4/5, reset the alarm and press the external start or the start button on the programming pendant.
7 Robot Language (INFORM) Instructions

7.1 Coordinated Motion Instructions

< > indicates numerical or alphabetical data. If multiple items are shown in one section, select one of the items.

<table>
<thead>
<tr>
<th>SMOVL</th>
<th>Function</th>
<th>While coordinating the slave side with the master side, moves to teaching position with linear interpolation. (Coordinated move instruction to the slave side manipulator)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional Item</td>
<td>Position data, base axis position data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These data do not appear on the screen.</td>
</tr>
<tr>
<td></td>
<td>V=<play speed></td>
<td>V: 0.1 to 1500.0 mm/s</td>
</tr>
<tr>
<td></td>
<td>VR=<play speed for posture></td>
<td>0.6 to 9000.0 cm/min</td>
</tr>
<tr>
<td></td>
<td>PL=<position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td></td>
<td>NWAIT</td>
<td>+MOVJ instruction, +MOVL</td>
</tr>
<tr>
<td>Example</td>
<td>SMOVL V=150</td>
<td>NWAIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMOVC</th>
<th>Function</th>
<th>While coordinating the slave side with the master side, moves to teaching position with circular interpolation. (Coordinated move instruction to the slave side manipulator)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional Item</td>
<td>Position data, base axis position data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These data do not appear on the screen.</td>
</tr>
<tr>
<td></td>
<td>V=<play speed></td>
<td>V: 0.1 to 1500.0 mm/s</td>
</tr>
<tr>
<td></td>
<td>VR=<play speed for posture></td>
<td>0.6 to 9000.0 cm/min</td>
</tr>
<tr>
<td></td>
<td>PL=<position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td></td>
<td>NWAIT</td>
<td>+MOVJ instruction, +MOVL</td>
</tr>
<tr>
<td>Example</td>
<td>SMOVC V=150 NWAIT</td>
<td>NWAIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIMOV</th>
<th>Function</th>
<th>While coordinating the slave side with the master side, moves by only the specified increments with linear interpolation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Additional Item</td>
<td>P <variable No.>, BP <variable No.></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V=<play speed>, VR=<play speed for posture>, VS=<speed at reach point></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V: 0.1 to 1500.0 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 to 9000.0 cm/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR: 0.1 to 180.0°/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VS: 0.1 to 1500.0 mm/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 to 9000.0 cm/min</td>
</tr>
<tr>
<td></td>
<td>PL = <position level></td>
<td>PL: 0 to 8</td>
</tr>
<tr>
<td></td>
<td>UNTIL statement</td>
<td>+IMOV instruction</td>
</tr>
<tr>
<td>Example</td>
<td>SIMOV P000 V=138 PL=1</td>
<td>+IMOV P001</td>
</tr>
<tr>
<td></td>
<td>SIMOV P001 BP002</td>
<td>+IMOV P000</td>
</tr>
</tbody>
</table>
7 Robot Language (INFORM) Instructions

7.1 Coordinated Motion Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Function</th>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREFP</td>
<td>During coordinated movement, specifies a reference point such as wall point for weaving. (Reference point instruction to the slave side manipulator)</td>
<td>Position data, base axis position data</td>
<td>SREFP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wall point 1 for weaving: 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wall point 2 for weaving: 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Item</th>
<th>These data do not appear on the screen.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VJ=<play speed (%)></td>
<td>Effective in parameter setting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOVJ</th>
<th>The master side moves to the teach position with joint interpolation. This instruction should always be placed after a coordinated move instruction (individual interpolation). (Coordinated move instruction to the master side manipulator)</th>
<th>Position data, base axis position data, station axis position data</th>
<th>MOVJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td></td>
<td>MOVJ=138 PL=0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOVL</th>
<th>The master side moves to the teach position with linear interpolation. This instruction should always be placed after a coordinated move instruction (coordinated interpolation, individual interpolation). (Coordinated move instruction to the master side manipulator)</th>
<th>Position data, base axis position data, station axis position data</th>
<th>MOVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td></td>
<td>SMOVL V=276 +MOVL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMOV</th>
<th>The master side moves by only the specified increment with linear interpolation.</th>
<th>P <variable No.>, BP <variable No.></th>
<th>IMOV P000 V=138 PL=1 RF +IMOV P001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Item</td>
<td>V=<play speed>, VR=<play speed for posture>, VE=<play speed of external axes>, VS=<speed at reach point></td>
<td>V: 0.1 to 1500.0 mm/s 0.6 to 9000.0 cm/min</td>
<td>BF: Base coordinate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VR: 0.1 to 180.0°/s VE: 0.01 to 100.00% VS: 0.1 to 1500.0 mm/s 0.6 to 9000.0 cm/min</td>
<td>RF: Robot coordinate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR, RF, TF, UF# (<User coordinate No.>)</td>
<td>TF: Tool coordinate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BF: Base coordinate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RF: Robot coordinate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TF: Tool coordinate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UF: User coorclinate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSFTON</th>
<th>Starts coordinated shift movement.</th>
<th><Robot axis position variable></th>
<th>SSFTON P000</th>
</tr>
</thead>
</table>

| Example | | | |

HW1484482
7.1 Coordinated Motion Instructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSFTOF</td>
<td>Stops coordinated shift movement.</td>
<td>None</td>
<td>SSFTOF</td>
</tr>
<tr>
<td>SWVON</td>
<td>Starts coordinated weaving.</td>
<td>WEV# (<weaving condition file No.>) 1 to 16</td>
<td>SWVON WEV#(3)</td>
</tr>
<tr>
<td>SWVOF</td>
<td>Stops coordinated weaving.</td>
<td>None</td>
<td>SWVOF</td>
</tr>
</tbody>
</table>
7.2 Independent Control Instructions

< > indicates numerical or alphabetical data. If multiple items are shown in one section, select one of the items.

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Additional Item</th>
<th>Additional Item</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSTART</td>
<td>Starts a job.</td>
<td>JOB: <Job name></td>
<td>SUB1, SUB2, SUB3 (SUB4, SUB5)</td>
<td>PSTART SUB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUB1, SUB2, SUB3 (SUB4, SUB5)</td>
<td>SYNC</td>
<td>PSTART JOB: TEST-1 SUB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUB1, SUB2, SUB3 (SUB4, SUB5)</td>
<td>SUB1, SUB2, SUB3 (SUB4, SUB5)</td>
<td>PSTART JOB: TEST-1 SUB1 SYNC SUB2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IF statement</td>
<td></td>
</tr>
<tr>
<td>Remarks</td>
<td>If the job name is omitted, the master job registered in the selected subtask is started.</td>
<td>PWAIT</td>
<td>Subtask waiting for completion</td>
<td>PWAIT SUB1</td>
</tr>
<tr>
<td>TSYNC</td>
<td>Synchronizes tasks.</td>
<td><synchronization No.></td>
<td>1 to 32</td>
<td>TSYNC 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNUM=<the number of synchronized tasks></td>
<td>2 to 4 (6)</td>
<td>TSYNC 1 SNUM=3</td>
</tr>
</tbody>
</table>
8 CONVSFT Instruction (Coordinate System Conversion Instruction of the Shift Value)

8.1 Outline

When making a parallel shift during the coordinated motion, the robot should shift by the shift value of master tool coordinate system (the master robot or the station tool coordinate systems).

In this consequence, during the coordinated motion, the shift value on the base, robot or user coordinate systems cannot make parallel shift unless

• converting the shift value from base coordinated system to master tool coordinated system.
• converting the shift value from robot coordinated system to master tool coordinated system.
• converting the shift value from user coordinated system to master tool coordinated system.

After each above mentioned conversion instruction, the parallel shift can be made during the coordinated motion.
8.2 CONVSFT Instruction

8.2.1 Explanation of CONVSFT

Meaning: Coordinate system conversion instruction of the shift value

- **Instructed Operation**
 A shift value out of three coordinate systems (base, robot or user coordinate system), which is set to B. Base Point Shift Value, will be set to A. Converted Shift Value as a converted shift value after being converted in accordance with the coordinate system at D. Coordinate System to be Converted.

- **Converted Shift Value**
 The converted shift value is set to a specified P Variable.

- **Base Point Shift Value**
 Set a shift value to be converted to P Variable.
 Specify base, robot or user coordinate system, whose coordinate system is to be converted, with the coordinate system of P Variable.

- **Master Robot (Station) Position**
 When a shift value is converted to the master tool coordinate system shift value, it is specified with a PX variable shown below.
8 CONVSFT Instruction (Coordinate System Conversion Instruction of the Shift Value)
8.2 CONVSFT Instruction

- PX Variable
 The PX variable varies with the job control group that executes CONVSFT instruction. Please refer to the following table (when setting PX000 to PX variable).

Table 8-1: Relation between PX Variable and Control Group

<table>
<thead>
<tr>
<th>Job Control Group</th>
<th>Master Variable</th>
<th>Slave Side Variable</th>
<th>Master Side Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1+R2</td>
<td>R1</td>
<td>P000 (R2)</td>
<td>P001 (R1)</td>
</tr>
<tr>
<td>R1+R2</td>
<td>R2</td>
<td>P000 (R1)</td>
<td>P001 (R2)</td>
</tr>
<tr>
<td>R1+S1</td>
<td>S1</td>
<td>P000 (R1)</td>
<td>EX000</td>
</tr>
<tr>
<td>R2+S1</td>
<td>S1</td>
<td>P000 (R2)</td>
<td>EX000</td>
</tr>
</tbody>
</table>

- Coordinate System to be Converted
 Specify a coordinate system whose shift value is to be converted.
 MTF: Master tool coordinate system
 BF: Base coordinate system (implementing function)
 RF: Robot coordinate system (implementing function)
 UF: User coordinate system (implementing function)
8.3 Example of Conversion

Example 1: Convert the shift value in the operation job

- When the shift value is given by the robot coordinate system and the shift is made during the coordinated operation.
- The job control group is R1 + S1
- The robot coordinate system shift value is regarded to be set to P001.

<table>
<thead>
<tr>
<th>Line</th>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>NOP</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MOVJ VJ=50.00 +MOVJ VJ=50.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>GETS PX002 $PX000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>CONVSFT P000 P001 P002 MTF</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>SSFTON P000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>SMOVL V=1000 +MOVJ</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>DOUT OT#(1) ON</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>SMOVL V=100 +MOVJ</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>SMOVL V=100 +MOVJ</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>DOUT OT#(1) OFF</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>SSFTOF</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>SMOVL V=500 +MOVJ</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>MOVL VJ=50.00 +MOVL VJ=50.0</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>END</td>
</tr>
</tbody>
</table>

Create the shift value of the robot coordinate system with the same position as the step position at which the shift value of the station axis position is made converted its coordinate system by CONVSFT instruction.
Example 2: Convert the master tool coordinate system in the job other than the operating job

Register the position of master robot (station) that has specified the robot coordinate system shift value to SREFP1, then convert the shift value using the position data in SREFP1.

JOB: CONVSFT

```
Line  Step  Command
0     0     NOP
1     1     SREFP1
2     GETS PX005 $PX021
3     CONVSFT P000 P001 PX005 MTF
4     END
```

Currently active job

```
Line  Step  Command
0     0     NOP
1     1     MOVJ VJ=50.00
            +MOVJ VJ=50.0
2     CALL CONVSFT
3     SSFTON P000
4     SMOVL V=1000
            +MOVJ
5     DOUT OT#(1) ON
6     SMOVL V=100
            +MOVJ
7     SMOVL V=100
            +MOVJ
8     DOUT OT#(1) OFF
9     SSFTOF
10    SMOVL V=500
            +MOVJ
11    MOVJ VJ=50.00
            +MOVJ VJ=50.0
12    END
```

Create the job for conversion with the coordinated job. If the job to be shifted is the coordinated job of the robot and the station, the job to be converted should also be the coordinated job of the robot and the station.

NOTE
8.4 Alarm

■ 4499 UNDEFINED POSITION VARIABLE

Cause: The data is not set to the position variable.
Measure: Set the data to the position variable.

■ 4495 UNDEFINED ROBOT CARIBRATION

Cause: Between robots or robot and station is not calibrated yet.
Measure: Calibrate between robots or robot and station.

■ 4500 UNDEFINED USER FRAME

Cause: The user coordinate is not defined.
Measure: Define the user coordinate.
8.5 Supplementary Note

About the need to make parallel shift on the master tool coordinate system.
Assume that a work moves 10 mm in Z-axis direction on the base coordinate system when it is at the station position shown in fig. 8-1(a) "The Shift When the Station-Axis Rotates 0°"

Fig. 8-1(a): The Shift When the Station-Axis Rotates 0°

Even shifting the robot's position on the base coordinate system when the work is at the position mentioned in fig. 8-1(b) "The Shift When the Station-Axis Rotates 45°", the robot would not move to the desired position. However, on the other hand, it will shift appropriately when the robot makes the shift on the master tool coordinate system.

Fig. 8-1(b): The Shift When the Station-Axis Rotates 45°
9 The Linear Interpolation during the Axis Operation (Switching the Cartesian Coordinate)

9.1 Outline

When select the Cartesian coordinate as an axis operation coordinate, the robot operates linear interpolation which based on the coordinate at the initial state. This coordinate can be switched to both the base coordinate and the robot coordinate.

For the switching procedures, refer to chapter 9.3 “Setting Procedures”.

When switches from the reference coordinate to the robot coordinate, each robot operates the linear interpolation at the Cartesian coordinate.

e.g., As for two robots coordination system (calibration is defined among the robots), the following figures show the difference when the Cartesian coordinate axis key [X+] is pressed at the R2.

Fig. 9-1: R2 Cartesian Coordinate Axis Operation X+ Direction (Specified Base Coordinate)
Fig. 9-2: R2 Cartesian Coordinate Axis Operation X+ Direction (Specified Robot Coordinate)
9.2 More Details About the Linear Coordinate

When select the Cartesian coordinate as an axis operation coordinate, the robot operates linear interpolation which based on the base coordinate at the initial state.

The base coordinate depends on the calibration among the robots.

- The calibration is defined among the robots \(\cdots \) The Cartesian coordinate at the R1.
- The calibration is undefined among the robots \(\cdots \) The Cartesian coordinate at the each robot.

The following fig. 9-3 “The Cartesian Coordinate (The Calibration among the robots is defined.)” and fig. 9-4 “The Cartesian Coordinate (The Calibration among the robots is undefined.)” show the Cartesian coordinate of the two robots coordination system. When the calibration is defined among the robots, the base coordinate of the R2 is the Cartesian coordinate of the R1.

When the calibration is undefined among the robots, the base coordinate for the R1 and R2 is their own Cartesian coordinate.

Fig. 9-3: The Cartesian Coordinate (The Calibration among the robots is defined.)

Fig. 9-4: The Cartesian Coordinate (The Calibration among the robots is undefined.)
9.2 More Details About the Linear Coordinate

Thus, after the calibration is defined among the robots, operating the axis in the Cartesian coordinate at the R2 performs the linear interpolation in the Cartesian coordinate at the R1. Refer to fig. 9-5 “R2 Cartesian Coordinate Axis Operation X+ Direction (The Calibration among the robots is defined).”

When the calibration is undefined among the robots, R2 performs the linear interpolation in its Cartesian coordinate. Refer to fig. 9-6 “R2 Cartesian Coordinate Axis Operation X+ Direction (The Calibration among the robots is undefined).”
9 The Linear Interpolation during the Axis Operation (Switching the Cartesian Coordinate)
9.2 More Details About the Linear Coordinate

For performing the linear interpolation at the R2 in its Cartesian coordinate after the calibration is defined among the robots, switch from the base coordinate to the robot coordinate as the base coordinate. (Refer to chapter 9.3 “Setting Procedures”.)

The robot coordinate defines the Cartesian coordinate for each robot.

It is possible to perform the linear interpolation at the R2 in its Cartesian coordinate after the calibration is defined among the robots, by switching from the base coordinate to the robot coordinate. (Refer to fig. 9-7 “The Cartesian Coordinate Axis Operation X+ direction (R2)”.)

When the calibration is undefined among the robots, setting either the base coordinate or the robot coordinate can operate the linear interpolation at the R2 in its Cartesian coordinate.

Fig. 9-7: The Cartesian Coordinate Axis Operation X+ direction (R2)
9.3 Setting Procedures

1. Set the security to the management mode.

2. Select {JOG COND.} from the {SETUP} in the main menu.

3. {JOG CONDITION SETTING} display appears, and then move the cursor to the {RECTANGULAR JOG COORDINATE}.

4. By pressing {SELECT}, display changes from {BASE} to {ROBOT} and {ROBOT} to {BASE}.

The Linear Interpolation during the Axis Operation (Switching the Cartesian Coordinate)
9.4 Setting the Parameter

Setting procedure 4. can be applied to setting parameter.

S2C724: To specify the Cartesian JOG motion coordinate (0: base coordinate, 1: robot coordinate)
YRC1000micro OPTIONS

INSTRUCTIONS

FOR INDEPENDENT/COORDINATED CONTROL FUNCTION

HEAD OFFICE
2-1 Kurosaikishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
Phone +81-93-645-7703 Fax +81-93-645-7802

YASKAWA America Inc. (Motoman Robotics Division)
100 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA Europe GmbH (Robotics Division)
Yaskawastrasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Nordic AB
Verkstadsgatan 2, Box 504 , SE-385 25 Torsas, Sweden
Phone +46-480-417-800 Fax +46-486-414-10

YASKAWA Electric (China) Co., Ltd.
22F, One Corporate Avenue, No.222, Hubin Road, Huangpu District, Shanghai 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299

YASKAWA SHOUGANG ROBOT Co. Ltd.
No7 Yongchang North Road, Beijing E&T Development Area, China 100176
Phone +86-10-6788-2858 Fax +86-10-6788-2878

YASKAWA India Private Ltd. (Robotics Division)
#426, Udyog Vihar, Phase- IV, Gurgaon, Haryana, India
Phone +91-124-475-8500 Fax +91-124-475-8542

YASKAWA Electric Korea Corporation
35F, Three IFC, 10 Gujejeumyung-ro, Yeongdeungpo-gu, Seoul, Korea 07326
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric Taiwan Corporation
12F, No.207, Sec. 3, Beishin Rd., Shindian District, New Taipei City 23143, Taiwan
Phone +886-2-8913-1333 Fax +886-2-8913-1513

YASKAWA Electric (Singapore) PTE Ltd.
151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6282-3003 Fax +65-6289-3003

YASKAWA Electric (Thailand) Co., Ltd.
59,1st-5th Floor, Flourish Building, Soi Ratchadapisek 18,Ratchadapisek Road, Huaykwang, Bangkok 10310, THAILAND
Phone +66-2-017-0099 Fax +66-2-017-0199

PT. YASKAWA Electric Indonesia
Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma,
Jakarta 13610, Indonesia
Phone +62-21-2982-6470 Fax +62-21-2982-6741

Specifications are subject to change without notice for ongoing product modifications and improvements.

YASKAWA

YASKAWA ELECTRIC CORPORATION

© Printed in Japan July 2017 17-07

MANUAL NO.

HW1484482