Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

The DX100 Operator’s manual above corresponds to specific usage. Be sure to use the appropriate manual.
MANDATORY

• This manual explains the Ethernet Server function of the DX100 system. Read this manual carefully and be sure to understand its contents before handling the DX100.

• General items related to safety are listed in Chapter 1: Safety of the DX100 Instructions. To ensure correct and safe operation, carefully read the DX100 Instructions before reading this manual.

CAUTION

• Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

• The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

• YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

• If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

• YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product's warranty.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the DX100.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, “MANDATORY”, or “PROHIBITED”.

⚠️ DANGER
Indicates an imminent hazardous situation which, if not avoided, could result in death or serious injury to personnel.

⚠️ WARNING
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

⚠️ CAUTION
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

⚠️ MANDATORY
Always be sure to follow explicitly the items listed under this heading.

🚫 PROHIBITED
Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations.

At any rate, be sure to follow these important items

NOTE
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “WARNING” and “CAUTION”.
WARNING

- Before operating the manipulator, check that servo power is turned OFF pressing the emergency stop buttons. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Figure 1: Emergency Stop Button

- Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn the servo power ON.

Injury may result from unintentional or unexpected manipulator motion.

Figure 2: Release of Emergency Stop

- Observe the following precautions when performing teaching operations within the P-point maximum envelope of the manipulator:
 - View the manipulator from the front whenever possible.
 - Always follow the predetermined operating procedure.
 - Keep in mind the emergency response measures against the manipulator’s unexpected motion toward you.
 - Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

- Confirm that no person is present in the P-point maximum envelope of the manipulator and that you are in a safe location before:
 - Turning ON the power for the DX100.
 - Moving the manipulator with the programming pendant.
 - Running the system in the check mode.
 - Performing automatic operations.

Injury may result if anyone enters the P-point maximum envelope of the manipulator during operation. Always press an emergency stop button immediately if there is a problem.
CAUTION

- Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 - Check for problems in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.
- Always return the programming pendant to the hook on the DX100 cabinet after use.

The programming pendant can be damaged if it is left in the manipulator's work area, on the floor, or near fixtures.
- Read and understand the Explanation of Warning Labels in the DX100 Instructions before operating the manipulator:

Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the controller, the programming pendant, and supply cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX100 controller</td>
<td>Controller</td>
</tr>
<tr>
<td>DX100 programming pendant</td>
<td>Programming Pendant</td>
</tr>
</tbody>
</table>
Descriptions of the programming pendant, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td></td>
</tr>
<tr>
<td>Character Keys</td>
<td>The keys which have characters printed on them are denoted with []. ex. [ENTER]</td>
</tr>
<tr>
<td>Symbol Keys</td>
<td>The keys which have a symbol printed on them are not denoted with [] but depicted with a small picture. ex. page key The cursor key is an exception, and a picture is not shown.</td>
</tr>
<tr>
<td>Axis Keys</td>
<td>“Axis Keys” and “Number Keys” are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Number Keys</td>
<td></td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. ex. {JOB}</td>
</tr>
</tbody>
</table>

Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • •” means that the cursor is moved to the object item and the [SELECT] is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or bland names for each company or corporation. The indications of (R) and ™ are omitted.
Safeguarding Tips

All operators, programmers, maintenance personnel, supervisors, and anyone working near the system must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this equipment, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this equipment.

• Improper connections can damage the equipment. All connections must be made within the standard voltage and current ratings of the equipment.

• The system must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.

• In accordance with ANSI/RIA R15.06-2012, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

Mechanical Safety Devices

The safe operation of this equipment is ultimately the users responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-2012 safety standards, and other local codes that may pertain to the installation and use of this equipment.

Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety equipment is provided as standard:

• Safety barriers
• Door interlocks
• Emergency stop palm buttons located on operator station

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
Programming, Operation, and Maintenance Safety

All operators, programmers, maintenance personnel, supervisors, and anyone working near the system must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this equipment should be permitted to program, or maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the equipment to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Check the E-Stop button on the operator station for proper operation before programming. The equipment must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.
- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- Any modifications to the controller unit can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to the controller unit. Making any changes without the written permission from Yaskawa will void the warranty.
- Some operations require standard passwords and some require special passwords.
- The equipment allows modifications of the software for maximum performance. Care must be taken when making these modifications. All modifications made to the software will change the way the equipment operates and can cause severe personal injury or death, as well as damage parts of the system. Double check all modifications under every mode of operation to ensure that the changes have not created hazards or dangerous situations.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Use proper replacement parts.
- Improper connections can damage the equipment. All connections must be made within the standard voltage and current ratings of the equipment.
Maintenance Safety

Turn the power OFF and disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

Perform only the maintenance described in this manual. Maintenance other than specified in this manual should be performed only by Yaskawa-trained, qualified personnel.

Summary of Warning Information

This manual is provided to help users establish safe conditions for operating the equipment. Specific considerations and precautions are also described in the manual, but appear in the form of Dangers, Warnings, Cautions, and Notes.

It is important that users operate the equipment in accordance with this instruction manual and any additional information which may be provided by Yaskawa. Address any questions regarding the safe and proper operation of the equipment to Yaskawa Customer Support.
Customer Support Information

If you need assistance with any aspect of your DX100 system, please contact YASKAWA Customer Support at the following 24-hour telephone number:

(937) 847-3200

For routine technical inquiries, you can also contact YASKAWA Customer Support at the following e-mail address:

techsupport@motoman.com

When using e-mail to contact YASKAWA Customer Support, please provide a detailed description of your issue, along with complete contact information. Please allow approximately 24 to 36 hours for a response to your inquiry.

Please use e-mail for routine inquiries only. If you have an urgent or emergency need for service, replacement parts, or information, you must contact YASKAWA Customer Support at the telephone number shown above.

Please have the following information ready before you call Customer Support:

- System: DX100
- Robots: ___________________________
- Primary Application: ___________________________
- Controller: DX100
- Software Version: Access this information on the Programming Pendant’s LCD display screen by selecting {MAIN MENU} - {SYSTEM INFO} - {VERSION}
- Robot Serial Number: Located on the robot data plate
- Robot Sales Order Number: Located on the DX100 controller data plate
Table of Contents

1 Introduction ... 1-1

1.1 Features... 1-1
 1.1.1 Request of Multiple Processes ... 1-1
 1.1.2 Simplification of Communication Procedure ... 1-1
 1.1.3 Communication with Other Than MOTOCOM .. 1-1

1.2 System Outline ... 1-2

2 System Configuration ... 2-1

2.1 Setting of Ethernet Function ... 2-1

2.2 Setting of Ethernet Server Function ... 2-1

2.3 Setting of Transmission Parameters .. 2-1

3 Transmission Procedure ... 3-1

3.1 Outline ... 3-1

3.1.1 Socket Connection ... 3-2

3.1.2 START Request .. 3-2

3.1.3 Response to START Request ... 3-2

3.1.4 Command ... 3-2
 3.1.4.1 Command .. 3-2
 3.1.4.2 Size .. 3-2

3.1.5 Response to Command ... 3-2

3.1.6 Command Data .. 3-3

3.1.7 Answer .. 3-3

3.1.8 Closing of a Socket ... 3-3

3.2 Command Details .. 3-4

3.2.1 Status Read Function .. 3-4
 3.2.1.1 Read/Monitor Command ... 3-4
 3.2.1.2 Read/Data Access System Command ... 3-10

3.2.2 System Control Function .. 3-16
 3.2.2.1 Operation System Command ... 3-16
 3.2.2.2 Start-Up System Command .. 3-21
 3.2.2.3 Editing System Commands ... 3-28
 3.2.2.4 Job Selection System Command ... 3-35

3.2.3 I/O Read/Write Function .. 3-36
 3.2.3.1 Read-Out of I/O Signal Status ... 3-36
 3.2.3.2 Write-in of I/O Signal Status ... 3-36
Table of Contents

3.3 Transmission Examples
- 3.3.1 Read-Out of Status for Mode, Cycle, etc. .. 3-38
- 3.3.2 Read-Out of I/O Signals for the DX100 ... 3-38
- 3.3.3 Write-In of I/O Signals for the DX100 .. 3-39
- 3.3.4 Continuous Execution of Multiple Commands 3-40

4 Function Checkout Procedure
- 4.1 Cable Connection Check ... 4-1
- 4.2 Connection Check with Lower Protocol 4-2
- 4.3 Connection Check with telnet ... 4-3

5 Restrictions
- 5.1 Automatic Close of Socket ... 5-1
- 5.2 Unavailable Command/Function .. 5-1
- 5.3 Restrictions on the Number of Sockets 5-1
- 5.4 Restrictions on Text Length ... 5-2
- 5.5 Restrictions on Access from Multiple Host Computers 5-2
1 Introduction

The Ethernet server function enables communication using more simple protocols instead of using conventional protocols such as BSC protocols, in the host control of the DX100 Ethernet function.

The Ethernet server function is an option function: advanced feature of the DX100 Ethernet function.

This manual explains settings and related information which are necessary for the use of this function.

1.1 Features

1.1.1 Request of Multiple Processes

The Ethernet server function manages multiple connections, which allows to perform sequential processing after receiving a multiple-processing request.

> The Ethernet server function performs sequential processing every time it receives a request. This function cannot handle a simultaneous parallel processing of multiple requests.

1.1.2 Simplification of Communication Procedure

The Ethernet server function uses TCP for the lower layer communication protocol. Using of the connection control function of TCP simplifies connection control processing in the upper layer and communication procedure.

1.1.3 Communication with Other Than MOTOCOM

The communication procedure for the Ethernet server function is simplified, which enables users to prepare for all communication programs.

> The communication procedure with the conventional DX100 Ethernet function was complicated; the procedure had not been disclosed. For this reason, the application “Motocom.dll” that mainly performs communication procedure had been a must for the personal computer.

> The latest MOTOCOM allows the Ethernet server function to communicate in the system.
1.2 System Outline

The Ethernet server function is an option function: advanced feature of the host control function for the DX100 Ethernet function. When the Ethernet server function is used, the system needs to be preliminary kept in such a state that the DX100 Ethernet function can be used.
2 System Configuration

Configure the following for the use of Ethernet server function.

2.1 Setting of Ethernet Function

The Ethernet server function is designed as an option function: advanced feature of the host control function for the DX100 Ethernet function. Therefore users need to configure the system in such a state that the DX100 Ethernet host control function can be used.

For details, refer to Chapter 3 Ethernet Function Settings" of the "DX100 OPTIONS INSTRUCTIONS FOR ETHERNET FUNCTION".

2.2 Setting of Ethernet Server Function

Set the parameters to enable the Ethernet server function.
(Users should not change the parameter settings themselves: contact your YASKAWA representative.)

2.3 Setting of Transmission Parameters

The parameters related to transmissions with the Ethernet server function are listed in the following tables. For details, refer to the "DX100 OPTIONS INSTRUCTIONS FOR DATA TRANSMISSION FUNCTION".

Make sure to change the value of the following parameter.

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Contents</th>
<th>Set Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS000</td>
<td>Specifies the protocol for the standard port.</td>
<td>2 (BSC)</td>
<td>3 (FC1)</td>
</tr>
</tbody>
</table>

Set the following parameters to their default values.

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Contents</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS029</td>
<td>Loading of job/variable during playback</td>
<td>1: Enable</td>
</tr>
<tr>
<td>RS030</td>
<td>Specifies the data bits.</td>
<td>8: 8 bits</td>
</tr>
<tr>
<td>RS031</td>
<td>Specifies the stop bits.</td>
<td>0: 1 bit</td>
</tr>
<tr>
<td>RS032</td>
<td>Specifies the parity.</td>
<td>2: Even parity</td>
</tr>
<tr>
<td>RS033</td>
<td>Specifies the baud rate.</td>
<td>7: 9600 bauds</td>
</tr>
<tr>
<td>RS036</td>
<td>Specifies the inquiry character retry count for invalid responses or non-responses.</td>
<td>10: 10 counts</td>
</tr>
<tr>
<td>RS037</td>
<td>Specifies the text data transmission retry count for block check error (NAK reception)</td>
<td>3: 3 counts</td>
</tr>
<tr>
<td>RS038</td>
<td>Specifies the block check method.</td>
<td>0: Checksum</td>
</tr>
</tbody>
</table>
Adjust the following parameters to stabilize the transmissions with the Ethernet server function as required.

<table>
<thead>
<tr>
<th>Parameter No.</th>
<th>Contents</th>
<th>Set Value</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS034</td>
<td>Timer A: Timer for monitoring the sequence. Controls the response waiting time for the invalid responses or non-responses. Units: 0.1 sec (setting range: 0 to 100)</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>RS035</td>
<td>Timer B: Timer for monitoring text reception. Controls the monitoring time to wait for the text termination character. Units: 0.1 sec (setting range: 0 to 255)</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>
3 Transmission Procedure

This chapter shows the transmission procedure in the Ethernet server function.

NOTE

In the Ethernet server function, processing other than socket connection are performed by the transmission of ASCII character string. The processings are not correctly performed if the ASCII character string is not in accordance with the ASCII code. Use case-sensitive ASCII character string.

3.1 Outline

The command transmission with the DX100 Ethernet server function proceeds as follows.

1. Connects a socket on the TCP port 80 of the DX100 from the host computer.
2. The host computer sends a START request.
3. After the START request is accepted, the DX100 sends the response to the START request.
4. The host computer sends a command.
5. The DX100 sends the response to the command sent from the host computer.
6. The host computer sends command data if required.
7. The DX100 sends an answer.
8. Closes a TCP socket from the host computer.

For more information on the procedures, refer to the descriptions in the next and later paragraphs.

Fig. 3-1: Outline of Command Transmission by Ethernet Server Function
3.1 Outline

3.1.1 Socket Connection
Connects a socket on the TCP port 80 of the DX100 from the host computer.

3.1.2 START Request
The host computer sends a character string of a START request: “CONNECT Robot_access<CR><LF>”. This character string allows for a single command processing.

If multiple commands need to be processed in a row, the host computer sends a character string: “CONNECT Robot_access Keep-Alive:n<CR><LF>”. The following integer values can be specified in n.

- 2 to 32767 : Executes as many commands as the number specified in n.
- -1 : Executes infinite number of commands.

3.1.3 Response to START Request
After receiving a START request from the host computer, the DX100 sends back a character string for the response to the request.

If the DX100 normally receives a START request, it sends a character string: “OK: DX Information Server(Ver).<CR><LF>” for a single command processing and “OK: DX Information Server(Ver) Keep-Alive:n<CR><LF>” for processing of multiple commands. In each case the DX100 waits for reception of section 3.1.4 “Command” after sending back a character string.

If the DX100 cannot normally receive a START request, it sends back a character string: “NG: HTTP Error Response<CR><LF>”, and closes a socket.

3.1.4 Command
The host computer sends a character string: “HOSTCTRL_REQUEST Command Size<CR><LF>”.

3.1.4.1 Command
Use the character strings listed in section 3.2 “Command Details” for Command.

3.1.4.2 Size
For Size, use the ASCII character string which represents the byte number in decimal form, of character string that is sent in section 3.1.6 “Command Data”. This byte number is calculated including the linefeed code <CR> at the end of the character string. If no command data are sent, writes “0” in Size.

3.1.5 Response to Command
After receiving a command from the host computer, the DX100 sends back a character string for the response to the command.

The DX100 normally sends back a character string: “OK: Command<CR><LF>”. Furthermore, if the Size specified in section 3.1.4 “Command” is “0”, the DX100 responses according to section 3.1.7 “Answer”. If the Size is other than “0”, the DX100 waits for section 3.1.6 “Command Data”.

19 of 63
At an error, the DX100 sends back a character string: “NG:
Message<CR><LF>” and closes a socket.

3.1.6 Command Data

If a command is accompanied by data, the host computer sends a character string of the command data. The command data differ from **Command to Command**. (**Command** is not always accompanied by command data.) Make sure to add the linefeed code <CR> to the end of the command data character string.

The description method of command data differs with each **Command**. Refer to section 3.2 “Command Details” for details on the description method.

3.1.7 Answer

The DX100 sends back an answer in the following format according to a request from the host computer.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Subclassification</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>At normal answer</td>
<td>In case that the DX100 sends back data</td>
<td>Data<CR> (Refer to “3.2 Command Details”).</td>
</tr>
<tr>
<td></td>
<td>In case that the DX100 answers normally</td>
<td>0000<CR><LF></td>
</tr>
<tr>
<td></td>
<td>(In the absence of data)</td>
<td></td>
</tr>
<tr>
<td>At abnormal answer</td>
<td>In case that the DX100 sends back an error answer</td>
<td>ERROR:[Command] is not successful (xxxx)<CR><LF> *xxxx indicates an interpreter message.</td>
</tr>
<tr>
<td>At socket error</td>
<td>In case that an error occurs at socket processing</td>
<td>ERROR:Message<CR><LF></td>
</tr>
</tbody>
</table>

The linefeed code of when **data** are sent back as normal answer is different from the one of the case other than normal answer with **data** sent back.

The linefeed code of the normal answer with **data** sent back: <CR>

The linefeed code of the case other than above: <CR><LF>

The format when **data** are sent back as normal answer varies from each command. For details in the format, refer to section 3.2 “Command Details”. For interpreter message, refer to “DX100 OPTIONS INSTRUCTIONS FOR DATA TRANSMISSION FUNCTION”.

3.1.8 Closing of a Socket

A socket is closed.
3.2 Command Details

The following show how to use each command.
The answer for each command is the one at normal answer.
For details on robot control function, commands for multi-control group and independent control functions, and interpreter message list, refer to “DX100 OPTIONS INSTRUCTIONS FOR DATA TRANSMISSION FUNCTION”.

3.2.1 Status Read Function

3.2.1.1 Read/Monitor Command

RALARM
Reads the error alarm code.

Command format: RALARM

Command data: None

Answer format: Data-1, Data-2, Data-3, Data-4, …, Data-10
Data-1 = Error code (0 to 9999)
Data-2 = Error data (0 to 256)
Data-3 = Alarm code (0 to 9999)
Data-4 = Alarm data (0 to 256)
Data-5 = Alarm code (0 to 9999)
Data-6 = Alarm data (0 to 256)
Data-7 = Alarm code (0 to 9999)
Data-8 = Alarm data (0 to 256)
Data-9 = Alarm code (0 to 9999)
Data-10 = Alarm data (0 to 256)

RPOSJ
Reads the current position in joint coordinate system.

Command format: RPOSJ

Command data: None

Answer format: Data-1, Data-2, Data-3, Data-4, …, Data-12 (For robots with 6 axes or less)
3 Transmission Procedure
3.2 Command Details

Data-1 = Number of S-axis pulses
Data-2 = Number of L-axis pulses
Data-3 = Number of U-axis pulses
Data-4 = Number of R-axis pulses
Data-5 = Number of B-axis pulses
Data-6 = Number of T-axis pulses
Data-7 = Number of 7th axis pulses
Data-8 = Number of 8th axis pulses
Data-9 = Number of 9th axis pulses
Data-10 = Number of 10th axis pulses
Data-11 = Number of 11th axis pulses
Data-12 = Number of 12th axis pulses

• For 7-axis robots, Data-7 (number of pulses of the 7th axis) is the number of pulses of the E-axis and Data-13 (number of pulses of the 13th axis) is added.

RPOSC

Reads the current position in a specified coordinate system. The specification with or without external axis can be made.

Command format: RPOSC

Command data: Data-1, Data-2

Data-1 = Specification of coordinate system

0: Base coordinate
1: Robot coordinate
2: User coordinate 1

65: User coordinate 64

Data-2 = With or Without external axis

0: Without external axis
1: With external axis

Answer format: Data-1, Data-2, Data-3, Data-4, …, Data-14 (For robots with 6 axes or less)

Data-1 = X coordinate value (unit: mm, significant 3 decimal points)
3. Transmission Procedure

3.2 Command Details

Data-2 = Y coordinate value (unit: mm, significant 3 decimal points)
Data-3 = Z coordinate value (unit: mm, significant 3 decimal points)
Data-4 = Wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal point)
Data-5 = Wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal point)
Data-6 = Wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal point)
Data-7 = Type
Data-8 = Tool number (0 to 63)
Data-9 = Number of 7th axis pulses (for travel axis, mm)
Data-10 = Number of 8th axis pulses (for travel axis, mm)
Data-11 = Number of 9th axis pulses (for travel axis, mm)
Data-12 = Number of 10th axis pulses
Data-13 = Number of 11th axis pulses
Data-14 = Number of 12th axis pulses

- Data-9 to Data-14 are added only when “With external axis” is specified.
- If the specified user coordinate system is undefined, an error answer is sent back.
- Data of the type are represented by the following bit data coded into a decimal number.

```
<table>
<thead>
<tr>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Flip</td>
<td>No flip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Upper arm</td>
<td>Lower arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Front</td>
<td>Back</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>R&lt;180</td>
<td>R&gt;=180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>T&lt;180</td>
<td>T&gt;=180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>S&lt;180</td>
<td>S&gt;=180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- For 7-axis robots, the elbow angle posture Re is inserted between Data-6 (Wrist angle Rz coordinate value) and Data-7 (Type). Therefore, the numbers of Data-7 and later are increased by 1 and the final data is Data-15.
RSTATS

Reads the status of mode, cycle, operation, alarm error, and servo.

Command format: RSTATS

Command data: None

Answer format: Data-1, Data-2,

Data-1 = Represented by the following bit data coded into a decimal number

Data-2 = Represented by the following bit data coded into a decimal number
3 Transmission Procedure
3.2 Command Details

RJSEQ
Reads the current job name, line No. and step No.

Command format: RJSEQ

Command data: None

Answer format: Data-1, Data-2, Data-3
Data-1 = Read job name
Data-2 = Read line No. (0 to 9999)
Data-3 = Read step No. (1 to 9998)

JWAIT
The Ethernet server function does not support the JWAIT command.

Use the command: JWAIT in the DX100 Ethernet function.

RGROUP
Reads the current control group set by the CGROUP command or CTASK command, and the task selection status.

Command format: RGROUP

Command data: None

Answer format: Data-1, Data-2, Data-3
3 Transmission Procedure
3.2 Command Details

Data-1 = Robot control group information
• Represented by the following bit data coded into a decimal number

Data-2 = Station control group information
• Represented by the following bit data coded into a decimal number
Data-3 = Task information
 In a system where independent control group is not allowed, “0” is returned.
 0: Master task
 1: Sub 1 task
 2: Sub 2 task
 .
 .
 15: Sub 15 task

3.2.1.2 Read/Data Access System Command

RJDIR

Reads all job names, or the names of jobs related to the parent job.

Command format: RJDIR

Command data: Job-Name

Job-Name = *
 = Parent job name

If Job-Name is specified with “*”, RJDIR reads all the job names currently registered.

If Job-Name is specified with a parent job name, RJDIR reads the name of related jobs excluding the parent job. If there is not related child jobs, the command returns the null list. If the parent job has related child jobs but they are not registered in the system, an error occurs.

Answer format: Name-1, Name-2, …, Name-N

Name-1 = Job name-1
Name-2 = Job name-2
.
.
.
Name-N = Job name-N

* When the number of jobs exceeds 20, the output includes line feeds every 20 job names. A comma “,” is not used for line feed.
3 Transmission Procedure
3.2 Command Details

RUFRAME

Reads a specified user coordinate data.

Command format: RUFRAME

Command data: Data-1
Data-1 = User coordinate No.
 2: User coordinate 1
 .
 .
 .
 65: User coordinate 64

Answer format: Data-1, Data-2, ⋯, Data-28
Data-1 = ORG X coordinate value (unit: mm, significant 3 decimal points)
Data-2 = ORG Y coordinate value (unit: mm, significant 3 decimal points)
Data-3 = ORG Z coordinate value (unit: mm, significant 3 decimal points)
Data-4 = ORG wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-5 = ORG wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-6 = ORG wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-7 = ORG type
Data-8 = XX X coordinate value (unit: mm, significant 3 decimal points)
Data-9 = XX Y coordinate value (unit: mm, significant 3 decimal points)
Data-10 = XX Z coordinate value (unit: mm, significant 3 decimal points)
Data-11 = XX wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-12 = XX wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-13 = XX wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-14 = XX type
Data-15 = XY X coordinate value (unit: mm, significant 3 decimal points)
Data-16 = XY Y coordinate value (unit: mm, significant 3 decimal points)
Data-17 = XY Z coordinate value (unit: mm, significant 3 decimal points)
Data-18 = XY wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-19 = XY wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
3. Transmission Procedure
3.2 Command Details

Data-20 = XY wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-21 = XY type
Data-22 = Tool No. (0 to 63)
Data-23 = Number of 7th axis pulses (for travel axis, unit: mm)
Data-24 = Number of 8th axis pulses (for travel axis, unit: mm)
Data-25 = Number of 9th axis pulses (for travel axis, unit: mm)
Data-26 = Number of 10th axis pulses
Data-27 = Number of 11th axis pulses
Data-28 = Number of 12th axis pulses

• ORG, XX, XY coordinates are read in the base coordinate system.
• In a system having no external axis, Data-23 to Data-28 are “0”.
• If the specified user coordinate system is not registered, an error answer is sent back.
• If the group axis of the specified user coordinate system is not R1, an error answer is sent back.
• If ORG, XX, and XY have different base axis data, an error answer is sent back.
• Data of the type are represented by the following bit data coded into a decimal number.

For 7-axis robots, this command cannot be used.
SAVEV

Reads variable data.

Command format: SAVEV

Command data: Data-1, Data-2

Data-1 = Type of variables
 0: Byte type variables
 1: Integer type variables
 2: Double precision type variables
 3: Real number type variables
 4: Robot axis position type variables
 5: Base axis position type variables
 6: Station axis position type variables (only pulse type)
 7: String variable

Data-2 = Variable No.

Answer format 1 (When the type of variables specified with the command data is 0, 1, 2, 3, or 7)
Answer: Data-1
Data-1 = Byte value / Integer value / Double precision integer value / Real number value / String
The value corresponding to the type of variables that is specified with the command data is read out.

Answer format 2 (When the type of variables specified with the command data is 4, 5, or 6)
Answer: Data-1, Data-2, ..., Data-10 (When all the robots controlled by DX100 have 6 axes or less)
Data-1 = Position data type (0: Pulse type, 1: Cartesian type)

(When the position data type is “0”)
Data-2 = Number of robot S-axis pulses / Number of base 1st axis pulses / Number of station 1st axis pulses
Data-3 = Number of robot L-axis pulses / Number of base 2nd axis pulses / Number of station 2nd axis pulses
Data-4 = Number of robot U-axis pulses / Number of base 3rd axis pulses / Number of station 3rd axis pulses
Data-5 = Number of robot R-axis pulses / Number of base 4th axis pulses / Number of station 4th axis pulses
Data-6 = Number of robot B-axis pulses / Number of base 5th axis pulses / Number of station 5th axis pulses
3. Transmission Procedure

3.2 Command Details

Data-7 = Number of robot T-axis pulses / Number of base 6th axis pulses / Number of station 6th axis pulses
Data-8 = Tool No. (0 to 63)
Data-9 = Not exist
Data-10 = Not exist

• When the robots controlled by DX100 include a 7-axis robot, the number of pulses of robot's E-axis is inserted between Data-7 (Number of robot T-axis pulses) and Data-8 (Tool No). Therefore, the tool number is Data-9.

(When the position data type is "1": Only robot axis position type variables and base axis position type variables exist.)

Data-2 = Coordinate data
0: Base coordinate
1: Robot coordinate
2: User coordinate 1
3: User coordinate 2

...

65: User coordinate 64
66: Tool coordinate
67: Master tool coordinate

Data-3 = X coordinate value / Base 1st Cartesian value (unit: mm, significant 3 decimal points)
Data-4 = Y coordinate value / Base 2nd Cartesian value (unit: mm, significant 3 decimal points)
Data-5 = Z coordinate value / Base 3rd Cartesian value (unit: mm, significant 3 decimal points)
Data-6 = Wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-7 = Wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-8 = Wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-9 = Type

- Data of the type are represented by the following bit data coded into a decimal number.

![Diagram showing bit data and their meanings](image)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5</td>
<td>Flip</td>
<td>0: No flip, 1: Flip</td>
</tr>
<tr>
<td>D4</td>
<td>Upper arm</td>
<td>0: Upper arm, 1: Lower arm</td>
</tr>
<tr>
<td>D3</td>
<td>Front</td>
<td>0: Front, 1: Back</td>
</tr>
<tr>
<td>D2</td>
<td>R<180</td>
<td>0: R<180, 1: R>180</td>
</tr>
<tr>
<td>D1</td>
<td>T<180</td>
<td>0: T<180, 1: T>180</td>
</tr>
<tr>
<td>D0</td>
<td>S<180</td>
<td>0: S<180, 1: S>180</td>
</tr>
</tbody>
</table>

Data-10 = Tool No. (0 to 63)

- When the robots controlled by DX100 include a 7-axis robot, the elbow angle posture Re is inserted between Data-8 (Wrist angle Rz coordinate value) and Data-9 (Type). Therefore, the numbers of Data-9 and later are increased by 1 and the final data is Data-11.
3.2.2 System Control Function

3.2.2.1 Operation System Command

HOLD

Turns HOLD ON/OFF.

Command format: HOLD

Command data: Data

Data = Specification of HOLD ON/OFF status

0: OFF
1: ON

Answer format: 0000 at normal answer

RESET

Resets an alarm of manipulator.

The transmission alarms can be reset only by the programming pendant.

Command format: RESET

Command data: None

Answer format: 0000 at normal answer

CANCEL

Cancels an error.

Command format: CANCEL

Command data: None

Answer format: 0000 at normal answer
MODE
Selects a mode.

Command format: MODE

Command data: Mode-No
Mode-No = Mode specification No.
 1: Teach mode
 2: Play mode

Answer format: 0000 at normal answer

The MODE command can be used when the external mode switch is enabled on the OPERATING CONDITION window.

CYCLE
Selects cycle.

Command format: CYCLE

Command data: Cycle-No
Cycle-No = Cycle specification No.
 1: Step
 2: 1 cycle
 3: Auto

Answer format: 0000 at normal answer

SVON
Turns servo power supply ON/OFF.
To turn ON/OFF the servo power supply by this command, connect the external servo ON (EXSVON) signal 29 of the input terminal block (MTX) for the manipulator, to 30.

Command format: SVON
3.2 Command Details

Command data: Data

Data = Specification of servo power supply ON/OFF status

0: OFF
1: ON

Answer format: 0000 at normal answer

HLOCK

Sets an interlock between the programming pendant and I/O operation signals. While the interlock is ON, all operations except the following are prohibited.

- Emergency stop from the programming pendant
- Input signals except I/O mode change, external start, external servo ON, cycle change, I/O prohibited, PP/PANEL prohibited, and master call

HLOCK is invalid while the programming pendant is in the edit mode or accessing to a file for other function.

Command format: HLOCK

Command data: Data

Data = Interlock status setting

0: OFF
1: ON

Answer format: 0000 at normal answer

MDSP

Receives message data and displays the message in the remote display of the programming pendant. If the currently shown display is not the remote display, it is forcibly changed to the remote display to display the MDSP command message.

Command format: MDSP

Command data: Data

Data = Message to be displayed (Characters up to 30 bytes)

Answer format: 0000 at normal answer
CGROUP

Changes an objective control group of various commands used in the host control function. The DX100 can support multiple number of manipulators and stations. In this case, CGROUP is used when any control group for commands such as RPOSJ is to be changed.

When the power supply is started up, robot 1, base 1, and station 1 (when a base and a stations exist) are specified.

Command format: CGROUP

Command data: Data-1, Data-2

Data-1 = Robot control group specification

A control group can be specified according to the data shown below. However, the following settings cannot be made.

- Selection of control axis which does not exist
- Specification of multiple number of robot

In a system with a base axis (such as travel axis), when the manipulator with this base axis is specified, this base axis is also automatically specified.

![Diagram of control group specification](image)
Data-2 = Station control group specification

A control group can be specified according to the following data. However, the following settings cannot be made.

- Selection of control axis which does not exist
- Specification of multiple number of station

CTASK (OPTIONAL)

Changes the task for control in the host control function.

When the power supply is started up or in a system where an independent control is not allowed, CTASK is to be used as follows.

- When the power supply is started up, a master task is selected as a task to be controlled.
- CTASK cannot be used in a system where an independent control is not allowed.

Command format: CTASK
3 Transmission Procedure
3.2 Command Details

Command data: Data

\[
\text{Data} = \text{Specified task} \\
0: \text{Master task} \\
1: \text{Sub 1 task} \\
2: \text{Sub 2 task} \\
\vdots \\
15: \text{Sub 15 task}
\]

Answer format: 0000 at normal answer

3.2.2.2 Start-Up System Command

START

Starts a job.

If a job name is specified for an operand, the execution is started from the beginning of the job. If no job name is specified, the execution is started from the current line number of the set execution job.

Command format: START

Command data: Job-Name (Can be omitted.)

Job-Name = Starting job name

Answer format: 0000 at normal answer

MOVJ

Moves a manipulator to a specified coordinate position in joint motion.

Command format: MOVJ

Command data: Data-1, Data-2, \ldots, Data-16 (For robots with 6 axes or less)

Data-1 = Motion speed (0.01 to 100.0 %)
3.2 Command Details

Data-2 = Coordinate specification
- 0: Base coordinate
- 1: Robot coordinate
- 2: User coordinate 1
- ... (up to 65: User coordinate 64)

Data-3 = X coordinate value (unit: mm, significant 3 decimal points)
Data-4 = Y coordinate value (unit: mm, significant 3 decimal points)
Data-5 = Z coordinate value (unit: mm, significant 3 decimal points)
Data-6 = Wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-7 = Wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-8 = Wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-9 = Type
 * Data of the type are represented by the following bit data coded into a decimal number.

Data-10 = Tool No. (0 to 63)
Data-11 = Number of 7th axis pulses (for travel axis, unit: mm)
Data-12 = Number of 8th axis pulses (for travel axis, unit: mm)
Data-13 = Number of 9th axis pulses (for travel axis, unit: mm)
Data-14 = Number of 10th axis pulses
Data-15 = Number of 11th axis pulses
3 Transmission Procedure
3.2 Command Details

Data-16 = Number of 12th axis pulses

- In a system without external axis, Data-11 to Data-16 should be set to “0”.
- If a specified user coordinate is not defined, an error occurs.
- For 7-axis robots, the elbow angle posture Re is inserted between Data-8 (Wrist angle Rz coordinate value) and Data-9 (Type). Therefore, the numbers of Data-9 and later are increased by 1 and the final data is Data-17.

Answer format: 0000 at normal answer
3.2 Command Details

MOVL

Moves a manipulator to a specified coordinate position in linear motion.

Command format: MOVL

Command data: Data-1, Data-2, ⋯, Data-17 (For robots with 6 axes or less)

- **Data-1** = Motion speed selection
 - 0: V (speed)
 - 1: VR (posture speed)

- **Data-2** = Motion speed (0.1 to ⋯ mm/s, 0.1 to ⋯ °/s)

- **Data-3** = Coordinate specification
 - 0: Base coordinate
 - 1: Robot coordinate
 - 2: User coordinate 1
 - ⋯
 - 65: User coordinate 64

- **Data-4** = X coordinate value (unit: mm, significant 3 decimal points)

- **Data-5** = Y coordinate value (unit: mm, significant 3 decimal points)

- **Data-6** = Z coordinate value (unit: mm, significant 3 decimal points)

- **Data-7** = Wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)

- **Data-8** = Wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)

- **Data-9** = Wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)

- **Data-10** = Type
 - Data of the type are represented by the following bit data coded into a decimal number.

```
D5 D4 D3 D2 D1 D0
```

- 0 : Flip 1 : No flip
- 0 : Upper arm 1 : Lower arm
- 0 : Front 1 : Back
- 0 : R<180 1 : R>=180
- 0 : T<180 1 : T>=180
- 0 : S<180 1 : S>=180
3 Transmission Procedure

3.2 Command Details

Data-11 = Tool No. (0 to 63)
Data-12 = Number of 7th axis pulses (for travel axis, unit: mm)
Data-13 = Number of 8th axis pulses (for travel axis, unit: mm)
Data-14 = Number of 9th axis pulses (for travel axis, unit: mm)
Data-15 = Number of 10th axis pulses
Data-16 = Number of 11th axis pulses
Data-17 = Number of 12th axis pulses

- In a system without external axis, Data-12 to Data-17 should be set to “0”.
- If a specified user coordinate is not defined, an error occurs.
- For 7-axis robots, the elbow angle posture Re is inserted between Data-9 (Wrist angle Rz coordinate value) and Data-10 (Type). Therefore, the numbers of Data-10 and later are increased by 1 and the final data is Data-18.

Answer format: 0000 at normal answer

IMO V

Moves a manipulator from the current position for a specified coordinate incremental value in linear motion.

Command format: IMOV

Command data: Data-1, Data-2, ..., Data-17 (For robots with 6 axes or less)
Data-1 = Motion speed selection
 0: V (speed)
 1: VR (posture speed)
Data-2 = Motion speed (0.1 to 0.001 mm/s, 0.1 to 0.001 °/s)
Data-3 = Coordinate specification
 0: Base coordinate
 1: Robot coordinate
 2: User coordinate 1
 ...
 65: User coordinate 64
 66: Tool coordinate
Data-4 = X coordinate incremental value (unit: mm, significant 3 decimal points)
3 Transmission Procedure

3.2 Command Details

Data-5 = Y coordinate incremental value (unit: mm, significant 3 decimal points)
Data-6 = Z coordinate incremental value (unit: mm, significant 3 decimal points)
Data-7 = Wrist angle Rx coordinate incremental value (unit: degree (°), significant 4 decimal points)
Data-8 = Wrist angle Ry coordinate incremental value (unit: degree (°), significant 4 decimal points)
Data-9 = Wrist angle Rz coordinate incremental value (unit: degree (°), significant 4 decimal points)
Data-10 = Reserved
Data-11 = Tool No. (0 to 63)
Data-12 = Number of 7th axis pulses (for travel axis, unit: mm)
Data-13 = Number of 8th axis pulses (for travel axis, unit: mm)
Data-14 = Number of 9th axis pulses (for travel axis, unit: mm)
Data-15 = Number of 10th axis pulses
Data-16 = Number of 11th axis pulses
Data-17 = Number of 12th axis pulses

- In a system without external axis, Data-12 to Data-17 should be set to "0".
- If a specified user coordinate is not defined, an error occurs.
- For 7-axis robots, the elbow angle posture Re is inserted between Data-9 (Wrist angle Rz coordinate incremental value) and Data-10 (Reserved). Therefore, the numbers of Data-10 and later are increased by 1 and the final data is Data-18.

Answer format: 0000 at normal answer
3 Transmission Procedure
3.2 Command Details

PMOVJ

Moves a manipulator to a specified pulse position in joint motion.

Command format: PMOVJ

Command data: Data-1, Data-2, ⋮, Data-14 (For robots with 6 axes or less)

- Data-1 = Motion speed (0.01 to 100.0 %)
- Data-2 = Number of S-axis pulses
- Data-3 = Number of L-axis pulses
- Data-4 = Number of U-axis pulses
- Data-5 = Number of R-axis pulses
- Data-6 = Number of B-axis pulses
- Data-7 = Number of T-axis pulses
- Data-8 = Tool No. (0 to 63)
- Data-9 = Number of 7th axis pulses
- Data-10 = Number of 8th axis pulses
- Data-11 = Number of 9th axis pulses
- Data-12 = Number of 10th axis pulses
- Data-13 = Number of 11th axis pulses
- Data-14 = Number of 12th axis pulses

- In a system without external axis, Data-9 to Data-14 should be set to “0”.
- For 7-axis robots, the number of pulses of the E-axis is inserted between Data-7 (Number of T-axis pulses) and Data-8 (Tool No.). Therefore, the numbers of Data-8 and later are increased by 1 and the final data is Data-15.

Answer format: 0000 at normal answer

PMOVL

Moves a manipulator to a specified pulse position in linear motion.

Command format: PMOVL

Command data: Data-1, Data-2, ⋮, Data-15 (For robots with 6 axes or less)

- Data-1 = Motion speed selection
 - 0: V (speed)
 - 1: VR (posture speed)
3.2 Command Details

Data-2 = Motion speed (0.1 to \(\ldots \) mm/s, 0.1 to \(\ldots \) \(\cdot \) °/s)

Data-3 = Number of S-axis pulses

Data-4 = Number of L-axis pulses

Data-5 = Number of U-axis pulses

Data-6 = Number of R-axis pulses

Data-7 = Number of B-axis pulses

Data-8 = Number of T-axis pulses

Data-9 = Tool No. (0 to 63)

Data-10 = Number of 7th axis pulses

Data-11 = Number of 8th axis pulses

Data-12 = Number of 9th axis pulses

Data-13 = Number of 10th axis pulses

Data-14 = Number of 11th axis pulses

Data-15 = Number of 12th axis pulses

- In a system without external axis, Data-10 to Data-15 should be set to "0".
- For 7-axis robots, the number of pulses of the E-axis is inserted between Data-8 (Number of T-axis pulses) and Data-9 (Tool No.). Therefore, the numbers of Data-9 and later are increased by 1 and the final data is Data-16.

Answer format: 0000 at normal answer

3.2.2.3 Editing System Commands

DELETE

Deletes a specified job.

Command format: DELETE

Command data: Job-Name

Job-Name = *

 = Job name to be deleted

If Job-Name is specified with "*", the command DELETE deletes all jobs which are currently registered.

If Job-Name is specified with the job name to be deleted, the command DELETE deletes only the specified job.

Answer format: 0000 at normal answer
3 Transmission Procedure
3.2 Command Details

CVTRJ (Optional)

Converts a specified job to a relative job of a specified coordinate.

Command format: CVTRJ

Command data: Data-1, Data-2
Data-1 = Name of job to be converted
Data-2 = Conversion coordinate system specification
 0: Base coordinate
 1: Robot coordinate
 2: User coordinate 1

 65: User coordinate 64

If the specified user coordinate is not defined, an error answer is sent back.

Answer format: 0000 at normal answer

NOTE

The CVTRJ command can be used when the relative job function is enabled.

CVTSJ (Optional)

Converts a specified job to a standard job (pulse job) in a specified converting method.

Command format: CVTSJ

Command data: Data-1, Data-2, Data-3
Data-1 = Name of job to be converted
Data-2 = Converting method specification
 0: Previous step regarded (B-axis sign same)
 1: Type regarded
 2: Previous step regarded (R-axis travel amount minimum)
3 Transmission Procedure
3.2 Command Details

Data-3 = Reference position variable. Position variable No. indicating the first step conversion reference position when the previous step is regarded

Answer format: 0000 at normal answer

NOTE
The CVTSJ command can be used when the relative job function is enabled.

WUFRAME

Writes a user coordinate data to a specified user coordinate system.

Command format: WUFRAME

Command data: Data-1, Data-2, ..., Data-29

- Data-1 = User coordinate No.
 - 2: User coordinate 1
 - ...
 - 65: User coordinate 64

- Data-2 = ORG X coordinate value (unit: mm, significant 3 decimal points)
- Data-3 = ORG Y coordinate value (unit: mm, significant 3 decimal points)
- Data-4 = ORG Z coordinate value (unit: mm, significant 3 decimal points)
- Data-5 = ORG wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
- Data-6 = ORG wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
- Data-7 = ORG wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
- Data-8 = ORG type
- Data-9 = XX X coordinate value (unit: mm, significant 3 decimal points)
- Data-10 = XX Y coordinate value (unit: mm, significant 3 decimal points)
- Data-11 = XX Z coordinate value (unit: mm, significant 3 decimal points)
- Data-12 = XX wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
- Data-13 = XX wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)

3 Transmission Procedure
3.2 Command Details

Data-14 = XX wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-15 = XX type
Data-16 = XY X coordinate value (unit: mm, significant 3 decimal points)
Data-17 = XY Y coordinate value (unit: mm, significant 3 decimal points)
Data-18 = XY Z coordinate value (unit: mm, significant 3 decimal points)
Data-19 = XY wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-20 = XY wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-21 = XY wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
Data-22 = XY type
Data-23 = Tool Number (0 to 63)
Data-24 = Number of 7th axis pulses (for travel axis, unit: mm)
Data-25 = Number of 8th axis pulses (for travel axis, unit: mm)
Data-26 = Number of 9th axis pulses (for travel axis, unit: mm)
Data-27 = Number of 10th axis pulses
Data-28 = Number of 11th axis pulses
Data-29 = Number of 12th axis pulses

- ORG, XX, and XY coordinates are written in the base coordinate system.
- In a system without external axis, Data-24 to Data-29 should be set to "0".
- If the group axis of the specified user coordinate system is not R1, an error answer is sent back.
- For base-axis data of ORG, XX, and XY, the same data should be used.
- Data of the type are represented by the following bit data coded into a decimal number.

```
D5 D4 D3 D2 D1 D0
0 : Flip           1 : No flip
0 : Upper arm     1 : Lower arm
0 : Front         1 : Back
0 : R<180         1 : R>=180
0 : T<180         1 : T>=180
0 : S<180         1 : S>=180
```

- For 7-axis robots, this command cannot be used.

Answer format: 0000 at normal answer
3. Transmission Procedure
3.2 Command Details

LOADV

Receives variable data from a host computer and writes it in a specified variable.

Command format: LOADV

Command data format 1: (When the type of variables specified with the command data is 0, 1, 2, 3, or 7)
Command data: Data-1, Data-2, Data-3
Data-1 = Type of variables
 0: Byte type variables
 1: Integer type variables
 2: Double precision type variables
 3: Real number type variables
 7: String variable
Data-2 = Variable No.
Data-3 = Byte value / Integer value / Double precision type integer value / Real number value / String
 The value corresponding to the type of variables that is specified in Data-1 is written in.

Command data format 2: (When the type of variables specified with the command data is 4, 5, or 6)
Command data: Data-1, Data-2, ..., Data-12 (When all the robots controlled by DX100 have 6 axes or less)
Data-1 = Type of variables
 4: Robot axis position type variables
 5: Base axis position type variables
 6: Station axis position type variables (only pulse type)
Data-2 = Variable No.
Data-3 = Position data type (0: Pulse type, 1: Cartesian type)
(When the position data type is 0)
Data-4 = Number of S-axis pulses / Number of base 1st axis pulses / Number of station 1st axis pulses
Data-5 = Number of L-axis pulses / Number of base 2nd axis pulses / Number of station 2nd axis pulses
Data-6 = Number of U-axis pulses / Number of base 3rd axis pulses / Number of station 3rd axis pulses
Data-7 = Number of R-axis pulses / Number of base 4th axis pulses / Number of station 4th axis pulses
Data-8 = Number of B-axis pulses / Number of base 5th axis pulses / Number of station 5th axis pulses
3 Transmission Procedure
3.2 Command Details

Data-9 = Number of T-axis pulses / Number of base 6th axis pulses / Number of station 6th axis pulses
Data-10 = Tool No. (0 to 63)
Data-11 = Not exist
Data-12 = Not exist

- When the robots controlled by DX100 include a 7-axis robot, the number of pulses of robot's E-axis is inserted between Data-9 (Number of T-axis pulses) and Data-10 (Tool No.). Therefore, the tool number is Data-11.

(When the position data type is 1: Only robot axis position type variables / base axis position type variables exist.)

Data-4 = Coordinate data
0: Base coordinate
1: Robot coordinate
2: User coordinate 1
3: User coordinate 2
65: User coordinate 64
66: Tool coordinate
67: Master tool coordinate

Data-5 = X coordinate value / Base 1st axis Cartesian value (unit: mm, significant 3 decimal points)
Data-6 = Y coordinate value / Base 2nd axis Cartesian value (unit: mm, significant 3 decimal points)
Data-7 = Z coordinate value / Base 3rd axis Cartesian value (unit: mm, significant 3 decimal points)

Data-8 = Wrist angle Rx coordinate value (unit: degree (°), significant 4 decimal points)
Data-9 = Wrist angle Ry coordinate value (unit: degree (°), significant 4 decimal points)
Data-10 = Wrist angle Rz coordinate value (unit: degree (°), significant 4 decimal points)
3.2 Command Details

Data-11 = Type

- Data of the type are represented by the following bit data coded into a decimal number.

![Bit Data Diagram]

Data-12 = Tool No. (0 to 63)

- When the robots controlled by DX100 include a 7-axis robot, the elbow angle posture Re is inserted between Data-10 (Wrist angle Rz coordinate value) and Data-11 (Type). Therefore, the numbers of Data-11 and later are increased by 1 and the final data is Data-13.

Answer format: 0000 at normal answer
3.2.2.4 Job Selection System Command

SETMJ
Sets a specified job as a master job.
At the same time, the specified job is set as an execution job.

Command format: SETMJ

Command data: Job-Name
Job-Name = Job name to be set

Answer format: 0000 at normal answer

JSEQ
Sets a job name and a line No.

Command format: JSEQ

Command data: Data-1, Data-2
Data-1 = Job name to be set
Data-2 = Line No. to be set (0 to 9999)

Answer format: 0000 at normal answer
3.2.3 I/O Read/Write Function

3.2.3.1 Read-Out of I/O Signal Status
Reads out I/O signals.

Command format: IOREAD

Command data: Data-1, Data-2
Data-1 = Contact point No. to start read-out
Data-2 = The number of contact points to be read out
 • I/O data are output every eight contact points. Specify the number of contact points to be read out, in multiples of eight.

Answer format: Data-1, Data-2, ..., Data-N
Data-1 = Read-out data for the first eight contact points
Data-2 = Read-out data for the next eight contact points
 ...
 ...
Data-N = Read-out data for the last eight contact points
N = (Command data Data-2)/8. The command data Data-2 should be multiples of eight.

3.2.3.2 Write-in of I/O Signal Status
Writes in I/O signals.

Command format: IOWRITE

Command data: Data-1, Data-2, ..., Data-N
Data-1 = Contact point No. to start write-in
Data-2 = The number of contact points to be written in
Data-3 = Write-in data for the first eight contact points
Data-4 = Write-in data for the next eight contact points
 ...
 ...

3-36
3 Transmission Procedure
3.2 Command Details

Data-N = Write-in data for the last eight contact points

N = (Command data Data-2)/8+2. The command data Data-2 should be multiples of eight.

- I/O data are processed every eight contact points. Specify the number of contact points to be written-in, in multiples of eight.
- The IO signals can only be written to the network inputs (#25010 to #27567).

Answer format: 0000 at normal answer
3.3 Transmission Examples

3.3.1 Read-Out of Status for Mode, Cycle, etc

See and follow the figure below to read out each status of mode, cycle, etc.

```
Connect a socket
CONNECT Robot_access<CR><LF>
OK: DX Information Server (1.00).<CR><LF>
HOSTCTRL_REQUEST RSTATS 0<CR><LF>
OK: RSTATS<CR><LF>
162,0<CR>
Close a socket
```

3.3.2 Read-Out of I/O Signals for the DX100

See and follow the figure below to read out three bytes (24 bits) from #50010.

```
Connect a socket
CONNECT Robot_access<CR><LF>
OK: DX Information Server (1.00).<CR><LF>
HOSTCTRL_REQUEST IOREAD 9<CR><LF>
OK: IOREAD<CR><LF>
50010,24<CR>
0,1,0<CR>
Close a socket
```
3.3.3 Write-In of I/O Signals for the DX100

See and follow the figure below to write in three bytes (24 bits) from #25010.

Diagram:

1. **Connect a socket**
 - `CONNECT Robot_access<CR><LF>`
 - OK: DX Information Server (1.00).<CR><LF>

2. **Host computer**
 - HOSTCTRL_REQUEST IOWRITE 17<CR><LF>
 - OK: IORWRITE<CR><LF>

3. **DX100**
 - 25010,24,63,0,25<CR>
 - 0000<CR><LF>

4. **Close a socket**
3.3.4 Continuous Execution of Multiple Commands

See and follow the figure below to read out three bytes (24 bits) from #50010, following the "Read-Out of Status for Mode, Cycle, etc".

Connect a socket

CONNECT Robot_access Keep-Alive:2.<CR><LF>

OK: DX Information Server (1.00) Keep-Alive:2.<CR><LF>

HOSTCTRL_REQUEST RSTATS 0<CR><LF>

OK: RSTATS<CR><LF>

162,0<CR>

HOSTCTRL_REQUEST IOREAD 9<CR><LF>

OK: IOREAD<CR><LF>

50010,24<CR>

0,1,0<CR>

Close a socket
4 Function Checkout Procedure

4.1 Cable Connection Check

- Check that the cable is securely connected to the CN104 connector on the YCP01 board.
 - Check that the LED of the CN104 (green LED on the RIGHT) is lit or blinks.
- Check that the cable connector of the hub side is properly connected.
 - Check that the power supply for the hub is ON.
- Check the cable type.
 - In case of connecting the cable to the hub which cannot auto-detect MDI/MDI-X connection, check if the cable used is a straight cable.
 - In case of directly connecting the DX100 and host computer, check if the cable used is a crossing cable.
- Check the baud rates of the hub and the host computer.
 - At start-up of the DX100, the DX100 auto-detects 10/100 Mbps for the DX100 baud rate. Communications, therefore, cannot be performed normally if the baud rate is changed after start-up of the DX100. Before start-up of the DX100, verify that the destination (HUB or host computer) of cable connection operates normally.
4.2 Connection Check with Lower Protocol

In the TCP/IP network, it is possible to check if the IP packets are transmitted to the communication destinations using the ping command from the host computer. Start the command prompt in the Windows 2000/XP, then input the IP address after entering “ping”. If the communication is successfully done, the window displays as follows:

```
C:\>ping 192.168.255.1
Pinging 192.168.255.1 with 32 bytes of data:
Reply from 192.168.255.1: bytes=32 time<10ms TTL=255
Pinging 192.168.255.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.255.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>
```

In case of communication failure, the window displays as shown below. In this case, check the cable connections, network settings of the host computer, and the Ethernet communication settings of the DX100 once again.

```
C:\>ping 192.168.255.1
Pinging 192.168.255.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.255.1:
Packets: Sent = 4, Received = 4, Lost = 4 (100% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>
```
4.3 Connection Check with telnet

Since the Ethernet server function uses the TCP port 80, it can be checked by the telnet command from the host computer whether the Ethernet server function operates normally.

In the Windows2000/XP, the command prompt can be started up to check the connection as follows:

1. Enter "telnet IP address 80".

 C:\>telnet 192.168.255.1 80

2. The display switches to the window for telnet.

3. Enter "CONNECT Robot_access" (At normal settings, an echo is not returned).

4. Enter "HOSTCTRL_REQUEST RSTATS 0".

 HOSTCTRL_REQUEST RSTATS 0

5. The check is completed when the response to command/answer is displayed.

 HOSTCTRL_REQUEST RSTATS 0
 OK: RSTATS
 194,0
5 Restrictions

5.1 Automatic Close of Socket

In the Ethernet server function, the socket is automatically closed in the following cases to prevent the socket connection from remaining unreasonably.

- When the command execution is completed at a single command execution
- When the command execution for the specified number of times is completed at multiple commands execution
- When the command is not input for a given amount of time (approx. 30 seconds) at multiple commands execution
- When the processing abends (Including the case that the interpreter message is sent back.)

When the socket is closed, connect the socket again.

5.2 Unavailable Command/Function

The following commands/functions are not enabled in the Ethernet server function.

- JWAIT
- Load/Save of Files

Use the DX100 Ethernet function to enable these commands/files.

The FTP function (paid option) which is an advanced feature of the DX100 Ethernet function, can be used for load/save of files.

5.3 Restrictions on the Number of Sockets

The Ethernet server function, being different from the DX100 Ethernet function, adopts TCP, and arbitrary number can be used for the port on the host computer side. Furthermore, the Ethernet server function can perform faster data transmission compared to the DX100 Ethernet function. Therefore, if a socket is repeatedly created/closed in a small amount of time in the setting that allows the use of arbitrary unoccupied port for the port on the host computer side, many sockets remain waiting for time-out. Since the number of available sockets is limited, if sockets are used up to this limit, a new socket cannot be created until the sockets time out.

To avoid this, perform the following procedures if necessary.

- Perform multiple commands execution, not single command execution.
- Use a fixed number for the port number on the host computer side.
- (If sockets are insufficient on the personal computer side) Abortive connection release of a socket is forcibly executed.
5.4 Restrictions on Text Length

The DX100 data transmission function forms the basis of the Ethernet server function.

The text length of the Ethernet server function is therefore restricted to 256 bytes as is the DX100 data transmission function.

If command data are transmitted from the host computer to the DX100, the message exceeding 256 bytes cannot be sent.

If an answer is sent back to the host computer from the DX100, the message exceeding 256 bytes are split into several packets and sent back.

5.5 Restrictions on Access from Multiple Host Computers

Communication resources of the DX100 are occupied by the host computer during the period from when the host computer sends a START request (CONNECT Robot_access<CR><LF>) until when the DX100 sends back an answer. This situation makes it impossible to receive a START request from other host computers (or other applications of the foregoing host computer). Therefore the START requests from the other host computers are forced to wait until an earlier request is completed.

Especially if a START request is specified to infinite execution (CONNECT Robot_access Keep-Alive:-1<CR><LF>), START requests from the other host computers cannot be received. If access from several host computers is required, build a system so that a particular application does not occupy the communication resources of the DX100.
DX100 OPTIONS
INSTRUCTIONS

FOR ETHERNET SERVER FUNCTION:
ADVANCED FEATURE OF DX100 ETHERNET FUNCTION

HEAD OFFICE
2-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
Phone +81-93-645-7703 Fax +81-93-645-7802

YASKAWA America Inc. (Motoman Robotics Division)
100 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA Europe GmbH (Robotics Division)
Yaskawastrasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Nordic AB
Verkstadsgatan 2, Box 504, SE-385 25 Torsas, Sweden
Phone +46-480-417-800 Fax +46-486-414-10

YASKAWA Electric (China) Co., Ltd.
22F, One Corporate Avenue, No.222, Hubin Road, Huangpu District, Shanghai 200021, China
Phone +86-21-5385-2200 Fax +86-21-5385-3299

YASKAWA SHOUKGANG ROBOT Co. Ltd.
No7 Yongchang North Road, Beijing E&T Development Area, China 100176
Phone +86-10-6788-2558 Fax +86-10-6788-2878

YASKAWA India Private Ltd. (Robotics Division)
#426, Udyog Vihar, Phase- IV, Gurgaon, Haryana, India
Phone +91-124-475-8500 Fax +91-124-475-8542

YASKAWA Electric Korea Corporation
35F, Three IFC, 10 Gujkjegeumyung-ro, Yeongdeungpo-gu, Seoul, Korea 07326
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric Taiwan Corporation
12F, No.207, Sec. 3, Beishin Rd., Shindian District, New Taipei City 23143, Taiwan
Phone +886-2-8913-1333 Fax +886-2-8913-1513

YASKAWA Electric (Singapore) PTE Ltd.
151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6282-3003 Fax +65-6289-3003

YASKAWA Electric (Thailand) Co., Ltd.
59,1st-5th Floor, Flourish Building, Sol Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, THAILAND
Phone +66-2-017-0099 Fax +66-2-017-0199

PT. YASKAWA Electric Indonesia
Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia
Phone +62-21-2982-6470 Fax +62-21-2982-6741

Specifications are subject to change without notice
for ongoing product modifications and improvements.