Motoman XRC Controller

Sensor Function Manual
for UP/SKX-Series Robots

Part Number: 142645-1
Release Date: August 31, 2003
Document Version: 2
Document Status: Final
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 About this Document</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Reference to Other Documentation</td>
<td>1-1</td>
</tr>
<tr>
<td>1.3 Customer Service Information</td>
<td>1-1</td>
</tr>
<tr>
<td>2 SAFETY</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Standard Conventions</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 General Safeguarding Tips</td>
<td>2-4</td>
</tr>
<tr>
<td>2.4 Mechanical Safety Devices</td>
<td>2-4</td>
</tr>
<tr>
<td>2.5 Installation Safety</td>
<td>2-5</td>
</tr>
<tr>
<td>2.6 Programming Safety</td>
<td>2-5</td>
</tr>
<tr>
<td>2.7 Operation Safety</td>
<td>2-6</td>
</tr>
<tr>
<td>2.8 Maintenance Safety</td>
<td>2-7</td>
</tr>
<tr>
<td>3 SENSOR FUNCTION</td>
<td></td>
</tr>
<tr>
<td>1 Sensor Function</td>
<td>1-1</td>
</tr>
<tr>
<td>2 Wiring</td>
<td>2-1</td>
</tr>
<tr>
<td>3 Real-time Path Correction Function</td>
<td>3-1</td>
</tr>
<tr>
<td>4 Real-time Speed Correction Function</td>
<td>4-1</td>
</tr>
<tr>
<td>5 Shift Amount Creation Function</td>
<td>5-1</td>
</tr>
<tr>
<td>6 Search Function</td>
<td>6-1</td>
</tr>
<tr>
<td>7 Calibration</td>
<td>7-1</td>
</tr>
<tr>
<td>8 Sensor Output Status Display</td>
<td>8-1</td>
</tr>
<tr>
<td>9 Sensor Parameters</td>
<td>9-1</td>
</tr>
<tr>
<td>10 Alarm List</td>
<td>10-1</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

1.1 About this Document
This manual provides instructions for Sensor Function and contains the following sections:

SECTION 1 – INTRODUCTION
General information about this manual, a list of reference documents, and customer service information.

SECTION 2 – SAFETY
Provides information for the safe use and operation of Motoman products.

SECTION 3 – SENSOR FUNCTION
Provides detailed instructions to utilize the Sensor Function.

1.2 Reference to Other Documentation
For additional information refer to the following:

- Concurrent I/O & Parameters Manual (P/N 142102-1)
- Operator’s Manual for General Purpose (P/N 142099-1)
- Operator’s Manual for Handling (P/N 142100-1)
- Operator’s Manual for Spot Welding (P/N 142101-1)
- Operator’s Manual for Arc Welding (P/N 142098-1)
- Motoman UP6, XRC Manipulator Manual (P/N 142104-1)
- Motoman SK16X, XRC Manipulator Manual (P/N 142105-1)
- Motoman SK45X, XRC Manipulator Manual (P/N 142106-1)
- Motoman UP130, XRC Manipulator Manual (P/N 142107-1)

1.3 Customer Service Information
If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have the following information ready before you call:

- Robot Type (UP6, SK16X, etc.)
- Application Type (welding, handling, etc.)
- Robot Serial Number (located on the back side of the robot arm)
- Robot Sales Order Number (located on back side of XRC controller)
SECTION 2
SAFETY

2.1 Introduction

It is the purchaser's responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. **The robot must not be operated by personnel who have not been trained!**

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.

This safety section addresses the following:
- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming Safety (Section 2.6)
- Operation Safety (Section 2.7)
- Maintenance Safety (Section 2.8)
2.2 Standard Conventions

This manual includes information essential to the safety of personnel and equipment. As you read through this manual, be alert to the four signal words:

- DANGER
- WARNING
- CAUTION
- NOTE

Pay particular attention to the information provided under these headings which are defined below (in descending order of severity).

DANGER!
Information appearing under the DANGER caption concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

WARNING!
Information appearing under the WARNING caption concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

CAUTION!
Information appearing under the CAUTION caption concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

NOTE: Information appearing in a NOTE caption provides additional information which is helpful in understanding the item being explained.
2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- In accordance with ANSI/RIA R15.06, section 6.13.4 and 6.13.5, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety measures are available:

- Safety fences and barriers
- Light curtains
- Door interlocks
- Safety mats
- Floor markings
- Warning lights

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 **Installation Safety**

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 **Programming Safety**

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Programming tips are as follows:

- Any modifications to PART 1 of the MRC controller PLC can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1. Making any changes without the written permission of Motoman will **VOID YOUR WARRANTY**!
- Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. **YOUR WARRANTY WILL BE VOID** if you use these special passwords.
- Back up all programs and jobs onto a floppy disk whenever program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- The concurrent I/O (Input and Output) function allows the customer to modify the internal ladder inputs and outputs for maximum robot performance. Great care must be taken when making these modifications. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations that may damage the robot or other parts of the system.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
• Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.

• Be sure that all safeguards are in place.

• Check the E-STOP button on the teach pendant for proper operation before programming.

• Carry the teach pendant with you when you enter the workcell.

• Be sure that only the person holding the teach pendant enters the workcell.

• Test any new or modified program at low speed for at least one full cycle.

2.7 Operation Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Operation tips are as follows:

• Be sure that only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories are permitted to operate this robot system.

• Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.

• Inspect the robot and work envelope to ensure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.

• Ensure that all safeguards are in place.

• Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.

• Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.

• The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.

• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

• All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
2.8 Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. Maintenance tips are as follows:

- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to operate the system.
- Back up all your programs and jobs onto a floppy disk whenever program changes are made. A backup must always be made before any servicing or changes are made to options, accessories, or equipment to avoid loss of information, programs, or jobs.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the cell.
- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Be sure all safeguards are in place.
- Use proper replacement parts.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller, external servo box, and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot. This includes controller parameters, ladder parts 1 and 2, and I/O (Input and Output) modifications. Check and test all changes at slow speed.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

The YASNAC XRC operator’s manuals above correspond to specific usage. Be sure to use the appropriate manual.
This manual explains the sensor function of the YASNAC XRC system and general operations. Read this manual carefully and be sure to understand its contents before handling the YASNAC XRC.

General items related to safety are listed in Section 1: Safety of the Setup Manual. To ensure correct and safe operation, carefully read the Setup Manual before reading this manual.

Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product's warranty.
NOTES FOR SAFE OPERATION

Read this manual carefully before installation, operation, maintenance, or inspection of the YASNAC XRC.

In this manual, the Notes for Safe Operation are classified as “WARNING”, “CAUTION”, “MANDATORY”, or "PROHIBITED".

- **WARNING**: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **CAUTION**: Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

- **MANDATORY**: Always be sure to follow explicitly the items listed under this heading.

- **PROHIBITED**: Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE: To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “CAUTION” and “WARNING”.
Before operating the manipulator, check that servo power is turned off when the emergency stop buttons on the playback panel or programming pendant are pressed. When the servo power is turned off, the SERVO ON READY lamp on the playback panel and the SERVO ON LED on the programming pendant are turned off.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn the servo power ON.

Injury may result from unintentional or unexpected manipulator motion.

Always set the Teach Lock before entering the robot work envelope to teach a job.

Operator injury can occur if the Teach Lock is not set and the manipulator is started from the playback panel.

Observe the following precautions when performing teaching operations within the working envelope of the manipulator:
- View the manipulator from the front whenever possible.
- Always follow the predetermined operating procedure.
- Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

Confirm that no persons are present in the manipulator’s work envelope and that you are in a safe location before:
- Turning on the YASNAC XRC power
- Moving the manipulator with the programming pendant
- Running check operations
- Performing automatic operations

Injury may result if anyone enters the working envelope of the manipulator during operation. Always press an emergency stop button immediately if there are problems. The emergency stop button is located on the right side of both the YASNAC XRC playback panel and programming pendant.
CAUTION

- Perform the following inspection procedures prior to conducting manipulator teaching. If problems are found, repair them immediately, and be sure that all other necessary processing has been performed.
 - Check for problems in manipulator movement.
 - Check for damage to insulation and sheathing of external wires.

- Always return the programming pendant to the hook on the XRC cabinet after use.

 The programming pendant can be damaged if it is left in the manipulator’s work area, on the floor, or near fixtures.

- Read and understand the Explanation of the Alarm Display in the setup manual before operating the manipulator.

Definition of Terms Used Often in This Manual
The MOTOMAN manipulator is the YASKAWA industrial robot product.
The manipulator usually consists of the controller, the playback panel, the programming pendant, and supply cables.
The MOTOMAN manipulator is the YASKAWA industrial robot product.
In this manual, the equipment is designated as follows.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YASNAC XRC Controller</td>
<td>XRC</td>
</tr>
<tr>
<td>YASNAC XRC Playback Panel</td>
<td>Playback Panel</td>
</tr>
<tr>
<td>YASNAC XRC Programming Pendant</td>
<td>Programming Pendant</td>
</tr>
</tbody>
</table>
Descriptions of the programming pendant and playback panel keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td></td>
</tr>
<tr>
<td>Character Keys</td>
<td>The keys which have characters printed on them are denoted with []. ex. [ENTER]</td>
</tr>
<tr>
<td>Symbol Keys</td>
<td>The keys which have a symbol printed on them are not denoted with [] but depicted with a small picture. ex. page key</td>
</tr>
<tr>
<td>Axis Keys</td>
<td>“Axis Keys” and “Number Keys” are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Number Keys</td>
<td></td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a “+” sign between them, ex. [SHIFT]+[COORD]</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. ex. {JOB}</td>
</tr>
</tbody>
</table>

Playback Panel Buttons | Playback panel buttons are enclosed in brackets. ex. [TEACH] on the playback panel |

Description of the Operation Procedure

In the explanation of the operation procedure, the expression "Select • • • " means that the cursor is moved to the object item and the SELECT key is pressed.
1 Sensor Function
 1.1 Real-time Path Correction Function ... 1-1
 1.2 Real-time Speed Correction Function ... 1-1
 1.3 Shift Amount Creation Function ... 1-1
 1.4 Search Function ... 1-2

2 Wiring
 2.1 Analog Input Signal Connection .. 2-1
 2.2 Direct IN Signal Connection ... 2-3

3 Real-time Path Correction Function
 3.1 Correction Amount ... 3-2
 3.2 Correction Direction ... 3-3
 3.2.1 Tool Coordinate ... 3-3
 3.2.2 Forward Direction .. 3-4
 3.2.3 Optional Direction .. 3-4
 3.3 Monitoring of Sensor Input Voltage .. 3-5
 3.3.1 Sensor Monitor Condition File .. 3-5
 3.3.2 Display of Sensor Monitor Condition File 3-6
 3.3.3 Editing of Sensor Monitor Condition File 3-6
 3.4 Instructions for the Real-time Path Correction Function 3-7
 3.4.1 ACORON and SACORON Instructions .. 3-7
 ■ Registration of the ACORON Instruction 3-8
 3.4.2 ACOROF and SACOROF Instructions ... 3-9
 ■ Registration of the ACOROF Instruction 3-9
 3.4.3 ACORCH and SACORCH Instructions ... 3-10
 ■ Registration of the ACORCH Instruction 3-11

4 Real-time Speed Correction Function
 4.1 Override Ratio .. 4-2
 4.2 Instructions for the Real-time Speed Correction Function 4-3
 4.2.1 AOVRON Instruction ... 4-3
 ■ Registration of the AOVRON Instruction 4-3
 4.2.2 AOVROF Instruction ... 4-4
 ■ Registration of the AOVROF Instruction 4-4

5 Shift Amount Creation Function
 5.1 Shift Amount .. 5-1
 5.2 Coordinate System and Sensor Input
 Channel for Shift Amount Creation .. 5-1
 5.3 GETSFT Instruction .. 5-2
 5.3.1 Registration of the GETSFT Instruction 5-3
6 Search Function
 6.1 Detection Results .. 6-2
 6.2 Search Operation with Multiple Channels 6-2
 6.3 ASRCH Instruction ... 6-3
 6.3.1 Registration of the ASRCH Instruction 6-4

7 Calibration
 7.1 SCALIB Instruction ... 7-1
 7.1.1 Registration of the SCALIB Instruction 7-2
 7.2 Entering an Offset Value 7-3
 7.3 All Channels Calibration 7-3

8 Sensor Output Status Display
 8.1 Calling Sensor Output Status Display 8-1
 8.2 Editing in Sensor Output Status Display 8-1
 8.3 Calibration of All Sensor Input Channels 8-2

9 Sensor Parameters (SxE)

10 Alarm List
1 Sensor Function

The sensor function corrects the manipulator path and speed, measures distance, and detects position using a sensor such as the displacement sensor or the torque sensor. The analog signals output from a sensor are connected to the XRC, and various controls are performed according to the input voltage. The signals from a sensor directly connect to the XRC, and therefore an external sequencer is not required. This allows easy and simple system construction, and minimizes the delay of response to the signals. The sensor function has the following various control functions to be used depending on the application.

• Real-time path correction function
• Real-time speed correction function
• Shift amount creation function
• Search function

1.1 Real-time Path Correction Function

The real-time path correction function corrects the motion path of the manipulator according to the input signals from a sensor. Normally, a manipulator moves along the taught path. However, when the manipulator cannot move along the taught path due to distortion or displacement of the workpiece, the sensor function detects the distortion or displacement in real-time and corrects the manipulator path accordingly to do the job.

1.2 Real-time Speed Correction Function

The real-time speed correction function corrects the motion speed of the manipulator according to the input signals from a sensor. Normally, a manipulator moves at the set speed in a job. However, when the work time for each workpiece differs, the sensor function detects the progress of work and moves the manipulator at its optimum speed.

1.3 Shift Amount Creation Function

The shift amount creation function computes the distance to a selected workpiece according to the input signals from a displacement sensor. The measurement of more than one position enables a three-dimensional shift when using the relative job conversion function.
1.4 Search Function

The search function moves a manipulator according to the input signal from a sensor, and stops the manipulator when the input signal reaches a designated level. The sensor monitors the manipulator operation, and stops the manipulator at the moment of completing the operation.

<Application Example> A manipulator performs a handling operation of panels.

1. The manipulator moves to the search starting position.

2. The manipulator moves to the goal position in the search operation at low-speed. When the manipulator comes to the position to take the panel, an input signal (Direct-IN signal) from the sensor turns ON, then the manipulator stops. At this moment, the difference between the search starting position and the detected position is calculated.
3. According to the calculated difference, the program is modified to proceed the operation.
1.4 Search Function
2.1 Analog Input Signal Connection

Connect analog output signals of each sensor to the analog input terminals on the optional base board. Connect the signals to the sensors in the following manner.

1. Provide an analog input cable for the connection between the sensor and the XRC. Connect the cables as shown below.
2. Turn OFF the main power supply by turning the breaker handle on the XRC to the OFF position.
3. Connect the sensor with an analog input cable to the analog input terminal (CN05) on the optional base board.
2.1 Analog Input Signal Connection

Analog Input Signal Connection Diagram

Sensor 1
- Analog voltage output
- Analog output GND

Sensor 2
- Analog voltage output
- Analog output GND

Sensor 3
- Analog voltage output
- Analog output GND

Sensor 4
- Analog voltage output
- Analog output GND

Sensor 5
- Analog voltage output
- Analog output GND

Sensor 6
- Analog voltage output
- Analog output GND

XCP02
- AIN 0
- GND
- AIN 1
- GND
- AIN 2
- GND
- AIN 3
- GND
- AIN 4
- GND
- AIN 5
- GND
- AIN 6
- GND
- AIN 7
- GND

Analog Input Signal Connection Diagram
2.2 Direct IN Signal Connection

Connect the sensor section to the servo control section for the transmission of the detection signals for the search function. When the search function is not used, this wiring is not necessary. Standard wiring was done before shipment. (Refer to Fig. 2). Change the wiring only when the direct IN signals are to be changed. If the signals are to be changed, rewire in the following manner.

1. Turn OFF the main power supply by turning the breaker handle on the XRC to the OFF position.
2. Disconnect the CN06 connector on the I/O contactor unit, and change the wiring.
3. Reconnect the CN06 connector to the original position on the I/O contactor unit.
Fig 2 Direct IN Signal Connection Diagram (Before Shipment)
3 Real-time Path Correction Function

The real-time path correction function corrects the motion path of the manipulator according to the input signal from a sensor. To start path correction, execute a real-time path correction start instruction (ACORON). To end it, execute a real-time path correction end instruction (ACOROF). During path correction, the manipulator moves in the motion instructed by a move instruction with the correction amount output from the sensor section. The averaging process*1 in the servo control section is not performed during path correction.

*1 To obtain a smooth travelling motion, processes such as averaging the travel amount of the manipulator are executed in the servo control section.

<Job Example>

```
001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 SCALIB TCH#(3)
005 ACORON TF TCH#(3) TV=0.000
006 MOVL V=100
007 ACORCH TCH#(3) TV=1.000
008 MOVL V=100
009 ACOROF
010 MOVL V=100
011 MOVJ VJ=25.00
012 END
```
3.1 Correction Amount

For the deviation of the analog input, the correction amount is calculated in the following formula.

• Where $V > V_{\text{nosens}} + V_{\text{offset}}$
 \[C_{\text{out}} = R \times (V - V_{\text{nosens}} - V_{\text{offset}}) \]

• Where $V_{\text{nosens}} + V_{\text{offset}} > V > -V_{\text{nosens}} + V_{\text{offset}}$
 \[C_{\text{out}} = 0 \]

• Where $V > -V_{\text{nosens}} + V_{\text{offset}}$
 \[C_{\text{out}} = R \times (V + V_{\text{nosens}} - V_{\text{offset}}) \]

C_{out} : Correction amount

R : Resolution

V : Input voltage

V_{nosens} : Dead zone

V_{offset} : Offset value
3.2 Correction Direction

The direction in which the path is to be corrected can be determined in the following three ways.

- Tool coordinate
- Forward direction
- Optional direction

The correction from the sensor is executed on the coordinates specified by ACORON and SACORON instructions (real-time path correction start instructions).

3.2.1 Tool Coordinate

The correction is performed using a tool mounted on the wrist flange of the manipulator as a reference point. Select one of the following three directions; the X-axis direction, the Y-axis direction, or the Z-axis direction.

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel (specify at registration of instruction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-axis direction</td>
<td>CH1</td>
</tr>
<tr>
<td>Y-axis direction</td>
<td>CH2</td>
</tr>
<tr>
<td>Z-axis direction</td>
<td>CH3</td>
</tr>
</tbody>
</table>
3.2 Correction Direction

3.2.2 Forward Direction

The correction is executed toward the forward direction of move instruction in execution.

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel (specify at registration of instruction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward direction</td>
<td>CH1</td>
</tr>
</tbody>
</table>

3.2.3 Optional Direction

The motion path is corrected in the direction determined by two reference points. (Not limited to the orthogonal coordinate system.)

<table>
<thead>
<tr>
<th>Correction Direction</th>
<th>Sensor Input Channel (specify at registration of instruction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction from REFP1 to REFP2 (Direction from SREFP1 to SREFP2)</td>
<td>CH1</td>
</tr>
<tr>
<td>Direction from REFP1 to REFP3 (Direction from SREFP1 to SREFP3)</td>
<td>CH2</td>
</tr>
<tr>
<td>Direction from REFP1 to REFP4 (Direction from SREFP1 to SREFP4)</td>
<td>CH3</td>
</tr>
</tbody>
</table>
3.3 Monitoring of Sensor Input Voltage

To prevent the manipulator from deviating excessively from its path, the analog signals are monitored during the path correction. When the path correction starts, the signals are monitored according to a specified sensor monitor condition file. When an error occurs, the manipulator moves according to the motion condition of the aforementioned file. In the sensor monitor condition file, the maximum voltage value and the minimum voltage value of each channel can be set. When the input voltage of an analog signal exceeds these values, an error occurs.

3.3.1 Sensor Monitor Condition File

<table>
<thead>
<tr>
<th>DATA</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENS MON COND</td>
<td>COND NO.</td>
<td>CHANNEL</td>
<td>MAX. VOL</td>
</tr>
<tr>
<td>1</td>
<td>CH01</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>CH02</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>CH03</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

- **COND NO. (1 to 16)**
 Displays the file number.
- **MAX. VOL, MIN. VOL (-10.000 to 10.000 [V])**
 The monitor conditions of analog input signal. Set for each sensor input channel.
 No monitoring for the channels whose maximum and minimum voltages are set to 0.
- **MOTION COND (0 to 2)**
 Specifies the motion condition when an error is detected.

0: Generates an alarm to stop the manipulator.
3.3 Monitoring of Sensor Input Voltage

1: Stops the path correction and moves the manipulator toward the taught steps. After the end of a step is detected by distance monitoring, the path correction restarts.

![Diagram showing path correction](image)

2: Stops the path correction, and moves the manipulator toward the taught steps keeping the amount of correction up to the previous step. When the end of the step is detected in the distance monitoring, the path correction restarts.

![Diagram showing path correction](image)

3.3.2 Display of Sensor Monitor Condition File

Operation

Select [ROBOT] under the top menu ➔ Select [SENS MON COND]

3.3.3 Editing of Sensor Monitor Condition File

Operation

Select an item to be changed ➔ Enter a value using the number keys ➔ Press [ENTER]
3.4 Instructions for the Real-time Path Correction Function

3.4.1 ACORON and SACORON Instructions

The ACORON and the SACORON are instructions to start the real-time path correction. Use the SACORON in a coordinated job.

<Format>

ACORON

TF

PSF

OPF

SCF#()

TCH#()

TV=

1. Correction coordinates
 Specifies the coordinate system where the path correction is performed. For details on each coordinate system, refer to Section 3.2 “Correction Direction”. The following coordinate systems can be selected.
 TF : Tool frame (Tool coordinate)
 PSF: Pass frame (Forward direction)
 OPF: Optional frame (Optional direction)

2. Sensor monitor condition file
 Sets a condition file when the input voltage from the sensor is monitored. When this setting is omitted, monitoring is not performed. For details on the file, refer to Section 3.3.1 “Sensor Monitor Condition File”.

3. Threshold channel No.
 Specifies a sensor input channel for path correction. For details on the input channels, refer to Section 3.2 “Correction Direction”.
 1 to 3: CH1 to CH3
 0 or No specification: The correction amounts of all the channels (directions) on the specified coordinate system are averaged to correct the path.

4. Threshold
 Sets a threshold for executing path correction.
 When this setting and the sensor input number are both omitted, the threshold is set to 0.000 [V]. When “0” is set for THRESHOLD CH, the threshold is set for all the channels.
 Unit: V
 Setting Range: -10.000 to 10.000
Registration of the ACORON Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]*1 ➔ Select {SENSOR}*2 ➔ Select {ACORON}*3 ➔ Press [SELECT]*4 ➔ Set the conditions in the detail edit display*5 ➔ Press [ENTER] two times

Explanation

*1 The instruction list dialog box appears.

*2 The sensor instruction list dialog box appears.

*3 An ACORON instruction appears in the input buffer line.

*4 The detail edit display appears.

<table>
<thead>
<tr>
<th>IN/OUT</th>
<th>CONTROL</th>
<th>DEVICE</th>
<th>MOTION</th>
<th>ARITH</th>
<th>SHIFT</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instruction List Dialog Box

Sensor Instruction List Dialog Box

Detail Edit Display

```
=> ACORON TF SCF#(1) TCH#(1) TV=0.000

1
```
3.4 Instructions for the Real-time Path Correction Function

*5 Set the correction conditions.
 • Editing in “CORRECT COORD”.
 Move the cursor to the “CORRECT COORD”, and press [SELECT]. The following selection dialog box appears.

Select a coordinate system for the correction.

• Editing other items
Select an item to be edited, and enter a value using the number keys.

3.4.2 ACOROF and SACOROF Instructions

The ACOROF and the SACOROF are instructions to end the real-time path correction. Use the SACOROF in a coordinated job.

<Format>

```
<ACOROF>
```

■ Registration of the ACOROF Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]*1 ➔ Select {SENSOR} *2 ➔ Select {ACOROF} *3 ➔ Press [ENTER]

Explanation

*1 The instruction list dialog box appears.

Instruction List Dialog Box
The sensor instruction list dialog box appears.

An ACOROF instruction appears in the input buffer line.

3.4.3 ACORCH and SACORCH Instructions

The ACORCH and the SACORCH are instructions to change the real-time path correction conditions.

<Format>

![Diagram of ACORCH instruction]

1. **Sensor monitor condition file**
 - Sets a condition file when the input voltage from the sensor is monitored.

2. **Threshold channel No.**
 - Specifies a sensor input channel for path correction. For details on the input channels, refer to Section 3.2 “Correction Direction”.
 - 1 to 3: CH1 to CH3
 - 0: The correction amounts of all the channels (directions) on the specified coordinate system are averaged to correct the path. The threshold is the same for all the channels.

3. **Threshold**
 - Sets a threshold for executing path correction.
 - Unit: V
 - Setting Range: -10.000 to 10.000
3.4 Instructions for the Real-time Path Correction Function

Registration of the ACORCH Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]*1 ➔ Select {SENSOR}*2 ➔ Select {ACORCH}*3 ➔ Press [SELECT]*4 ➔ Set the conditions in the detail edit display*5 ➔ Press [ENTER] two times

Explanation

*1 The instruction list dialog box appears.

*2 The sensor instruction list dialog box appears.

*3 An ACORCH instruction appears in the input buffer line.

*4 The detail edit display appears.
3.4 Instructions for the Real-time Path Correction Function

*5 Set a condition to be changed.
 • Selecting a condition to be changed
 Move the cursor to either the “THRESHOLD CH” or “THRESHOLD VOLT”. The following selection dialog box appears.

```
Select a condition to be changed.

• Editing other items
  Select an item to be edited, and enter a value using the number keys.
```

4 Real-time Speed Correction Function

During playback of the manipulator, the real-time speed correction function corrects the speed according to the signals from a sensor. To start speed correction, execute a real-time speed correction start instruction (AOVRON). To end it, execute a real-time speed correction end instruction (AOVROF). To execute speed correction, correct the override ratio. This function only decreases the speed for the correction.

<Job Example>

```
001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 SCALIB TCH#(1)
005 AOVRON TCH#(1) TV=1.000
006 MOVL V=100
007 MOVL V=100
008 AOVROF
009 MOVL V=100
010 MOVJ VJ=25.00
011 END
```
4.1 Override Ratio

The override ratio is calculated as follows.

- Where \(V_{in} > V_{n} + V_{o} \)
 \[O_{out} = 100 \]

- Where \(V_{n} + V_{o} > V_{in} > -V_{n} + V_{o} \)
 \[O_{out} = R \times \left(\frac{V_{in} - V_{n} - V_{o}}{V_{n} - V_{o}} \right) + 100 \]

- Where \(V_{in} > -V_{n} + V_{o} \)
 \[O_{out} = 0 \]

\(O_{out} \) : Override ratio
\(R \) : Resolution
\(V_{in} \) : Input voltage
\(V_{n} \) : Dead zone
\(V_{o} \) : Offset value
4.2 Instructions for the Real-time Speed Correction Function

4.2.1 AOVRON Instruction

The AOVRON is an instruction to start the real-time speed correction.

<Format>

AOVRON ① TCH#() ② TV=

① Threshold channel No.
Specifies the input channel for the sensor for speed correction.
1 to 6: CH1 to CH6

② Threshold
Sets a threshold for executing speed correction.
Unit: V
Setting Range: -10.000 to 10.000

Registration of the AOVRON Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]① ➔ Select {SENSOR}② ➔ Select {AOVRON}③ ➔ Press [SELECT]④ ➔ Set the conditions in the detail edit display⑤ ➔ Press [ENTER] two times

Explanation

① The instruction list dialog box appears

Instruction List Dialog Box

② The sensor instruction list dialog box appears.

Sensor Instruction List Dialog Box

③ An AOVRON instruction appears in the input buffer line.
4.2 Instructions for the Real-time Speed Correction Function

*4 The detail edit display appears.

<table>
<thead>
<tr>
<th>JOB</th>
<th>EDIT</th>
<th>DISPLAY</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETAIL EDIT</td>
<td>R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOVRON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THRESHOLD CH</td>
<td>TCH#(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THRESHOLD VOLT</td>
<td>TV= 0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*5 Editing other items.
Select an item to be edited, and enter a value using the number keys.

4.2.2 AOVROF Instruction

The AOVROF is an instruction to end the real-time speed correction.

<Format>

AOVROF

Registration of the AOVROF Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]*1 ➔ Select {SENSOR}*2 ➔ Select {AOVROF}*3 ➔ Press [ENTER]

Explanation

*1 The instruction list dialog box appears.

<table>
<thead>
<tr>
<th>IN/OUT</th>
<th>CONTROL</th>
<th>DEVICE</th>
<th>MOTION</th>
<th>ARITH</th>
<th>SHIFT</th>
<th>SENSOR</th>
</tr>
</thead>
</table>

Instruction List Dialog Box

*2 The sensor instruction list dialog box appears.

<table>
<thead>
<tr>
<th>ACORON</th>
<th>ACOROF</th>
<th>ACOROCH</th>
<th>AOVRON</th>
<th>AOVROF</th>
<th>GETSFT</th>
<th>SCALIB</th>
</tr>
</thead>
</table>

Sensor Instruction List Dialog Box

*3 An AOVROF instruction appears in the input buffer line.
5 Shift Amount Creation Function

The shift amount creation function detects a distance between a manipulator and a workpiece using a displacement sensor to calculate the shift amount on the base coordinate system.

(Job Example)

001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 SCALIB TCH#(1)
005 MOVL V=100
006 GETSFT TCH#(1) TV=0.000 P000
007 SFTON P000 TF
008 MOVL V=100
009 SFTOF
010 MOVL V=100
011 MOVJ VJ=25.00
012 END

5.1 Shift Amount

Calculate the shift amount with the same formula as for the correction amount of the real-time path correction function. Refer to Section 3.1 “Correction Amount”.

5.2 Coordinate System and Sensor Input Channel for Shift Amount Creation

Select a coordinate system and a sensor input channel for the shift amount creation in the same manner as for the correction amount of the real-time path correction function. Refer to Section 3.2 “Correction Direction”.

5-1
5.3 GETSFT Instruction

The GETSFT is an instruction to create the shift amount.

<Format>

```
GETSFT TCH#( ) TV= P,LP,......
```

①Threshold channel No.
 Specifies the sensor input channel to be used for the creation of the shift amount.
 1 to 3: CH1 to CH3
 0 or No specification: The shift amounts of all the channels (directions) on the specified coordinate system are averaged to calculate a shift amount.

②Threshold
 Sets a threshold for executing the creation of the shift amount.
 When this setting and the threshold channel No. are both omitted, the threshold is set to 0.000 [V]. When “0” is set for the sensor input No., the threshold is set for all the channels.
 Unit: V
 Setting Range: -10.000 to 10.000

③Position variable
 Sets a position variable to save a created shift amount.
 The coordinate for the shift amount is a base coordinate.
5.3.1 Registration of the GETSFT Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]*1 ➔ Select {SENSOR}*2 ➔ Select {GETSFT}*3 ➔ Press [SELECT]*4 ➔ Set the conditions in the detail edit display*5 ➔ Press [ENTER] two times

Explanation

*1 The instruction list dialog box appears.

*2 The sensor instruction list dialog box appears.

*3 A GETSFT instruction appears in the input buffer line.

*4 The detail edit display appears.

*5 Editing other items.
Select an item to be edited, and enter a value using the number keys.
5.3 GETSFT Instruction
6 Search Function

When the analog signal changes according to the position of manipulator, the search function monitors the analog signal while the manipulator moves in linear interpolation. When the detected value exceeds the set value, the detection result and the detected position are saved and the manipulator is stopped.

The search operation is executed with a move instruction that has a specified search operation tag (ASRCH). The following move instructions start the search operation.

- MOVL
- SMOV L

<Job Example>

```
001 NOP
002 MOVJ VJ=25.00
003 MOVL V=100
004 SCALIB TCH#(1)
005 MOVL V=100
006 MOVL V=100 ASRCH SCH#(1) TV=0.000 RISE DIS=0.00
007 GETS B000 $B002
008 JUMP *NG IF B002=0
009 GETS PX000 PX002
010 CNVRT PX001 PX000 BF
011 SFTON P000 BF
012 MOVL V=100
013 SFTOF
014 END
```
6.1 Detection Results

After the search operation, the detection results are registered in the system variables.

<table>
<thead>
<tr>
<th>System Variable</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B02</td>
<td>Detection</td>
</tr>
<tr>
<td></td>
<td>0: Not detected</td>
</tr>
<tr>
<td></td>
<td>1: Detected</td>
</tr>
<tr>
<td>$PX002</td>
<td>Detected position (pulse)</td>
</tr>
<tr>
<td>$PX003</td>
<td>Detected position (base axis orthogonal value)</td>
</tr>
</tbody>
</table>

6.2 Search Operation with Multiple Channels

Normally in the search operation, one search detection channel is monitored. But, monitoring more than one channel at the same time is also possible. In this case, a detection is executed when a channel exceeds the threshold. Set the channels to be monitored in the parameter (SxE059).
6.3 ASRCH Instruction

The ASRCH is an instruction to start the search operation with a move instruction.

<Format>

1. **Search detection channel No.**
 Specifies the sensor input channel to be monitored in the search operation.
 - 1 to 6: CH1 to CH6
 - 0: Search with multiple channels

2. **Threshold**
 Sets a threshold at detection
 - Unit: V
 - Setting Range: -10.000 to 10.000

3. **Rising/Falling**
 Sets the direction in which the analog input signal passes the threshold.
 - RISE: Rising detection (Direction that the input voltage absolute value increases)
 - FALL: Falling detection (Direction that the input voltage absolute value decreases)

4. **Time**
 The delay time to start checking the analog input signal
 - Unit: sec.
 - Setting Range: 0 to 99.99

5. **Distance**
 The overtravel distance from the target position in the search operation
 - Unit: mm
 - Setting Range: 0 to 999.99
6.3.1 Registration of the ASRCH Instruction

Operation

Move the cursor to the instruction area ➔ Move the cursor to a move instruction where a search instruction is to be registered ➔ Press [SELECT] two times ➔ Select (UNTIL)*1 ➔ Select {ASRCH})*2 ➔ Set the conditions in the detail edit display*3 ➔ Press [ENTER] two times

Explanation

*1 The instruction list dialog box appears.

![Instruction List Dialog Box](image)

*2 The detail edit display box appears.

![Detail Edit Display](image)

*3 Editing other items

 • Editing in RISE/FALL
 Move the cursor to the “RISE/FALL”, and then press [SELECT]. Select either “RISE” or “FALL”.

 The following dialog box appears.

 ![RISE/FALL](image)

 • Editing other items
 Select an item to be edited, and enter a value using the number keys.
7 Calibration

Some sensors have a characteristic that changes the analog output according to an external factor such as temperature change. With this function, the amount that an analog signal changes is set in the offset value for compensation, so each function can be used appropriately.

In each function, the effective value is the value that results when the offset value is subtracted from the analog input voltage value.

\[
\text{Effective value} = \text{Analog input voltage value} - \text{Offset value}
\]

When calibrating, set the analog input voltage value to the offset value.

\[
\text{Offset value} = \text{Analog input voltage value}
\]

Set the offset value in the following manner.
- Execute a calibration instruction (SCALIB) in the job.
- In the sensor output status display, enter and register a value.
- In the sensor output status display, calibrate all channels.

7.1 SCALIB Instruction

The SCALIB is an instruction to calibrate the threshold channel.

<Format>

SCALIB

\[\text{TCH#()}\]

• Threshold channel No.
 Specifies a sensor input channel for calibration.
 1 to 6: CH1 to CH6
 0 or No specification: All the connected sensor input channels
7.1 SCALIB Instruction

7.1.1 Registration of the SCALIB Instruction

Operation

Move the cursor to the address area ➔ Press [INFORM LIST]

 ➔ Select (SENSOR) ➔ Select (SCALIB)

 ➔ Press [SELECT] ➔ Set the conditions in the detail edit display

 ➔ Press [ENTER] two times

Explanation

*1 The instruction list dialog box appears.

```
IN/OUT
CONTROL
DEVICE
MOTION
ARITH
SHIFT
SENSOR
```

Instruction List Dialog Box

*2 The sensor instruction list dialog box appears.

```
ACORON
ACOROF
ACORCH
AOVRON
AOVROF
GETSFT
SCALIB
```

Sensor Instruction List Dialog Box

*3 A SCALIB instruction appears in the input buffer line.

*4 The detail edit display appears.

```
JOB  EDIT  DISPLAY  UTILITY
DETAIL EDIT  R1  h  t  z:
SCALIB
THRESHOLD CH  TCH#(1)  √

=> SCALIB TCH#(1)
```

*5 Editing other items.

- Editing in THRESHOLD CH
 Select “THRESHOLD CH”, and enter a value using the number keys.
7.2 Entering an Offset Value

Follow the explanation in Section 8.2 “Editing in Sensor Output Status Display”.

7.3 All Channels Calibration

Follow the explanation in Section 8.3 “Calibration of All Sensor Input Channels”.
7.3 All Channels Calibration
8.1 Calling Sensor Output Status Display

- **INPUT (-10.000 to 10.000 V)**
 Displays the input voltage of the sensor input channel.
- **OFFSET (-10.000 to 10.000 V)**
 Displays the offset value of the sensor input channel.
- **DEAD ZONE (0.000 to 10.000 V)**
 Displays the dead zone of the sensor input channel.
- **CONNECT**
 Displays the analog input port for the sensor input channel.

8.1.1 Calling Sensor Output Status Display

Operation

Select {ROBOT} under the top menu ➔ Select {SENS OUT STATUS}

8.2 Editing in Sensor Output Status Display

Operation

Select an item to be changed ➔ Enter a value using the number keys ➔ Press [ENTER]
8.3 Calibration of All Sensor Input Channels

Operation

Select {DATA} under the top menu*¹ ➔ Select {ALL CH CALIBRATION}*²

Explanation

*¹ The calibration menu appears.

<table>
<thead>
<tr>
<th>CH</th>
<th>INPUT</th>
<th>OFFSET</th>
<th>DEAD ZONE</th>
<th>CONNECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN0</td>
</tr>
<tr>
<td>02</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN1</td>
</tr>
<tr>
<td>03</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN2</td>
</tr>
<tr>
<td>04</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN3</td>
</tr>
<tr>
<td>05</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN4</td>
</tr>
<tr>
<td>06</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>AN5</td>
</tr>
</tbody>
</table>

*² All sensor input channels are calibrated, and the offset voltages for all the sensor input channels are set.
9 Sensor Parameters (SxE)

<table>
<thead>
<tr>
<th>No.</th>
<th>Contents</th>
<th>Initial Value</th>
<th>Setting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Application specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sensor input channel specification</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 : No specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: AN0</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2: AN1</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3: AN2</td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4: AN3</td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5: AN4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: AN5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: AN6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: AN7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sensor input channel specification</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1: AN0</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2: AN1</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3: AN2</td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4: AN3</td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5: AN4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: AN5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: AN6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: AN7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Resolution</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time path correction, [0.01 mm/V]</td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>For real-time speed correction, [0.1 %/V]</td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Dead zone [mV]</td>
<td>CH1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH6</td>
<td>0</td>
</tr>
<tr>
<td>No.</td>
<td>Contents</td>
<td>Initial Value</td>
<td>Setting Range</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>38</td>
<td>For analog input signal and correction amount</td>
<td>CH1 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D0: Low-pass filter</td>
<td>CH2 0</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>D1: Fuzzy control (valid only for path correction)</td>
<td>CH3 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4 0</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>CH5 0</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>CH6 0</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Sampling interval [msec]</td>
<td>2</td>
<td>1 to 10</td>
</tr>
<tr>
<td>57</td>
<td>General-purpose output signal No. at search detection</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Direct IN signal No. at search detection</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Combination at execution of search operation by multiple sensors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D0 : CH1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1 : CH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D2 : CH3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D3: CH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4: CH5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D5: CH6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Low-pass filter cut-off frequency [0.1 Hz]</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Scaling factor 1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Scaling factor 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Scaling factor 3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Scaling factor 4</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
10 Alarm List

<table>
<thead>
<tr>
<th>Alarm No.</th>
<th>Message</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1003</td>
<td>ROM ERROR (XCP02)</td>
<td>Check error in ROM (memory) for sensor program</td>
<td>Replace the XCP02 board.</td>
</tr>
<tr>
<td>5010</td>
<td>ANALOG INPUT FAULT (XCP02) [Decimal Data]</td>
<td>Cannot read the analog input value on the XCP02 board correctly. The decimal data indicates the channel where the input fault occurs.</td>
<td>Check the cable. Replace the XCP02 board.</td>
</tr>
<tr>
<td>5030</td>
<td>SYSTEM ERROR (SENSOR) [Decimal Data]</td>
<td>An error occurs in the sensor system of the sensor function. The decimal data indicates the type of error.</td>
<td>Needs investigation. Contact your Yaskawa representative. State any observations, the alarm No. and data displayed.</td>
</tr>
<tr>
<td>5031</td>
<td>SENSOR PROCESS ERROR [Decimal Data]</td>
<td>An error occurs in the sensor when processing using the sensor function. The decimal data indicates the type of error.</td>
<td>Needs investigation. Contact your Yaskawa representative. State any observations, the alarm No. and data displayed.</td>
</tr>
</tbody>
</table>
YASNAC XRC OPTIONS
INSTRUCTIONS
FOR SENSOR FUNCTION

TOKYO OFFICE
New Pier Takishiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo 105-6891, Japan
Phone 81-3-5402-4511 Fax 81-3-5402-4580

MOTOMAN INC. HEADQUARTERS
805 Liberty Lane West Carrollton, OH 45449, U.S.A.
Phone 1-937-847-6200 Fax 1-937-847-6277

MOTOMAN INC. TROY FACILITY
1050 S. Dorset, Troy, OH 45373, U.S.A.
Phone 1-937-440-2600 Fax 1-937-440-2626

YASKAWA MOTOMAN CANADA LTD.
2280 ARGENTIA ROAD, MISSISSAUGA, ONTARIO, L5N 6H8, CANADA.
Phone 1-905-813-5901 Fax 1-905-813-5911

YASKAWA ELECTRIC EUROPE GmbH
Am Kronberger Hang 2, 65824 Schwalbach, Germany.
Phone 49 6196-569-300 Fax 49 6196-888-301

Motoman Robotics AB
Box 604 538525 Torsäa, Sweden
Phone 46-486-48800 Fax 46-486-41410

Motoman Robotec GmbH
Kammerfeldstraße 85391 Allershausen, Germany
Phone 49 8166-900 Fax 49 8166-9039

YASKAWA ELECTRIC KOREA CORPORATION
Korea Bldg #1201, 35-4 Yousudo-dong, Yeongdong-gu, Seoul 150-010, Korea
Phone 82-2-784-784 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuau, #4-01, New Tech Park Singapore 556741, Singapore
Phone 65-282-3003 Fax 65-289-3003

YATEC ENGINEERING CORPORATION
Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan
Phone 886-2-2563-0010 Fax 886-2-2567-4677

BEIJING OFFICE
Room No. 301 Office Building of Beijing International Club, 21 Jangquomenwai Avenue, Beijing 100020, China
Phone 86-10-6532-1850 Fax 86-10-6532-1851

SHANGHAI OFFICE
27 Hui He Road Shanghai 200437 China
Phone 86-21-6533-6600 Fax 86-21-6531-4424

YASKAWA JASON (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone 852-2803-2385 Fax 852-2547-5773

TAIPEI OFFICE
Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan
Phone 886-2-2563-0010 Fax 886-2-2567-4677

BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing P.R. China Post Code: 100083
Phone 86-10-6233-2782 Fax 86-10-6232-1536

SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang North Street, Beijing Economic Technological Investment & Development Area, Beijing 100076, P.R. China
Phone 86-10-6788-0551 Fax 86-10-6788-2878

Specifications are subject to change without notice for ongoing product modifications and improvements.

© Printed in Japan July 1999 99-7