Motoman XRC Controller

FabWorld II
System Manual
for UP-Series Robot

Part Number: 142717-1
Release Date: February 22, 2001
Document Version: 2
Document Status: Final
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 About this Document</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 System Overview</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.1 System Layout</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2.2 Optional Equipment</td>
<td>1-3</td>
</tr>
<tr>
<td>1.3 Reference to Other Documentation</td>
<td>1-3</td>
</tr>
<tr>
<td>1.4 Customer Service Information</td>
<td>1-3</td>
</tr>
<tr>
<td>2 SAFETY</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Standard Conventions</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 General Safeguarding Tips</td>
<td>2-3</td>
</tr>
<tr>
<td>2.4 Mechanical Safety Devices</td>
<td>2-3</td>
</tr>
<tr>
<td>2.5 Installation Safety</td>
<td>2-4</td>
</tr>
<tr>
<td>2.6 Programming Safety</td>
<td>2-4</td>
</tr>
<tr>
<td>2.7 Operation Safety</td>
<td>2-5</td>
</tr>
<tr>
<td>2.8 Maintenance Safety</td>
<td>2-6</td>
</tr>
<tr>
<td>3 EQUIPMENT DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>3.1 SKX-Series Robot Description</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 XRC Controller</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2.1 Playback Panel</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2.2 Programming Pendant</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2.3 Brake Release</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3 Operator Stations</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.1 Cycle Start</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.2 Emergency Stop (E-STOP)</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.3 Hold</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.4 Cycle Latched</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.5 Alarm</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.6 Three-position Joystick</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.7 Positioner Auto/Manual</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.8 Master Job Start</td>
<td>3-7</td>
</tr>
<tr>
<td>3.3.9 Operator Station Enable/Disable</td>
<td>3-8</td>
</tr>
<tr>
<td>3.3.10 Reset</td>
<td>3-8</td>
</tr>
<tr>
<td>3.3.11 Servo On</td>
<td>3-8</td>
</tr>
<tr>
<td>3.4 Positioner Module</td>
<td>3-9</td>
</tr>
<tr>
<td>3.5 Stationary Flat Plane Module</td>
<td>3-9</td>
</tr>
</tbody>
</table>
3.6 Welding Equipment ... 3-10
 3.6.1 Power Sources .. 3-10
 3.6.2 Wire Feeder .. 3-11
 3.6.3 Universal Welding Interface (UWI) .. 3-11
 3.6.4 GMAW Torch .. 3-11
 3.6.5 Motoman Torch Mount ... 3-11
3.7 Safety Features ... 3-11
 3.7.1 Arc Screens .. 3-12
 3.7.2 Fencing ... 3-12
 3.7.3 Safety Mats ... 3-12
 3.7.4 Emergency Stops (E-STOPS) .. 3-12
 3.7.5 ENABLE Switch ... 3-12
 3.7.6 Interference Cubes .. 3-13
 3.7.7 Interlocked Cell Door .. 3-13
 3.7.8 Brake Release ... 3-13
 3.7.9 Welding Ground System ... 3-13
4 INSTALLATION
 4.1 Materials Required.. 4-1
 4.1.1 Customer-supplied Items ... 4-1
 4.1.2 List of Tools .. 4-1
 4.2 Site Preparation .. 4-2
 4.3 Installing the Robot /Positioner Common Base .. 4-2
 4.3.1 Removing the Shipping Brackets .. 4-4
 4.4 Installing the Auxiliary Equipment Common Base ... 4-4
 4.5 Positioner Location Adjustment.. 4-6
 4.6 Installing the Operator Station .. 4-6
 4.7 Installing the Safety Mats ... 4-7
 4.7.1 Multiple Mat Layout .. 4-7
 4.8 Leveling and Securing the Equipment... 4-9
 4.9 Connecting the Cables.. 4-11
 4.9.1 Connecting the Earth Ground .. 4-11
 4.9.2 Connecting the Robot Cables ... 4-12
 4.9.3 Connecting the System Interface Box .. 4-13
 4.9.4 Connecting Water Circulator (Optional) .. 4-14
 4.10 Connecting the Power... 4-14
 4.11 Conducting a Safety/Operation Check .. 4-16
 4.12 Installation of Tooling and Fixtures... 4-16
Section 5 OPERATION

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Programming</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.1 I/O Assignment</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.2 Programming the Positioner</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2 Daily Operation</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.1 Loading the Positioner</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.2 Start-Up</td>
<td>5-4</td>
</tr>
<tr>
<td>5.2.3 Robot Safe (Cube 24) Position</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.4 Starting the Master Job</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.5 Shutdown</td>
<td>5-5</td>
</tr>
<tr>
<td>5.3 System Recovery</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3.1 Alarms and Errors</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3.2 E-STOP Recovery</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.3 Shock Sensor Recovery</td>
<td>5-8</td>
</tr>
<tr>
<td>5.3.4 Using the Brake Release</td>
<td>5-8</td>
</tr>
</tbody>
</table>

Section 6 MAINTENANCE

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Periodic Maintenance</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2 Fuse and Circuit Breaker Protection</td>
<td>6-2</td>
</tr>
</tbody>
</table>

INDEX
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>System Layout ... 1-2</td>
</tr>
<tr>
<td>Figure 1-1</td>
<td>XRC Controller ... 3-1</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>XRC Playback Panel .. 3-2</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Programming Pendant .. 3-3</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>RS-232C Serial Port ... 3-5</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Enable Switch .. 3-5</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Operator Station ... 3-6</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Available Power Sources .. 3-10</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Area Needed for Installation ... 4-2</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Unbolting the Robot/Positioner Common Base 4-3</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Location of Shipping Brackets ... 4-4</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Unbolting Auxiliary Equipment Common (AEC) Base 4-5</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Location of Auxiliary Equipment Common (AEC) Base 4-5</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Positioner Relocation .. 4-6</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Handling a Safety Mat ... 4-7</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Lock Lip Removal .. 4-7</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Safety Mat Assembly ... 4-8</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Placement of the Positioner Safety Mat .. 4-9</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Robot/Positioner Base Leveling Bolts .. 4-10</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Robot Cable and Hose Routing ... 4-12</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Connecting Robot to XRC Controller ... 4-13</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Water Circulator Connections ... 4-14</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Incoming Power Connections ... 4-15</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>MHT-680 HS/TS – Home/User Defined Load Positions 5-4</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-1</td>
<td>Positioner Specifications .. 3-9</td>
</tr>
<tr>
<td>Table 3-2</td>
<td>Stationary Flat Plane Specifications .. 3-9</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Incoming Power Connections ... 4-15</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>XRC User Inputs ... 5-2</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>XRC User Outputs .. 5-2</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Periodic Maintenance ... 6-1</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>MotoArc 450 CV Fuses and Circuit Breaker 6-2</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>Universal Welding Interface (UWI) Fuses .. 6-2</td>
</tr>
</tbody>
</table>
SECTION 1

INTRODUCTION

The FabWorld II is part of the FabWorld family of standardized arc welding solutions. It is a fully integrated welding system, and is supported from wire to weld by Motoman, Inc.

The FabWorld II features a Motoman arc welding robot and XRC controller with menu-driven arc welding application software, complete welding package, rotary plane positioner, operator interface, and a total safety environment.

1.1 About this Document

This manual is intended as an introduction and overview for personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman robot model. For more detailed information, refer to the manuals listed in Section 1.4. This manual contains the following sections:

SECTION 1 - INTRODUCTION

Provides general information about the FabWorld II and its components, a list of reference documents, and customer service information.

SECTION 2 - SAFETY

This section provides information regarding the safe use and operation of the FabWorld II system.

SECTION 3 - DESCRIPTION OF EQUIPMENT

This section provides a detailed description of the major components of the FabWorld II system. This section also includes a table of component specifications.

SECTION 4 - INSTALLATION

This section provides instructions for set up and installation of the FabWorld II system.

SECTION 5 - OPERATION

This section provides instructions for basic operation of the FabWorld II system. This section also provides procedures for start-up, loading, normal operation, fault recovery, and shutdown.

SECTION 6 - MAINTENANCE

This section contains a table listing periodic maintenance requirements for the components of the FabWorld II cell.
1.2 **System Overview**

The FabWorld II provides a complete arc welding solution in a standardized configuration. The cell is designed around a Motoman arc welding robot and XRC robot controller and includes a complete welding package. Two rotary plane servo driven positioners allow the robot to weld in synchronous motion with each positioner. The cell can also be purchase with a stationary weld table instead of the headstock/tailstock combination. The cell provides a full complement of safety features designed to protect both personnel and equipment. Figure 1-1 illustrates the system layout of the FabWorld II cell.

![System Layout](image)

Figure 1-1 System Layout

1.2.1 **System Layout**

The robot manipulator shares a common base with both positioners for ease of installation and to help maintain proper alignment between the components. The XRC controller and welding power source also share a common base next to the welding cell. The robotic cell is fully enclosed by safety fencing with an interlocking door. Standing in the safety zone prevents robot or positioner motion. All operator controls, including those on the XRC and welding power supply, are accessible from outside the safety fencing.
1.3 Major Components
The FabWorld II includes the following major components:
- Motoman UP20 or UP6 manipulator and XRC controller
- Rotary plane positioner module
- Two operator stations
- Welding equipment, including the following:
 - MotoArc welding power source
 - Motoman torch (water-cooled or air-cooled)
 - Wire feeder
 - Torch mount
- Safety equipment, including the following:
 - Safety fencing with arc curtains
 - Interlocked safety mats
 - Interlocked cell door
 - Positioner arc screen

1.3.1 Optional Equipment
The following optional equipment is available for use with the FabWorld II:
- Torch tender
- Com-Arc III seam tracking unit
- Water circulator
- Heavy duty positioner

1.4 Reference to Other Documentation
For additional information refer to the following:
- Motoman UP6 Manipulator Manual (P/N 142104-1)
- Motoman UP20 Manipulator Manual (P/N 144342-1)
- Motoman Operator's Manual for Arc Welding (P/N 142098-1)
- Motoman Concurrent I/O Parameter Manual (P/N 142102-1)
- Com-Arc III Instruction Manual (P/N 132753-1)
- Coordination Instructions for Multi-axes Systems (P/N 139418-1)
- Vendor manuals for system components not manufactured by Motoman

1.5 Customer Service Information
If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:
- Robot Type (UP6 or UP20)
- Application Type (welding)
- System Type (FabWorld II)
- Software Version
- Robot Serial Number (located on the back side of the robot arm)
- Robot Sales Order Number (located on back side of XRC controller)
SECTION 2
SAFETY

2.1 Introduction

It is the purchaser's responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. The robot must not be operated by personnel who have not been trained!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.

This safety section addresses the following:

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming Safety (Section 2.6)
- Operation Safety (Section 2.7)
- Maintenance Safety (Section 2.8)
2.2 Standard Conventions

This manual includes information essential to the safety of personnel and equipment. As you read through this manual, be alert to the four signal words:

- DANGER
- WARNING
- CAUTION
- NOTE

Pay particular attention to the information provided under these headings which are defined below (in descending order of severity).

DANGER!
Information appearing under the DANGER caption concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

WARNING!
Information appearing under the WARNING caption concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

CAUTION!
Information appearing under the CAUTION caption concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

NOTE: Information appearing in a NOTE caption provides additional information which is helpful in understanding the item being explained.
2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06, section 6.13.4 and 6.13.5, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety measures are available:

- Safety fences and barriers
- Light curtains
- Door interlocks
- Safety mats
- Floor markings
- Warning lights

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.

2.5 **Installation Safety**

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 **Programming Safety**

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Programming tips are as follows:

- Any modifications to PART 1 of the controller PLC can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1. Making any changes without the written permission of Motoman will **VOID YOUR WARRANTY**!
- Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. **YOUR WARRANTY WILL BE VOID** if you use these special passwords.
- Back up all programs and jobs onto a floppy disk whenever program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- The concurrent I/O (Input and Output) function allows the customer to modify the internal ladder inputs and outputs for maximum robot performance. Great care must be taken when making these modifications. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations that may damage the robot or other parts of the system.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Be sure that all safeguards are in place.
• Check the E-STOP button on the teach pendant for proper operation before programming.
• Carry the teach pendant with you when you enter the workcell.
• Be sure that only the person holding the teach pendant enters the workcell.
• Test any new or modified program at low speed for at least one full cycle.

2.7 Operation Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Operation tips are as follows:

• Be sure that only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories are permitted to operate this robot system.
• Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
• Inspect the robot and work envelope to ensure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
• Ensure that all safeguards are in place.
• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
• The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
• All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
2.8 Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Maintenance tips are as follows:

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
- Back up all your programs and jobs onto a floppy disk whenever program changes are made. A backup must always be made before any servicing or changes are made to options, accessories, or equipment to avoid loss of information, programs, or jobs.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Be sure all safeguards are in place.
- Use proper replacement parts.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
SECTION 3
EQUIPMENT DESCRIPTION

3.1 UP-series Robot Description

The Motoman UP6 and UP20 robots and XRC robotic controller represent state-of-the-art technology in robotics today. The six-axis UP6 robot has a payload of 6kg (13.2 lbs). It features a 1,373mm (54.05 in.) reach and has a relative positioning accuracy of ± 0.08mm (0.004 in.). The six-axis UP20 robot has a payload of 20kg (44.09 lbs). It features a 1658mm (65.2 in.) reach and has a relative positioning accuracy of ± 0.1mm (0.004 in.).

Each robot can reach below its own base as well as behind itself and can be mounted on the floor, wall, or ceiling with few modifications. However, the S-axis has been restricted by hardstops for use in this system. For more information, refer to the manipulator manual that came with your system.

3.2 XRC Controller

The XRC robotic controller (see Figure 3-1) coordinates the operation of the FabWorld II system. It controls manipulator movement and welding power supply, processes input and output signals, and provides the signals to operate the welding system. It maintains variable data and performs numeric processing to convert to and from different coordinate systems. In addition, the controller provides the following: main logic functions, servo control, program and constant data memory, and power distribution. For more information, refer to the manipulator manual that came with your system.

Figure 3-1 XRC Controller
3.2.1 **Playback Panel**

The playback panel (see Figure 3-2) contains the primary system controls and consists of the features described below. For more information, refer to the manipulator manual that came with your system.

![Playback Panel Diagram](image)

Figure 3-2 XRC Playback Panel

Servo On Ready
The SERVO ON READY pushbutton turns servo power ON. The switch lights when servo power is on. In TEACH mode, the SERVO ON READY pushbutton operates only when the TEACH LOCK button on the programming pendant is ON and the ENABLE switch on the programming pendant is held in.

Mode
The Mode push buttons (PLAY, TEACH and REMOTE) set the robot's mode of operation.

NOTE: Changing modes from PLAY to TEACH, during playback, will cause the program to cease execution (similar to HOLD); to resume operation, press PLAY and then START.

Alarm/Error
The ALARM/ERROR indicator light turns ON whenever an alarm or error condition occurs.

Emergency Stop (E-STOP)
Pressing E-STOP ceases all system operation. The E-STOP button on the playback panel is connected in series with the system Emergency Stop circuit.

Start
Pressing the START button while in PLAY mode with servo power on, causes playback execution of the current job to begin.

Hold
The HOLD button is a normally closed, momentarily actuated switch. Pressing HOLD halts operation of the manipulator until another Start signal is sent.
3.2.2 **Programming Pendant**

The programming pendant (see Figure 3-3) is the primary user interface for the system. The pendant has a 4x5-inch, 12-line, 40-character LCD display and keypad. The system uses the INFORM II robot language and a menu-driven interface to simplify operator interaction with the robot. By using the pendant, the operator can teach robot motion, and perform programming, editing, maintenance, and diagnostic functions. The programming pendant consists of the items described below. For more information, refer to the manipulator manual that came with your system.

NOTE: The programming pendant LCD display goes dark after a few minutes of inactivity. Press any key to restore screen.

![Figure 3-3 Programming Pendant](image)

General Purpose Display Area

The General Purpose Display Area displays the currently selected menu choice.

Menu Area

The Menu Area contains menu selections for the currently selected screen.

Emergency Stop (E-STOP)

The E-STOP button on the programming pendant is connected in series with the system Emergency Stop circuit. Pressing the E-STOP button interrupts this circuit and stops all system operation.

Keypad

The user keypad on the programming pendant serves as an input device. The keys are grouped into different functional sections to simplify operator use.
Status Area

The Status Area shows system status via the following symbols:

- **Active Robot, External Axis, or Base Axis**
 R1, R2, R3; S1, S2, etc.; or B1, B2, etc.

- **Coordinate System**
 - Joint, \(\rightarrow \) World, \(\leftarrow \) Cylindrical, \(\rightarrow \) Tool, or \(\leftarrow \) User Frame

- **Manual Speed Setting**
 - Inching, \(\bigwedge \) Low, \(\bigwedge \) Medium, or \(\bigwedge \) High

- **Cycle Mode**
 - \(\uparrow \) Step, \(\bigcirc \) 1-Cycle, or \(\bigboxdot \) Auto

- **System Status**
 - E-Stop, \(\uparrow \) Stop, \(\leftarrow \) Running/Start, \(\rightarrow \) Hold, or \(\leftarrow \) Alarm

- **Additional Pages** (when applicable)

TOP MENU Key

The TOP MENU key returns the pendant display to the initial start-up menu. The cursor key can then be used to choose from the following menu icons:

- **JOB**
 - This icon accesses job selections including: Master Job, Select Job, Job Capacity, and Create New Job while in TEACH mode.

- **ARC WELDING, GENERAL, HANDLING, and SPOT WELDING**
 - This icon allows you to select the applications available to the controller.

- **VARIABLE**
 - This icon accesses the display and editing menu for the arithmetic variables and display of position variables.

- **IN/OUT**
 - This icon accesses DETAIL and SIMPLE displays of all XRC I/O signals. In EDITING or MAINT. mode, Universal Outputs can be forced ON or OFF.

- **ROBOT**
 - This icon accesses robot information including: CURR.POS, POWER ON/OFF, POS, COMMAND POS, SECOND HOME POS, OPE ORIGIN POS, and TOOL and USER COORDINATE.

- **SYSTEM INFO**
 - This icon provides Version information for both hardware and software, Alarm History, and Monitoring Time.

Area Key

The Area key moves the cursor to the different areas of the display screen.

Cursor Key

The Cursor key is an 8-way, directional key that moves the up, down, left or right to highlight a desired item that can then be chosen using the SELECT key.
SELECT Key
The SELECT key is used to choose the item currently highlighted by the cursor.

TEACH LOCK Key
The TEACH LOCK key locks operation of the robot with the programming pendant. Operation is not possible from the playback panel or operator station. Servo power cannot be applied in TEACH mode unless TEACH LOCK is ON.

RS-232C Serial Port
This 9-pin serial port (see Figure 3-4) is used for data communication between the XRC and a floppy disk controller (FC1 or FC2), FDE (Floppy Disk Emulator) software, or other form of communication.

![Figure 3-4 RS-232C Serial Port](image)

ENABLE Switch
The ENABLE switch (see Figure 3-5) is a three-position switch located on the left rear of the programming pendant. It is a safety feature that controls servo power while in TEACH mode. When pressed in, this switch enables servo power to be turned on. However, should the operator release the switch, or grasp it too tightly, servo power is immediately disabled, preventing further robot movement.

![Figure 3-5 Enable Switch](image)
3.2.3 Brake Release

WARNING!
Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.

The Brake Release Control is a safety feature that allows you to release the automatic brakes on the robot in case of an emergency or robot failure. The Brake Release Control is mounted on the front of the XRC cabinet (see Figure 3-1).

Provide adequate support for axis to be released. Support should be able to withstand the payload and the approximate weight of robot.

3.3 Operator Stations

Both operator stations (see Figure 3-6) include a NEMA enclosure on a stand-alone pedestal. The following paragraphs describe the operator station controls.

![Figure 3-6 Operator Station](image)

3.3.1 Cycle Start

WARNING!
The operation of the CYCLE START palm buttons is dependent on the structure of the Master job. Altering the Master job could result in injury to personnel or damage to the equipment.

The green CYCLE START palm buttons, located on the sides of the operator station, initiate a positioner sweep cycle if the robot is in the Safe or Home position (Cube 24). If the CYCLE START buttons are pressed while the robot is outside Cube 24, the CYCLE START command is latched into the XRC. Once the robot returns to Cube 24 and Output #1 is on, the CYCLE START command is executed and the positioner sweeps. An anti-tiedown timer, normally set to 10 seconds, prevents the operator from holding the palm buttons down and continuously cycling the positioner.
3.3.2 **Emergency Stop (E-STOP)**

Pressing an E-STOP button or interrupting a door interlock interrupts this circuit and stops all system operation. The operator station E-STOP, the robot E-STOP, and the sliding door interlocks are connected in series in the Emergency Stop circuit. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped.

3.3.3 **Hold**

The HOLD button is a normally closed, momentarily actuated switch. Pressing the HOLD button stops the operation of the manipulator until another Start signal is sent. The indicator light stays ON only while the HOLD button is pressed. Operation resumes at the point in the program where the HOLD state was initiated. Refer to the manipulator manual for more information.

3.3.4 **Cycle Latched**

CYCLE LATCHED indicates that the positioner will sweep and begin to weld immediately after the current weld cycle is complete. The CYCLE LATCHED lamp operates illuminates when positioner CYCLE START command has been latched. It is not necessary to wait for the robots to finish welding and return to the Safe position (Cube 24) before pressing the CYCLE START palm buttons to sweep the positioner. Pressing the Cycle Start palm buttons while either robot is still in motion locks the CYCLE START command into the XRC. The CYCLE LATCHED light comes on, indicating CYCLE START latching. The positioner sweeps once the robots finish the current job and return to the Safe position (Cube 24). Stepping on the safety mats will unlatch the CYCLE START command from the XRC.

3.3.5 **Alarm**

The ALARM lamp is connected to the robot SERVO ON and ALARM OCCURRENCE outputs. The ALARM lamp turns on when the robot encounters an alarm condition or when servo power is cut.

3.3.6 **Three-position Joystick**

A spring loaded joystick controls rotary positioner rotation to access the user defined load position(s). Moving the joystick right (forward) and letting go causes the tooling plate to rotate clockwise at 30 degree intervals. Moving the joystick left (reverse) and letting go causes the tooling plate to move counterclockwise 30 degree intervals. Home position on the joystick resets the headstock to zero degrees.

3.3.7 **Positioner Auto/Manual**

The POSITIONER AUTO/MANUAL selector switch is used to select AUTOMATIC or MANUAL mode for the positioner. The selector switch is connected to robot Input #2. When the selector switch is in the AUTOMATIC position, the robot processes the part after the positioner sweeps. In MANUAL mode, the robot does not process the part after the positioner sweeps, but remains in the Safe position.

NOTE: The Positioner Auto/Manual command is dependent on the structure of the Master job.
3.3.8 Master Job Start

The robot will start the current active job when MASTER JOB START is pressed. The MASTER JOB START button is connected to the robot external start input. The operator station must be enabled and servo power ON for the MASTER JOB START button to work.

3.3.9 Operator Station Enable/Disable

The OPERATOR STATION ENABLE/DISABLE selector switch transfers primary control of the ArcWorld cell from the XRC to operator station. The REMOTE MODE button on XRC playback panel lights when the operator station is enabled. Most programming pendant functions are disabled while in REMOTE.

3.3.10 Reset

A minor alarm or error condition is cleared when the RESET button is pressed. The RESET button is connected to the robot alarm reset input. A minor alarm or error condition is cleared when this button is pressed. In addition, the RESET button and the RIGHT CYCLE START buttons are interlocked and, when pressed simultaneously, reset the positioner when servo power is ON in Play mode. In Teach mode, the positioner is automatically reset when servo power is turned ON. The positioner only needs to be reset after initial power-up and after an emergency stop while in Play mode.

NOTE: Resetting the positioner may cause positioner motion. Be careful when resetting the positioner while robot is close to tooling. If an Emergency Stop occurs during programming, be sure to reset the positioner before resuming programming.

3.3.11 Servo On

The SERVO-ON pushbutton enables servo power. In TEACH mode, the SERVO ON pushbutton operates only when the ENABLE switch on the programming pendant is held in.
3.4 **Positioner Module**

MHT-680 HS/TS Positioner

This positioner consists of a headstock and tailstock (HS/TS) mounted on the positioner common base providing 3m (118 in.) between mounting plates. For positioner specifications, refer to Table 3-1. Refer to Section 6, Maintenance procedures.

NOTE: In high humidity areas, use surface protection to prevent corrosion of the tooling plates.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
</tr>
<tr>
<td>HS only</td>
<td>340kg (750 lbs) load, center of gravity, 6in. overhang, 6in. off-center.</td>
</tr>
<tr>
<td></td>
<td>323mm (12.7 in.) over hang C.G. (1100N·m Bearing Moment)</td>
</tr>
<tr>
<td></td>
<td>136mm (5.35 in.) off center C.G. (1100N·m Holding Moment)</td>
</tr>
<tr>
<td>HS/TS</td>
<td>Combined HS/TS capacity 680kg (1500 lbs.) 3in. off-center of gravity.</td>
</tr>
<tr>
<td></td>
<td>68mm (2.67 in.) off center C.G.</td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>0 to 12.4 RPM variable speed.</td>
</tr>
<tr>
<td>Max. Load Inertia</td>
<td>74.5kg·m²</td>
</tr>
<tr>
<td>Chassis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard height: 787mm (31.98 in.)</td>
</tr>
<tr>
<td></td>
<td>Swing radius 769mm (30.28 in.) above floor.</td>
</tr>
<tr>
<td>Sweep Time with Capacity</td>
<td>3 seconds for 180 degree sweep with maximum total load of 598kg (1,320 lbs)</td>
</tr>
<tr>
<td>Temperature Operating Range</td>
<td>4–43°C (40–110°F)</td>
</tr>
<tr>
<td>Humidity (maximum)</td>
<td>Non-condensing 10–90% relative humidity</td>
</tr>
<tr>
<td>Shock (maximum)</td>
<td>Less than 0.5 G</td>
</tr>
<tr>
<td>Electrical Requirements</td>
<td>208V AC/120 Hz/Two-phase supplied by the XRC controller</td>
</tr>
<tr>
<td>Welding Current Rating</td>
<td>600 amperes at 100% duty cycle.</td>
</tr>
</tbody>
</table>

3.5 **Stationary Flat Plane Module**

The stationary flat plane module is a steel table with a ground flat steel top.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Surface Dimensions</td>
<td>3599.94mm L x 609.6mm W x 899.92mm H x 12.7mm thick</td>
</tr>
<tr>
<td></td>
<td>(141.73 in.L x 24 in.W x 35.43 in.H x 3/4 in. thick)</td>
</tr>
<tr>
<td>Part/Fixture Rating</td>
<td>907.2kg (2000 lbs)</td>
</tr>
</tbody>
</table>
3.6 **Welding Equipment**

In its standard configuration, the ArcWorld system includes a power source, wire feeder, torch, and torch mount. Optional equipment including water circulators, Com-Arc units, and torch tenders may included to enhance performance.

3.6.1 **Power Sources**

Motoman offers several different power sources for use with the FabWorld II system depending on your system’s application. The following are some of the more common power sources used (see Figures 3-7 and 3-8). However, the power source your system uses may be different. For more specific information, refer to the vendor manual that came with your system.

![Available Power Sources](image-url)
3.6.2 **Wire Feeder**

The PWF4 wire feeder mounts on the robot arm. This 4-roll wire feeder provides reliable wire feeding at rates up to 750 inches per minute (IPM). An integral gas valve provides fast gas response time. The wire feeder has an inch forward button to help simplify set-up and reduce change-over time. Interchangeable feed rolls are used to accommodate different types and sizes of wire. A Shock Sensor Override switch located on the front of the feeder is used to recover from torch impact.

3.6.3 **Universal Welding Interface (UWI)**

The UWI provides microprocessor control to the wire feeder and MotoArc series power source. It scales the signals from the XRC controller to the appropriate levels required for control of the welding components. It also provides isolation of the power source analog signals.

NOTE: Some power sources available with the FabWorld II system do not use the UWI. For more information specific to your system, refer to the vendor manuals shipped with your system.

3.6.4 **GMAW Torch**

The ArcWorld system uses either an air-cooled or a water-cooled robotic/automatic GMAW torch. These are heavy-duty torches designed for quick replacement while requiring minimum robot reprogramming. The GMAW torch is installed at the end of the robot wrist. For applications that use the water-cooled torch, the ArcWorld system includes a water circulator kit.

3.6.5 **Motoman Torch Mount**

The Motoman Torch Mount protects the robot, workpiece, fixture, and positioner. It provides multi-directional impact detection, including Z-axis collisions. Torch impact causes a system E-STOP and immediately stops all system operation. Servo power is removed from the system and brakes are applied to the robot. All positioner and door motion is also stopped.

3.7 **Safety Features**

The FabWorld II system incorporates a host of safety equipment. When all standard safety precautions are taken, the safety equipment helps to ensure safe operation of the robotic cell.

ANSI/RIA R15.06 Robot Safety Standard

This standard stipulates that the user is responsible for safeguarding.

ANSI/RIA R15.06: Users are responsible for determining whether the provided safeguards are adequate for plant conditions. Users must also ensure that safeguards are maintained in working order.
3.7.1 Arc Screens

WARNING!

Although the arc curtain blocks dangerous arc radiation, never look directly at the arc without protective eyewear!

Two separate arc screens are used on the ArcWorld system. The first is a metal arc screen on the positioner. This screen blocks arc radiation and sparks from the welding operation. The material used to cover the safety fencing of the entire robotic cell acts as the second arc screen. This material reduces the amount of ultra-violet radiation that escapes from the robotic cell.

3.7.2 Fencing

The safety fencing provided with the ArcWorld system encloses the entire robotic cell. It forms a physical barrier preventing entry into the robot operating envelope during automatic operation.

3.7.3 Safety Mats

The FabWorld II safety mats help prevent serious injury to anyone entering the positioner area during the sweeping process. In PLAY mode, if the positioner is sweeping and a safety mat is activated, servo power is removed from the system and all positioner motion stops. Servo power is reapplied by pressing SERVO ON. However, the positioner will only continue its motion after it is reset using the RESET and right CYCLE START buttons on the operator station.

If the positioner is not in motion but the CYCLE START input has been latched (indicated by the STATION READY light), the CYCLE START input is unlatched and the STATION READY light turns off when the safety mat is activated. Servo power remains ON.

3.7.4 Emergency Stops (E-STOPS)

In addition to the safety features described above, the FabWorld II has strategically placed E-STOPS. These are operator actuated devices that, when activated, immediately stop all system operation. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped. The following is a list of their locations:

- The playback box on the controller
- The programming pendant
- The operator station

3.7.5 ENABLE Switch

The ENABLE switch is a safety feature which controls servo power while in TEACH mode. When pressed in, this switch allows the operator to turn servo power ON and initializes the system. However, should the operator release the switch or grasp it too tightly, servo power is immediately disabled, preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the XRC section in the manipulator manual that came with your system.
3.7.6 Interlocked Cell Door

A safety interlock on the cell entrance door prevents entry into the cell during PLAY mode. Opening the cell door with the robot in PLAY causes an E-STOP. Brakes are applied to the robot and all servo power is removed from the system. The system E-STOP lights come on and all positioner motion is stopped.

3.7.7 Interference Cubes

Cubic interference zones prevent interference between multiple manipulators or a manipulator and peripheral devices. The XRC monitors the robot tool center point (TCP) during operation. If the TCP enters one of the these software-defined interference zones, an output is turned on in the XRC. These outputs can be used to interlock the activity of other manipulators or peripheral devices. The XRC has eight possible cubes available. These cubes are internally tied to the following Specified Outputs:

\[R1 = SOUT #081 - 104 \]

The FabWorld II uses interference cubes to interlock robot position with positioner motion. The robot Home or Safe position (Cube 24) is defined behind the positioner, clear of the sweep zone. Each axis is placed in a position that provides the least amount of strain on the servo motors, with the U- and L- axes at 90 degree angles and the B axis in a relaxed, vertical position. This prevents drifting when servo power is off. Before the positioner can sweep, the robot must be in this safe position.

3.7.8 Brake Release

WARNING!

Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.

The Brake Release Control is a safety feature that releases the automatic brakes on the robot in case of an emergency or robot failure. The Brake Release Control is mounted on the front of the XRC cabinet (see Figure 3-1). Refer to Section 5.3.4 for the proper operation of the brake release.

3.7.9 Welding Ground System

The welding ground system consists of a spring-loaded, copper brush block that contacts the backside of the faceplate. The ground cable to the welding power source is connected to this brush block.

NOTE:The ground cable connection to the brush block must be secure. If the connection is loose, arcing can occur and cause the insulator to melt.
SECTION 4
INSTALLATION

The FabWorld II system can be installed easily in just a short time by three workers. The more people involved (within reason), the more quickly installation can be completed. Follow established safety procedures at all times throughout the installation process. Failure to use safe work practices can result in damage to the equipment and injury to the workers.

CAUTION!
Installation of the FabWorld II System is not a task for the novice. The FabWorld II System is not fragile, but it is a highly sophisticated robotic system. Handle components with care. Rough handling can damage system electronic components.

4.1 Materials Required
All system hardware necessary for installing the FabWorld II system is included with the system. This section identifies customer-supplied items and tools required to perform installation.

4.1.1 Customer-supplied Items
- Gas bottles for the welding torches
- Incoming power supply
- Two earth ground cables with two earth ground stakes
- Weld wire
- Incoming air supply: 0.04 cm at 620.5 kPa (1.5 scfm at 90 psi)
- Stepladder
- Forklift and/or overhead crane

4.1.2 List of Tools
- Safety glasses
- Face shields
- Gloves
- Level
- Ratchet with 3/4-in. socket
- Adjustable wrench set
- Hammer drill with appropriate concrete bits
- Phillips and flat screwdrivers
- Hammer
- Socket set
- Forklift and/or overhead crane
- Air-impact gun with 3/4-in. socket
- Open-end wrench set
- Two socket-head (Allen)
- Wrench sets (standard and metric)
4.2 Site Preparation

To prepare your site, proceed as follows:

1. Clear the floor space needed for the unit (see Figure 4-1).

NOTE: The FabWorld II system will require a minimum area of 2.5m (8.2 ft) by 3.9m (12.9 ft); however, we recommend an additional 2.43 to 3.05m (8 to 10 ft) on all sides.

2. Gather all customer-supplied items and required tools (see Section 4.1.2).

Figure 4-1 Area Needed for Installation

4.3 Installing the Robot /Positioner Common Base

The robot/positioner common base and the operator station are shipped on a wooden shipping skid. To install the robot/positioner common base, proceed as follows:

CAUTION!
Handle FabWorld II components carefully to avoid damage.

1. Unbolt the robot/positioner common base from wooden shipping skid using a 3/4 in. socket (see Figure 4-2).
WARNING!
The robot/positioner common base weighs 1905kg (4200 lbs). Be sure that your crane or forklift is capable of handling this much weight or damage to the equipment or injury to personnel can result.

2. Using a forklift, remove common base from wooden shipping skid.

3. Place robot/positioner common base in position (see Figure 4-1).

NOTE: Make sure there is adequate room on all sides of the positioner for the operator station, safety mats, and auxiliary equipment common base.

4. Carefully remove protective plastic wrapping from robot and torch.

5. Inspect robot, torch, and positioner for shipping damage.

NOTE: If damage is found, notify shipper immediately.

6. Remove operator station from skid and set safely aside.
4.3.1 Removing the Shipping Brackets

CAUTION!
Failure to remove shipping brackets from robot before operating the FabWorld II may result in damage to the robot drive mechanisms.

Three yellow brackets (see Figure 4-3) prevent the robot from moving during shipping. Two angle brackets secure the lower arm assembly to the S-axis housing. The smaller bracket on the rear of the robot prevents the S-axis housing from pivoting. After the robot is in place, remove all shipping brackets.

Figure 4-3 Location of Shipping Brackets

4.4 Installing the Auxiliary Equipment Common Base

The auxiliary equipment common (AEC) base contains the XRC controller and the welding power source. It may also include the optional water circulator and/or ComArc III unit. The AEC base is shipped on a separate wooden shipping skid. The accessories box is secured to the top of the welding power source. To install the AEC base, proceed as follows:

1. Unbolt AEC base by removing four shipping bolts (see Figure 4-4).

WARNING!
The AEC base weighs 680kg (1500 lbs). Be sure that your crane or forklift is capable of handling this much weight or damage to the equipment or injury to personnel can result.

2. Using a forklift, lift base and remove it from wooden shipping skid.
3. Place AEC base approximately 0.6m (2 ft) beside FabWorld II cell (see Figure 4-5).
4. Carefully remove plastic wrapping and cardboard from AEC base.
5. Remove accessories box from welding power source and set safely aside.
6. Inspect AEC base for any shipping damage.

NOTE: If damage is found, notify shipper immediately.

Figure 4-4 Unbolting Auxiliary Equipment Common (AEC) Base

Figure 4-5 Location of Auxiliary Equipment Common (AEC) Base
4.5 Positioner Location Adjustment

Both the headstock and tailstock are moved inward on the common base for shipping purposes. The welding cell can be safely operated with these components shifted in, however, moving the headstock/tailstock out will allow larger parts to be fixed to the positioner. To move each piece, simply remove the four bolts at the base and carefully slide (see Figure 4-6) the headstock/tailstock forward to the next set of predrilled holes. Then insert the bolts to fasten down the headstock/tailstock components.

4.6 Installing the Operator Station

To install the operator station, proceed as follows:

1. Unload operator station.
2. Carefully remove protective plastic wrapping from operator station.
3. Inspect operator station for shipping damage.
4. Place operator station outside fence to front of positioner (see Figure 4-5).
5. Insert a 1/4 in. concrete drill bit through center of lag holes in operator station and drill holes for lag bolts.
6. Vacuum concrete dust from holes.
7. Lag operator station to floor.

NOTE: If damage is found, notify shipper immediately.
4.7 **Installing the Safety Mats**

Safety mats require special handling to prevent damage to the internal electrode assembly. Grasp mat by its long edges and lift, causing a slight bow down the length of the mat (see Figure 4-7). This prevents the mat from kinking lengthwise. Place the mat cord and junction box on top of mat during handling to reduce tripping hazards.

![Figure 4-7 Handling a Safety Mat](image)

CAUTION!

Mats are susceptible to edge damage and damage from bending. Be careful not to impact the edges or corners of the mats. Do not attempt to lift large mats without help.

4.7.1 **Multiple Mat Layout**

A T-shaped aluminum extrusion, called the active joiner, is used to abut two safety mats together to increase sensitivity. On the extrusion there are adhesive strips that bond to each mat so that debris will not accumulate under the mats. At least three of the outside edges of the mat layout will need perimeter anchoring trim to hold the mats in place.

Prepare Safety Mats

To prepare the mats for installation with the active joiner proceed as follows:

1. Vacuum or sweep floor surface where mat will be mounted to ensure surface is flat, smooth, and free of debris.
2. Use a sharp utility knife and a straight edge to remove the lock lip from both mats at the point they will join one another. **Only remove the lip from the mat on the side that is joining another mat** (see Figure 4-8).

![Figure 4-8 Lock Lip Removal](image)
Set Up

After the lock lips have been removed on adjoining mat ends, do a trial run. Location of safety mat must be in front of positioner with back perimeter trim even with fence ends (see Figure 4-1).

1. Put the safety mats, active joiner strips, and perimeter anchoring trim together in the desired configuration.
2. Once proper fit is ensured, expose one adhesive strip and secure the active joiner to one of the mats.
3. Expose the other adhesive strip and put the second mat in place.
4. Repeat this process until all mats using the active joiner are joined together.

NOTE:
- The active joiner should be positioned up to the mat’s dimensional edge, just inside the lock lip.

Finish installation

Once the trial run is complete and the mat is adhered to active joiner, the rest of the assembly can be anchored.

1. Using hardware provided, bolt safety mat junction box to front of positioner.
2. Place safety mat perimeter trim in position.

NOTE:
For the perimeter trim, use a 1/4-in. drill bit.

3. Holding perimeter trim securely in place, drill 2.54 cm (1 in.) deep through pre-drilled holes into floor.
4. Remove perimeter trim.
5. Remove any debris that may be underneath mat.
6. Reposition perimeter trim.
7. Insert appropriate anchors into holes for perimeter trim.
8. Insert #10 x 1-1/4-in. screws into perimeter trim, and tighten screws until they hold mat securely.
4.8 Leveling and Securing the Equipment

After everything is in position, level the equipment and secure it to the floor. The lag bolts are shipped in the accessories box. To level and secure the equipment, proceed as follows:

1. Level robot/positioner base by adjusting leveling bolts (see Figure 4-11).
2. Insert a 1/2-in. concrete drill bit through center of leveling bolts and drill holes for lag bolts.
3. Vacuum concrete dust from holes.
4. Lag robot/positioner common base to floor.
5. Level AEC base by adjusting leveling bolts (see Figure 4-11).
6. Insert a 1/2-inch concrete drill bit through center of leveling bolts and drill holes for lag bolts.
7. Vacuum concrete dust from holes.
8. Lag auxiliary equipment common base to floor.
Figure 4-11 Robot/Positioner Base Leveling Bolts
4.9 Connecting the Cables

After components are level and securely in place, the cables should be unwrapped from around the equipment and laid out according to the cable diagram included in the system drawing package. Each cable connection is clearly identified for ease of installation.

CAUTION!

Route wires and cables away from hazardous work areas to avoid wire breakage and unnecessary interruption of cell operation.

4.9.1 Connecting the Earth Ground

The robot and the XRC must each be connected to an earth ground. An earth ground is a ground in which the equipment is connected to a ground stake driven into the earth. The ground stake must be driven a minimum of eight feet into the earth, and the earth must be treated with chemicals in order to reduce resistance to the ground stake. Deeper ground stakes may be required depending on area soil conditions. A maximum of 100 ohms ground resistance is recommended. To ground the robot and the XRC, proceed as follows:

WARNING!

- If proper earth grounds cannot be provided, do not use the equipment! Serious injury or death can occur.
- Do not place the MIG system within 50 feet of other sources of noise (i.e., GTAW arc starters, plasma cutters, induction furnaces, high-power-resistance spot welders, dielectric heaters, etc.). Equipment that generates impulse or high-frequency noise can cause unexpected equipment operation and failure, which can result in serious injury or death.

NOTE: If the robot and the XRC are within 15 feet of each other, a common earth ground may be used. Otherwise, separate earth grounds must be used.

1. Connect one end of robot earth ground cable to lug marked EARTH GROUND on bottom back of robot.
2. Connect other end of robot earth ground cable to earth ground stake.
3. Connect one end of second earth ground cable to common ground bus bar inside XRC.
4. Connect other end of second earth ground cable to earth ground stake.
4.9.2 Connecting the Robot Cables

Two cables, 1BC and 2BC, connect the robot to the XRC controller. The 1BC cable supplies power to the robot servo motors. The 2BC cable provides communication between the controller and the robot.

CAUTION!

Route wires and cables inside robot/positioner common base to avoid wire breakage and unnecessary interruption of cell operation (see Figure 4-12).

![Figure 4-12 Robot Cable and Hose Routing](image)

If the robot has a water-cooled torch, two cables and three hoses must be connected to various components. If the robot has an air-cooled torch, two cables and one hose must be connected to various components. These cables and hoses are enclosed in a leather casing. In addition to these cables, the robot I/O and power cables must be connected to the robot. To connect the robot and system cables and hoses, proceed as follows:

1. Unpack programming pendant and plug connector into receptacle on right side of XRC controller.
2. Unpack two large black manipulator cables, connected to XRC controller, and route to back of robot (see Figure 4-12).
3. Carefully engaging connectors, connect two cables (labeled 1BC and 2BC) to 1BC and 2BC connections on back of robot (see Figure 4-13).
4.9.3 Connecting the System Interface Box

The system interface box is mounted on the back of the system fencing. To connect the system interface box, proceed as follows:

1. Locate and unpack Door Switch cable and connect to side of interface box.
2. Unpack safety mat cable and connect between safety mat junction box and interface box.
3. Unpack operator station cable and connect to interface box.
4. Unpack two positioner cables from interface box and connect to left side of XRC cabinet.
4.9.4 Connecting Water Circulator (Optional)

If your system uses the water-cooled welding torch, it is necessary to connect the Motoman water circulator. To connect the water circulator, proceed as follows:

1. Connect two water hoses for weld torch to connections on water circulator marked WATER-IN and WATER-OUT (see Figure 4-14).

![Figure 4-14 Water Circulator Connections](image)

2. Plug power cable into electrical outlet on back of power source.

4.10 Connecting the Power

After all of the system components have been properly installed, connect the power to the FabWorld II. To connect incoming power to the FabWorld II, proceed as follows:

DANGER!

Power should be connected only by a qualified electrician. Electrical and grounding connections must comply with applicable portions of the national electrical code and/or local electrical codes or damage could occur.

1. Install 3-phase power wiring to the circuit breaker located inside the right wall of the XRC cabinet (see Figure 4-15). Table 4-1 shows the size and type of wire needed.
2. Tighten screws to the torque indicated in Table 4-1.
3. Install an M5 lug on the incoming ground wire.
4. Terminate the ground wire to the frame ground M5 threaded stud with M5 hardware provided.

NOTE: The FabWorld II is configured for three-phase 460/480V AC, unless other voltage was requested. If other voltage is required for your plant, you must make the necessary modifications to the transformer. For more information, refer to the manipulator manual that came with your system.

Table 4-1 Incoming Power Connections

<table>
<thead>
<tr>
<th>Lug Data</th>
<th>60/75°C wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog No.</td>
<td>TCAL14</td>
</tr>
<tr>
<td>Wire Size</td>
<td>#14-7 Copper</td>
</tr>
<tr>
<td></td>
<td>#12-8 Aluminum</td>
</tr>
<tr>
<td>Torque</td>
<td>#14-7, 4.0 N•m (35 lb.-in.)</td>
</tr>
</tbody>
</table>
4.11 **Conducting a Safety/Operation Check**

Before installing the tooling and fixtures for your application, take a few minutes to perform a safety/operation check. To conduct a safety/operation check, proceed as follows:

1. Check that all three yellow shipping brackets have been removed from the robot (see Section 4.3.1).
2. Be sure the safety mats are placed correctly (see Section 4-6).
3. Check that the cell door is closed and latched.
4. Check that all cable connections are tight.
5. Check air line connections to the optional torch tender and wire cutter.
6. Be sure that the welding power source is set correctly (refer to the welding power source vendor's manual).
7. Verify that incoming line power matches the input power specified on the sticker on the front of the XRC.

Your FabWorld II is now ready for power-up. The FabWorld system should be operated only by personnel who have received operator training from Motoman and who are familiar with the operation of this Motoman system. Turn the main power ON, and continue the safety/operation check.

8. Check operation of all system E-STOPS (pendant, operator station, breakaways, playback panel).
9. Check operation of system Hold buttons.

4.12 **Installation of Tooling and Fixtures**

Your FabWorld II system is now ready for the installation of tooling and fixtures for your application. Installation of tooling and fixtures should be performed by personnel who are familiar with the operation of this system. Tooling and fixtures are supplied by the customer. After tooling is installed, test the positioner for proper operation.
SECTION 5
OPERATION

The FabWorld II is a fully integrated robotic GMAW welding cell. The robot welds parts on the active station. Once the robot is finished with this process, it returns to the Safe position. The operator is then able to enter the safety zone and safely process the parts.

5.1 Programming

The operation of this system is programming dependent. The following operating instructions are based on one possible configuration of this system. Your system configuration and job structure may differ slightly from that presented here, however basic operation will be the same.

Any changes made to your system configuration and/or job structure will alter the operation of this cell. Motoman recommends you do not modify the original jobs and system configuration that came with your system. If modifications need to be made, they should be made to copies of these jobs and not to the originals. If you need to modify existing jobs, make copies of originals first. This way you will always be able restore your systems to the original configuration. Modifications should only be performed by personnel who have received operator training from Motoman, and who are familiar with the operation of this Motoman system. If you have questions concerning the configuration of your system please contact the 24 hour Service Hotline, at (937) 847-3200 (see Section 1.5).

5.1.1 I/O Assignment

The FabWorld II uses the following user and dedicated inputs and outputs (see Table 5-1 and Table 5-2).

<table>
<thead>
<tr>
<th>XRC Dedicated Inputs</th>
<th>XRC Dedicated Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Servo On</td>
<td>• Servo Power ON</td>
</tr>
<tr>
<td>• External Job Start</td>
<td>• TEACH mode</td>
</tr>
<tr>
<td>• Alarm Reset</td>
<td>• Cube 24</td>
</tr>
<tr>
<td>• REMOTE mode ON</td>
<td>• Alarm Occurrence</td>
</tr>
<tr>
<td>• Hold</td>
<td></td>
</tr>
<tr>
<td>• External Emergency Stop</td>
<td></td>
</tr>
</tbody>
</table>

For more information on user and dedicated I/O, refer to the XRC Concurrent I/O Parameters Manual (P/N 142102-1).
5.1.2 Programming the Positioner

The rotation axis of the positioner(s) is controlled by the XRC external axis function. The motion points for the external axes are taught and recorded in the program in the same manner as any of the robot axes. The speed and position are controlled by the XRC. Pressing the GROUP AXIS button on the teach pendant changes the motion keys from robot axis keys to positioner axis keys.

Table 5-1 XRC User Inputs

<table>
<thead>
<tr>
<th>Input</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN#001</td>
<td>CYCLE START S1</td>
</tr>
<tr>
<td>IN#002</td>
<td>AUTO/MANUAL</td>
</tr>
<tr>
<td>IN#003</td>
<td>CYCLE START S2</td>
</tr>
<tr>
<td>IN#004</td>
<td>ZONE 1 ACTIVE</td>
</tr>
<tr>
<td>IN#005</td>
<td>ZONE 3 ACTIVE</td>
</tr>
<tr>
<td>IN#006</td>
<td>HS1 IN SAFE</td>
</tr>
<tr>
<td>IN#007</td>
<td>HS2 IN SAFE</td>
</tr>
<tr>
<td>IN#008</td>
<td></td>
</tr>
<tr>
<td>IN#009</td>
<td>S1 FORWARD</td>
</tr>
<tr>
<td>IN#010</td>
<td>S1 HOME</td>
</tr>
<tr>
<td>IN#011</td>
<td>S1 REVERSE</td>
</tr>
<tr>
<td>IN#012</td>
<td>S2 FORWARD</td>
</tr>
<tr>
<td>IN#013</td>
<td>S2 HOME</td>
</tr>
<tr>
<td>IN#014</td>
<td>S2 REVERSE</td>
</tr>
<tr>
<td>IN#015 thru 016</td>
<td>NOT USED</td>
</tr>
</tbody>
</table>

Table 5-2 XRC User Outputs

<table>
<thead>
<tr>
<th>Output</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT#001</td>
<td>STATION1 LATCHED</td>
</tr>
<tr>
<td>OUT#002</td>
<td>STATION2 LATCHED</td>
</tr>
<tr>
<td>OUT#003 thru 016</td>
<td>NOT USED</td>
</tr>
</tbody>
</table>
5.2 Daily Operation

The procedures below represent the typical operating sequence from power up to shutdown. Your basic operating procedures may vary depending on your situation.

- Perform Start-up Procedures.
- Move robot to Safe position.
- Select master job.
- Perform Operation Cycle.
- Perform Shutdown Procedures.

5.2.1 Start-Up

To start up the FabWorld II cell from a Power-Off condition, proceed as follows:

1. Turn on welding power source disconnect.
2. Set MAIN POWER switch on XRC to ON.
3. Set INPUT POWER switch on welding power source to ON.
4. Open regulator valve on welding gas supply.
5. Make sure enclosure door is closed and securely latched.
6. Disable operator station.
7. Press TEACH mode button on XRC playback panel.
8. Place robot in Safe position (Cube 24).

5.2.2 Robot Safe (Cube 24) Position

To move the robot to the Safe position (Cube 24), proceed as follows:

1. Press TEACH mode button on XRC playback panel.
2. Press TOP MENU on programming pendant.
3. Select JOB icon using cursor keys and press SELECT.
4. Cursor to SELECT JOB and press SELECT key.
5. Using cursor keys, move cursor to Cube 24 job and press SELECT. Cube 24 job appears on display screen.
6. Turn servo power ON by pressing SERVO ON, pressing TEACH LOCK and holding in ENABLE switch.
7. Use INTERLOCK and FWD buttons on programming pendant to jog robot to Safe (Cube 24) position.

5.2.3 Starting the Master Job

With the system powered up and in TEACH mode, call up the Master job, then proceed as follows:

1. Press TOP MENU key on programming pendant.
2. Select JOB icon using cursor keys and press SELECT.
3. Cursor to SELECT JOB and press SELECT key. Job list appears on display screen.
4. Using cursor keys, move cursor to Master job and press SELECT. Master job appears on display screen.
5. Make sure both enclosure doors are closed and securely latched.
6. Press PLAY mode button on XRC playback panel. Job playback operation is enabled.
7. Press SERVO ON button on playback panel.
8. Reset positioner by simultaneously pressing RESET and right CYCLE START buttons on operator station.
9. Place ENABLE/DISABLE switch on operator station in ENABLE position. XRC is placed in REMOTE mode and system control is transferred to operator station.

The FabWorld II cell is now ready for operation.

5.2.4 Perform Operation Cycle

Rotary Positioners

1. Load parts onto both sides of fixture at station 1.
2. Press both CYCLE START palm buttons on operator station 1. CYCLE LATCHED light comes on and robot begins welding parts at zone 1.
3. During zone 1 welding process, load zone 3 fixture with parts on both sides and press both CYCLE START palm buttons.
4. When robot finishes welding, it returns to Safe position in zone 2 then begins welding in zone 3. This allows the operator to enter zone 1 and process parts.

NOTE: Before sweeping at first power up, make sure the correct job has been loaded.

Stationary Flat Plane Module

1. Load parts onto fixture at zone 1.
2. Press both CYCLE START palm buttons on operator station 1. CYCLE LATCHED light comes on and robot begins welding parts at zone 1.
3. During zone 1 welding process, load zone 3 fixture with parts and press both CYCLE START palm buttons.
4. When robot finishes welding, it returns to Safe position in zone 2 then begins welding in zone 3. This allows the operator to enter zone 1 and process parts.

NOTE: Before sweeping at first power up, make sure the correct job has been loaded.

Loading the Positioner

The headstock tooling plate can be rotated from the home position (zero degrees) using the three-position joystick at the operator station. Moving the joystick FORWARD rotates the headstock tooling plate clockwise 30 degree while moving it to REVERSE rotates the tooling plate counterclockwise.

As the tooling plate rotates, a factory installed screw located at home position, activate a limit switch. When activated, the limit switch overrides the safety mat functions. That allows operator access to the positioner without disrupting cycle time in the other zone.

Safety mat functions are active during rotation of the headstock because the next tooling plate screw have not yet reached the limit switch.

Eleven user defined load positions (see Figure 5-1) are available on the tooling plate at 30 degree intervals. One additional set of screws, to be used for a user defined load position, are provided.

NOTE: A screw with washer must be used at the user defined load position holes.
Home Position

Once the positioner is loaded properly, step off the safety mat and select HOME POSITION on the joystick. The headstock will rotate back to zero degrees position with the screw(s) activating the limit switch to allow CYCLE START.

Depress both CYCLE START push buttons now to permit the robot to sweep the positioner and begin to weld when ready.

![Diagram of MHT-680 HS/TS - Home/User Defined Load Positions](image)

Figure 5-1 MHT-680 HS/TS – Home/User Defined Load Positions

5.2.5 Shutdown

Use the following procedure to shut down the FabWorld II cell after operation is complete:

1. Make sure the robot is in the Safe position (Cube 24).
2. Turn off system servo power by pressing E-STOP button on operator station, programming pendant, or playback panel.
3. Press TEACH mode button on playback panel.
4. Set controller Main Power switch to OFF position.
5. Set Main Power switch on welding power source to OFF position.

The FabWorld II cell is now shut down.
5.3 **System Recovery**

Under certain conditions you will be required to clear an alarm or error. Clearing an alarm or error requires different operator actions depending on the type. The paragraphs below describe the different types of alarms and errors you may encounter and how to remedy them when you do.

5.3.1 **Alarms and Errors**

Alarms and errors will cause the program to stop. There are three levels of alarms and errors: Error Messages, Minor Alarms, and Major Alarms. For more detailed information about alarm recovery, refer to manipulator manual that came with your system.

Error Messages

These are simple errors such as pressing the START button when the robot is not in PLAY mode, or enabling the programming pendant without the servo power being live. Errors like these are cleared by pressing the CANCEL button on the programming pendant.

Minor Alarms

Minor alarms are usually programming errors. Minor alarms might occur if a circle has been programmed with fewer than three circular points, etc. These alarms are cleared by pressing the RESET (F5) soft key on the programming pendant.

Major Alarms

Major alarms are hardware failures. Major alarms might occur because of a servo tracking error or an abnormal speed and are usually associated with crashes. To clear these alarms, you must turn off the controller and then turn it on again.
5.3.2 **E-STOP Recovery**

An E-STOP can occur under any of the following conditions:

- Pressing the E-STOP button on the operator station, programming pendant, or playback panel.
- Opening sliding door on robot enclosure when robot is in PLAY mode.
- Stepping on safety mat when positioner is sweeping.
- Actuating shock sensor on torch mount.

To restart the FabWorld II system after an E-STOP condition occurs, follow the procedure below.

1. To clear E-STOP condition, perform any of the following actions that apply:
 - Release the E-STOP button on the operator station, programming pendant, or XRC playback panel.
 - Close sliding door.
 - Step off safety mat.
 - Clear Shock Sensor condition (see Section 5.3.3).

CAUTION!

If an emergency stop condition occurs while the positioner is sweeping, the positioner will continue the sweep when system is reinitialized.

2. Press SERVO ON button on operator station, or playback panel.
3. Press RESET button and right CYCLE START button on operator station to initialize system.
4. Ensure operator station is enabled.
5. Press MASTER JOB START button on operator station.

The FabWorld II cell is now ready to continue operation.
5.3.3 Shock Sensor Recovery

The FabWorld II welding package includes a Motoman gun mount. This mount is designed to protect the torch from damage in case of a crash. A slight deflection of the torch activates a SHOCK SENSOR message, which triggers an E-STOP condition. To clear the E-STOP condition, you must override the shock sensor and move the robot clear of the impact. To override the shock sensor, proceed as follows:

CAUTION!

It is possible to crash the robot with the Shock Sensor Override Switch left in the “Override” position. Always remember to reactivate the Shock Sensor before continuing system operation.

1. Press TOP MENU on programming pendant.
2. Select ROBOT icon using cursor keys and press SELECT.
3. Cursor to OVERRUN-S.SENSOR and press SELECT key.
4. Select RELEASE to release shock sensor.
5. Turn servo power ON by holding ENABLE switch on the programming pendant and pressing SERVO ON.

NOTE: *TEACH LOCK must be ON to turn servo power on in TEACH mode.*

The FabWorld II cell is now ready to continue operation.

5.3.4 Using the Brake Release

The brake release control panel is located on front of the XRC. Each axis brake is controlled by an individual axis buttons. Simultaneously pressing the ENABLE button and one of these axis buttons releases the indicated axis. To release the brakes, proceed as follows:

1. Press E-STOP button on programming pendant, playback panel, or operator station, to be sure servo power is OFF.
2. Provide adequate support for axis to be released. Support should withstand payload of robot and approximate weight of robot. Listed below is the weight of each robot available:
 - UP6 – 135kg (297 lb)
 - UP20 – 260kg (573 lb)

WARNING!

Releasing brakes could cause personal injury or machine damage. Always support the axis to be released BEFORE you release it.

3. Release specific axis brake by pressing and holding corresponding axis button and ENABLE button at same time.

NOTE: You must hold both the axis and ENABLE buttons down for the axis to remain released. Releasing either button will automatically lock the brakes again.
SECTION 6
MAINTENANCE

6.1 Periodic Maintenance

Table 6-1 provides periodic maintenance items and intervals for the FabWorld II system. Keep in mind that the maintenance intervals serve as guidelines only. You should adjust the frequency of maintenance to suit your specific work conditions.

For periodic maintenance procedures and schedules for the individual components of your FabWorld II, refer to the manipulator and additional manuals that came with your system.

CAUTION!
Use only the antifreeze provided by Motoman. Automotive antifreezes contain stop-leak additives that will clog the small torch water-cooling ports, and damage the gaskets in the water circulator pump.

Table 6-1 Periodic Maintenance

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Component</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Water circulator</td>
<td>Check the fluid in the water circulator. Add fluid as required. Use only distilled water and approved antifreeze (Motoman P/N 131224-1).</td>
</tr>
<tr>
<td>Weekly</td>
<td>Wire Cutter (option)</td>
<td>Clean the unit with detergent machine cleaner. Apply grease to the wire cutting mechanism through the grease zirk provided.</td>
</tr>
<tr>
<td>6 Months</td>
<td>PWF Pancake Wire Feeder</td>
<td>Clean feed roll grooves with industrial machine cleaner. Replace feed rolls as required.</td>
</tr>
<tr>
<td>Annually</td>
<td>Water Circulator Kit (option)</td>
<td>Flush the system completely. Refill as needed.</td>
</tr>
<tr>
<td>5,000 hours</td>
<td>Shaft seal</td>
<td>Replace shaft seal. Contact Motoman Service Department at (937) 847-3200.</td>
</tr>
<tr>
<td>20,000 hours or 5 years</td>
<td>Lubrication</td>
<td>Flush and relubricate using Molywhite grease.</td>
</tr>
<tr>
<td>20,000 hours or 5 years</td>
<td>Overhaul</td>
<td>If worn or damaged, replace after disconnecting the motor from the controller. Contact Motoman Service Department at (937) 847-3200.</td>
</tr>
</tbody>
</table>

H=Hours of Operation
6.2 **Fuse and Circuit Breaker Protection**

Table 6-2 through Table 6-3 give the locations of fuses and circuit breakers that are significant to the operation of the total system. In most cases, spare fuses are placed in the accessory bag with the controller.

WARNING!

Replace fuses with those of the same type and rating. Replacement with fuses of higher amperage rating or lower voltage will damage the robot controller and/or auxiliary equipment, necessitating costly replacement.

Abbreviations:

- CB — designates circuit breaker
- F, FU, or 101FU — designates fuse

Table 6-2 MotoArc 450 CV Fuses and Circuit Breaker

<table>
<thead>
<tr>
<th>Designator</th>
<th>Rating</th>
<th>Part #</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB1</td>
<td>10A 115V</td>
<td>203627-7</td>
<td>Upper rear panel</td>
<td>Protects 115V circuit.</td>
</tr>
<tr>
<td>CB2</td>
<td>10A 24V</td>
<td>203627-7</td>
<td>Upper rear panel</td>
<td>Protects 24V circuit.</td>
</tr>
<tr>
<td>F1</td>
<td>0.5A 125V</td>
<td>W-11166-11</td>
<td>On contactor box</td>
<td>Protects contactor circuit.</td>
</tr>
</tbody>
</table>

Table 6-3 Universal Welding Interface (UWI) Fuses

<table>
<thead>
<tr>
<th>Designator</th>
<th>Rating</th>
<th>Part #</th>
<th>Location</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>8A 250V</td>
<td>Wickman 19374K-4A</td>
<td>On KXA motor speed control</td>
<td>Limits damage from shorts or component breakdowns in DC power supply module.</td>
</tr>
<tr>
<td>FU2</td>
<td>0.25A 125V</td>
<td>Wickman 19303K-500A</td>
<td>On interface board</td>
<td>Protects shock sensor circuit.</td>
</tr>
<tr>
<td>FU3</td>
<td>0.5A 125V</td>
<td>Wickman 19303K-500A</td>
<td>On interface board</td>
<td>Protects 24V circuit.</td>
</tr>
<tr>
<td>Fuse</td>
<td>1A 250V</td>
<td>TD-1</td>
<td>Front of ComArc box</td>
<td>Protects 200V circuit.</td>
</tr>
</tbody>
</table>
INDEX

Numerics
- 1-Cycle, Cycle Mode Symbol, 3-4

A
- About this Document, 1-1
- Active Joiner, 4-7, 4-8
- Alarm, 3-7
- Alarm, Operator Station, 3-7
- Alarm, Status Symbol, 3-4
- Alarm/Error, 3-2
- Alarms and Errors, 5-6
- ANSI/RIA, 2-1
- ANSI/RIA R15.06 Robot Safety Standard, 3-11
- Antifreeze, 6-1
- Arc Screens, 3-12
- Area Key, 3-4
- Auto, Cycle Mode Symbol, 3-4

B
- Brake Release, 3-13
- Brake Release, Controller, 3-6
- Brake Release, Using, 5-8

C
- Capacity, Positioner Specifications, 3-9
- Chassis, Positioner Specifications, 3-9
- Circuit Breaker, 6-2
- Clearing an alarm or error, 5-6
- Connecting the Cables, 4-11
- Cursor Key, 3-4
- Customer Service Information, 1-3
- Customer-Supplied Items, 4-1
- Cycle Latched, 3-7
- Cycle Mode, 3-4
- Cycle Start, 3-6
- Cycle Start, Operator Station, 3-6
- Cylindrical, Coordinate Symbol, 3-4

D
- Dedicated, Inputs, 5-1
- Dedicated, Outputs, 5-1
- Display, 3-3
- Display Area, 3-3

E
- Earth Ground, Connecting, 4-11
- Emergency Stop (E-STOP), 3-2, 3-3, 3-6
- Emergency Stop (E-STOP), Operator Station, 3-6
- Emergency Stops (E-STOP), 3-12
- ENABLE Function Key, 3-4, 3-5
- ENABLE Switch, 3-5, 3-12
- Enable/Disable, Operator Station, 3-8
- Equipment Description, 3-1
- Error Messages, 5-6
- E-STOP Recovery, 5-7
- E-Stop, Status Symbol, 3-4

F
- Fencing, 3-12
- Fuse and Circuit Breaker Protection, 6-2
- Fuses, 6-2

G
- General Safeguarding Tips, 2-3
- GMAW Torch, 3-11

H
- High, Manual Speed Setting Symbol, 3-4
- Hold, 3-2, 3-7
- Hold, Status Symbol, 3-4
- Home Position, 5-3

I
- I/O Assignment, 5-1
- Inching, Manual Speed Setting Symbol, 3-4
- Inputs, 5-2
- Inputs, Dedicated, 5-1
- Inputs, User, 5-2
- Installation, 4-1
- Installation Safety, 2-4
- Installing the Auxiliary Equipment Common Base, 4-4
- Interference Cubes, 3-13
- Interlocked Cell Door, 3-13
- Introduction, 1-1
- Introduction, Safety, 2-1

J
- Joint, Coordinate Symbol, 3-4

INDEX

L
- LCD display, 3-3
- Leveling and Securing the Equipment, 4-9
- List of Tools, 4-1
- Loading the Positioner, 5-3
- Low, Manual Speed Setting Symbol, 3-4

M
- Maintenance, 6-1
- Maintenance Safety, 2-6
- Major Alarms, 5-6
- Manual Speed Setting, 3-4
- Master Job Start, Operator Station, 3-7
- Master Job, Starting, 5-5
- Materials Required, 4-1
- Mechanical Safety Devices, 2-3
- Medium, Manual Speed Setting Symbol, 3-4
- Menu Area, 3-3
- Minor Alarms, 5-6
- Mode, 3-2
- Mode Select, 3-2
- MotoArc 450 CV Fuses and Circuit Breaker, 6-2

O
- Operation, 5-1
 - Rotary Positioners, 5-3
 - Stationary Flat Plane Module, 5-3
- Operation Safety, 2-5
- Operation, Daily, 5-3
- Operator Station Description, 3-6
- Operator Station, Installation, 4-6
- Optional Equipment, 1-3
- Outputs, 5-2
- Outputs, Dedicated, 5-1
- Outputs, User, 5-2
- Outputs-dedicated, 5-1

P
- Payload, 3-1
- Periodic Maintenance, 6-1
- Playback Panel, 3-2
- Positioner Auto/Manual, 3-7
- Positioner Auto/Manual, Operator Station, 3-7
- Positioner Location Adjustment, 4-6

P (continued)
- Positioner Module, 3-9
 - MHT-680 HS/TS Positioner, 3-9
- Programming, 5-2
 - Specifications, 3-9
 - Stationary Flat Plane Module, 3-9
- Power Sources, 3-10
- Power, Connecting, 4-14
- Programming Pendant, 3-3
- Programming Safety, 2-4
- Programming-Operation, 5-1

R
- Reach Capabilities, 3-1
- Reference to Other Documentation, 1-3
- Relative Positioning Accuracy, 3-1
- Reset, 3-8
- Reset, Operator Station, 3-8
- Restarting the FabWorld II System, 5-7
- Robot and Positioner Common Base, Installing, 4-2
- Robot Cables, Connecting, 4-12
- Robot Description, 3-1
- Robot Language, 3-3
- Robot Safe (Cube 24) Position, 5-5
- Robot Sales Order Number, 1-3
- Robot Serial Number, 1-3
- Robotic Industries Association, 2-1
- Rotation, 3-9
- RS-232C Serial Port, 3-5
- Running/Start, Status Symbol, 3-4

S
- Safety, 2-1
- Safety Features, 3-11
- Safety Mat
 - Description, 3-12
 - Finish Installation, 4-8
 - Installation, 4-7
 - Mat Layout, 4-7
 - Preparation, 4-7
 - Set Up, 4-8
- Safety/Operation Check, 4-16
- Select Key, 3-5
- Servo On Ready, 3-2
- Servo On, Operator Station, 3-8
INDEX

S (continued)
Servo Power, 3-2
Shipping Brackets, Removal, 4-4
Shock Sensor Override Switch, 5-8
Shock Sensor Recovery, 5-8
Shutdown, 5-5
Site Preparation, 4-2
Software Version, 1-3
Spare Parts List, 6-1
Standard Conventions, Safety, 2-2
Start, 3-2
Start-Up, 5-4
Station Ready, 3-7
Status Area, 3-4
Step, Cycle Mode Symbol, 3-4
Stop, Status Symbol, 3-4
Sweep Time, 3-9
System Interface Box, Connecting, 4-13
System Layout, 1-2
System Overview, 1-2
System Recovery, 5-6

T
TEACH LOCK Key, 3-5
Three-position Joystick, Operator Station, 3-7
Tool, Coordinate Symbol, 3-4
Tooling and Fixtures, Installation, 4-16
Top Menu Key, 3-4

ARC WELDING, GENERAL, HANDLING, and SPOT WELDING, 3-4
IN/OUT, 3-4
JOB, 3-4
ROBOT, 3-4
SYSTEM INFO, 3-4
VARIABLE, 3-4
Torch Mount, 3-11

U
Universal Welding Interface (UWI), 3-11
Universal Welding Interface (UWI) Fuses, 6-2
User Frame, Coordinate Symbol, 3-4

W
Water Circulator Pump, 6-1
Water Circulator, Connecting, 4-14
Welding Equipment, 3-10
Welding Ground System, 3-13
Wire Feeder, 3-11
World, Coordinate Symbol, 3-4

X
XRC Controller, 3-1
INDEX