COMPLETE OUR ONLINE SURVEY

Motoman is committed to total customer satisfaction! Please give us your feedback on the technical manuals you received with your Motoman robotic solution.

To participate, go to the following website:

http://www.motoman.com/forms/techpubs.asp
Chapter 1

Introduction

1.1 About This Document

This manual provides information for the DA20C Manipulator and contains the following sections:

CHAPTER 1 - INTRODUCTION
Provides general information about the structure of this manual, a list of reference documents, and
customer service information.

CHAPTER 2 - SAFETY
This section provides information regarding the safe use and operation of Motoman products.

CHAPTER 3 - DA20C INSTRUCTIONS
Provides detailed information for the DA20C Manipulator.

1.2 Reference to Other Documentation

For additional information refer to the following:

• NX100 Controller Manual (P/N 149201-1)
• Concurrent I/O Manual (P/N 149230-1)
• Operator's Manual for your application
• Vendor manuals for system components not manufactured by Motoman

1.3 Customer Service Information

If you are in need of technical assistance, contact the Motoman service staff at (937) 847-3200. Please have
the following information ready before you call:

• Robot Type (DA20C, HP50, etc.)
• Application Type (handling, welding, etc.)
• Robot Serial Number (located on back side of robot arm)
• Robot Sales Order Number (located on back of controller)
Notes
Chapter 2
Safety

2.1 Introduction

It is the purchaser’s responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06-1999. The address is as follows:

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338
INTERNET: www.roboticsonline.com

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. The robot must not be operated by personnel who have not been trained!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety section addresses the following:

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming, Operation, and Maintenance Safety (Section 2.6)

2.2 Standard Conventions

This manual includes the following alerts – in descending order of severity – that are essential to the safety of personnel and equipment. As you read this manual, pay close attention to these alerts to insure safety when installing, operating, programming, and maintaining this equipment.

DANGER!

Information appearing in a DANGER concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

WARNING!

Information appearing in a WARNING concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

CAUTION!

Information appearing in a CAUTION concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

Note: Information appearing in a Note provides additional information which is helpful in understanding the item being explained.
2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows:

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator's manuals, the system equipment, and options and accessories should be permitted to operate this robot system.

- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.

- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).

- The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.

- In accordance with ANSI/RIA R15.06-1999, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user's responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-1999 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. The following safety equipment is provided as standard:

- Safety fences and barriers
- Light curtains and/or safety mats
- Door interlocks
- Emergency stop palm buttons located on operator station, robot controller, and programming pendant

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.
2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows:

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06-1999 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.

2.6 Programming, Operation, and Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to program, operate, and maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Do not enter the robot cell while it is in automatic operation. Be sure that only the person holding the programming pendant enters the workcell.
- Check the E-STOP button on the programming pendant for proper operation before programming. The robot must be placed in Emergency Stop (E-STOP) mode whenever it is not in use.
- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
• Any modifications to PART 1, System Section, of the robot controller concurrent I/O program can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1, System Section. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!

• Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.

• The robot controller allows modifications of PART 2, User Section, of the concurrent I/O program and modifications to controller parameters for maximum robot performance. Great care must be taken when making these modifications. All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot and other parts of the system. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations.

• Check and test any new or modified program at low speed for at least one full cycle.

• This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.

• Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.

• Use proper replacement parts.

• Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Notes
Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS
MOTOMAN-DA20 INSTRUCTIONS
NX100 INSTRUCTIONS
NX100 OPERATOR'S MANUAL
NX100 MAINTENACE MANUAL

The NX100 operator's manual above corresponds to specific usage.
Be sure to use the appropriate manual.
MANDATORY

• This instruction manual explains operating instructions and maintenance procedures primarily for MOTOMAN-DA20.

• General items related to safety are listed in Section 1: Safety of the NX100 Instructions. To ensure correct and safe operation, carefully read the NX100 instructions before reading this manual.

CAUTION

• Some drawings in this manual are shown with the protective covers or shields removed for clarity. Be sure all covers and shields are replaced before operating this product.

• The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

• YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

• If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.

• YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids your product's warranty.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the NX100.

In this manual, the Notes for Safe Operation are classified as “WARNING”, “CAUTION”, “MANDATORY”, or “PROHIBITED”.

- **WARNING**: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel.

- **CAUTION**: Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury to personnel and damage to equipment. It may also be used to alert against unsafe practices.

- **MANDATORY**: Always be sure to follow explicitly the items listed under this heading.

- **PROHIBITED**: Must never be performed.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE: To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “CAUTION” and “WARNING”.
Before operating the manipulator, check that servo power is turned OFF when the emergency stop buttons on the front door of the NX100 and programming pendant are pressed. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.

Injury or damage to machinery may result if the emergency stop circuit cannot stop the manipulator during an emergency. The manipulator should not be used if the emergency stop buttons do not function.

Once the emergency stop button is released, clear the cell of all items which could interfere with the operation of the manipulator. Then turn ON the servo power.

Injury may result from unintentional or unexpected manipulator motion.

Observe the following precautions when performing teaching operations within the working envelope of the manipulator:
- View the manipulator from the front whenever possible.
- Always follow the predetermined operating procedure.
- Ensure that you have a safe place to retreat in case of emergency.

Improper or unintended manipulator operation may result in injury.

Confirm that no persons are present in the manipulator's work envelope and that you are in a safe location before:
- Turning ON the NX100 power.
- Moving the manipulator with the programming pendant.
- Running check operations.
- Performing automatic operations.

Injury may result if anyone enters the working envelope of the manipulator during operation. Always press an emergency stop button immediately if there is a problem. The emergency stop button is located on the right of the front door of the NX100 and the programming pendant.
Definition of Terms Used Often in This Manual

The MOTOMAN manipulator is the YASKAWA industrial robot product. The manipulator usually consists of the controller, the programming pendant, and manipulator cables.

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX100 controller</td>
<td>NX100</td>
</tr>
<tr>
<td>NX100 programming pendant</td>
<td>Programming pendant</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
</tbody>
</table>
Explanation of Warning Labels

The following warning labels are attached to the manipulator. Always follow the warnings on the labels. Also, an identification label with important information is placed on the body of the manipulator. Prior to operating the manipulator, confirm the contents.

Warning Label A:

WARNING

Moving parts may cause injury.

Warning Label B:

WARNING

Do not enter robot work area.

Nameplate:

![Nameplate Image]

YASKAWA ELECTRIC CORPORATION JAPAN
1 Product Confirmation
 1.1 Contents Confirmation .. 1-1
 1.2 Order Number Confirmation 1-2

2 Transporting
 2.1 Transporting Method .. 2-1
 2.1.1 Using a Crane ... 2-1
 2.1.2 Using a Forklift 2-3
 2.2 Shipping Bolts and Brackets 2-4

3 Installation
 3.1 Installation of the Safeguarding 3-2
 3.2 Mounting Procedures for Manipulator Base 3-2
 3.2.1 Mounting Example 3-3
 3.3 Location .. 3-3

4 Wiring
 4.1 Grounding .. 4-1
 4.2 Manipulator Cable Connection 4-2
 4.2.1 Connection to the Manipulator 4-2
 4.2.2 Connection to the NX100 4-2

5 Basic Specifications
 5.1 Basic Specifications 5-1
 5.2 Part Names and Working Axes 5-2
 5.3 Manipulator Base Dimensions 5-3
 5.4 Dimensions and P-Point Maximum Envelope 5-4
 5.5 Alterable Operating Range 5-5

6 Allowable Load for Wrist Axis and Wrist Flange
 6.1 Allowable Wrist Load 6-1
 6.2 Wrist Flange .. 6-2
7 System Application
 7.1 Peripheral Equipment Mounts 7-1
 7.2 Internal User I/O Wiring Harness and Air Line 7-2

8 Electrical Equipment Specification
 8.1 Internal Connections 8-1

9 Maintenance and Inspection
 9.1 Inspection Schedule 9-1
 9.2 Notes on Maintenance Procedures 9-5
 9.2.1 Battery Pack Replacement 9-5
 9.2.2 Batteries in NX100 9-6
 9.2.3 Grease Replenishment/Exchange for Rotation-Axis Speed Reducer 9-7
 ■ Grease Replenishment (Refer to "Fig. 23 Grease Inlet and Grease Exhaust Port for the Rotation-Axis Speed Reducer ") 9-7
 ■ Grease Exchange (Refer to "Fig. 23 Grease Inlet and Grease Exhaust Port for the Rotation-Axis Speed Reducer ") 9-8
 ■ Grease Replenishment of Each Actuator (Refer to "Fig. 24 Grease Inlets and Grease Exhaust Ports for the S-, L-, U-, R-, B-, T-Axis Actuators ") 9-10
 9.2.5 Actuator Replacement 9-11
 ■ Actuator Replacement (Example of the B-Axis Replacement Procedure) 9-12
 9.2.6 Interface Board 9-15
 9.2.7 Brake Driver Board 9-16
 ■ Alarm Causes and Corrective Actions 9-16

10 Recommended Spare Parts
1 Product Confirmation

1.1 Contents Confirmation

Confirm the contents of the delivery when the product arrives. Standard delivery includes the following four items (Information for the content of optional goods is given separately):

- Manipulator
- NX100
- Programming Pendant
- Manipulator Cables (Three cables, between manipulator and NX100)

CAUTION

- Confirm that the manipulator and the NX100 have the same order number. Special care must be taken when more than one manipulator is to be installed.

If the numbers do not match, manipulators may not perform as expected and cause injury or damage.
1.2 Order Number Confirmation

Check that the order number of the manipulator corresponds to the NX100. The order number is located on a label as shown below.

Fig. 1 Location of Order Number Labels
2 Transporting

CAUTION

- **Sling applications and crane or forklift operations must be performed by authorized personnel only.**

 Failure to observe this caution may result in injury or damage.

- **Avoid excessive vibration or shock during transporting.**

 Failure to observe this caution may adversely affect the performance as the system consists of precision components.

2.1 Transporting Method

- **Before transporting the manipulator, check if the eyebolts are firmly fixed to the manipulator.**

- **The weight of the manipulator is approximately 240 kg including the shipping bolts and brackets. Use a wire rope strong enough to withstand the weight.**

- **Be sure to mount the shipping bolts and brackets to transport the manipulator shown in "Fig. 4 Shipping Bolts and Brackets".**

 The shipping bolts and brackets are designed to transport the manipulator: do not use them for anything other than transporting the manipulator.

- **When transporting the manipulator with transportation equipment other than a crane or forklift, make sure to avoid external force on the arm or motor unit as in the case of transportation with a crane or forklift.**

2.1.1 Using a Crane

As a rule, when removing the manipulator from the package and moving it, a crane should be used. The manipulator should be lifted using wire rope threaded through shipping bolts and brackets. Be sure the manipulator is fixed with the shipping bolts and brackets before the transportation, and lift it in the posture as shown in "Fig. 2 Posture for Transportation".
2.1 Transporting Method

Fig. 2 Posture for Transportation

Eyebolt M16 (4 places) (Fixed to the manipulator)
2.1.2 Using a Forklift

When using a forklift, the manipulator should be fixed on a pallet with shipping bolts as shown in "Fig. 3 Using a Forklift". Insert claws under the pallet and lift it. The pallet must be strong enough to support the manipulator. Transport the manipulator slowly with due caution in order to avoid overturning or slippage.
2.2 Shipping Bolts and Brackets

As shown in the figure below, the shipping bolts and brackets are fixed to the wrist flanges of the manipulator to minimize the external force during transportation.

- The shipping bracket is painted yellow, and fixed with four hexagon socket head cap screws M6.

Before turning ON the power, check to be sure that the shipping bolts and brackets are removed. The shipping bolts and brackets then must be stored for future use, in the event that the robot must be moved again.
3 Installation

WARNING

- **Install the safeguarding.**

 Failure to observe this warning may result in injury or damage.

- **Install the manipulator in a location where the manipulator's tool or the workpiece held by the manipulator will not reach the wall, safeguarding, or NX100 when the arm is fully extended.**

 Failure to observe this warning may result in injury or damage.

- **Do not start the manipulator or even turn ON the power before it is firmly anchored.**

 The manipulator may overturn and cause injury or damage.

CAUTION

- **Do not install or operate the manipulator which is damaged or lacks parts.**

 Failure to observe this caution may cause injury or damage.

- **Before turning ON the power, check to be sure that the shipping bolts and brackets explained in "Fig. 4 Shipping Bolts and Brackets" are removed.**

 Failure to observe this caution may result in damage to the driving parts.
3.1 Installation of the Safeguarding

To insure safety, be sure to install the safeguarding. They prevent unforeseen accidents with personnel and damage to equipment. The following is quoted for your information and guidance.

Responsibility for Safeguarding (ISO 10218)
The user of a manipulator or robot system shall ensure that safeguarding is provided and used in accordance with Sections 6, 7, and 8 of this standard. The means and degree of safeguarding, including any redundancies, shall correspond directly to the type and level of hazard presented by the robot system consistent with the robot application. Safeguarding may include but not be limited to safeguarding devices, barriers, interlock barriers, perimeter guarding, awareness barriers, and awareness signals.

3.2 Mounting Procedures for Manipulator Base

The manipulator should be firmly mounted on a baseplate or a foundation which is strong enough to support the manipulator and withstands repulsion forces during acceleration and deceleration.

Refer to "Table 1 Maximum Repulsion Forces of the Manipulator in an Emergency Stop" and "Table 2 Endurance Torque in Operation" to construct a solid foundation with the appropriate thickness to withstand maximum repulsion forces of the manipulator. The baseplate flatness must be kept at 0.5 mm or less: insufficient flatness of installation surface may deform the manipulator shape and affect its functional abilities. Mount the manipulator base as described in "3.2.1 Mounting Example".

<table>
<thead>
<tr>
<th>Table 1 Maximum Repulsion Forces of the Manipulator in an Emergency Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum torque in horizontal rotation (Rotation-axis moving direction)</td>
</tr>
<tr>
<td>Maximum torque in vertical rotation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Endurance Torque in Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance torque in horizontal operation (Rotation-axis moving direction)</td>
</tr>
<tr>
<td>Endurance torque in vertical operation</td>
</tr>
</tbody>
</table>
3.2.1 Mounting Example

Fix the baseplate firmly to the floor. The baseplate should be durable enough to prevent shifting of the manipulator and mounting fixture. It is recommended to prepare a baseplate of 32 mm or more in thickness, and the anchor bolts of size M16 or more for the baseplate fixation.

There are eight mounting holes on the manipulator base. Securely fix the manipulator to the baseplate with hexagon socket head cap screws M16 (55 mm long is recommended). Tighten the hexagon socket head cap screws and anchor bolts firmly so that they will not be loosened during the operation. See "Fig. 5 Mounting the Manipulator on Baseplate".

3.3 Location

When the manipulator is installed, it is necessary to satisfy the undermentioned environmental conditions:

- Ambient temperature: 0 to 40°C
- Humidity: 20 to 80%RH at constant temperature
- Free from exposure to water, oil, or dust
- Free from corrosive gas or liquid, or explosive gas
- Free from excessive shock or vibration (less than 4.9 m/s² [0.5 G])
- Free from large electrical noise (plasma)
- Flatness for installation is 0.5 mm or less
4 Wiring

WARNING

• **Ground resistance must be 100 Ω or less.**

 Failure to observe this warning may result in fire or electric shock.

• **Before wiring, make sure to turn OFF the primary power supply, and put up a warning sign. (ex. DO NOT TURN THE POWER ON.)**

 Failure to observe this warning may result in fire or electric shock.

CAUTION

• **Wiring must be performed by authorized or certified personnel.**

 Failure to observe this caution may result in fire or electric shock.

4.1 Grounding

Follow the local regulations for grounding line size. A line of 5.5 mm² or more is recommended.

- Never use this line sharing with other ground lines or grounding electrodes for other electric power, motor power, welding devices, etc.
- Where metal ducts, metallic conduits, or distributing racks are used for cable laying, grounding should be performed in accordance with Electric Equipment Technical Standards.
4.2 Manipulator Cable Connection

Five manipulator cables are provided: two encoder cables (1BC and 3BC) and three power cables (2BC, 4BC, and 5BC). (Refer to "Fig. 7 Manipulator Cables"). Connect these cables to the connectors on the manipulator connector base and the NX100 by referring to "Fig. 8 (a) Details of the Manipulator Cable Connectors (Manipulator Side)" and "Fig. 8 (b) Manipulator Cable Connections to the NX100".

4.2.1 Connection to the Manipulator

Before connecting the manipulator cables to the manipulator, confirm the numbers on both the manipulator cables and the connectors on the manipulator connector base. Then, connect the cables in the order of 5BC, 4BC, 3BC, 2BC, 1BC. Insert the connectors adjusting the cable connector positions to the main key positions of the manipulator, and then set the lever until it clicks.

4.2.2 Connection to the NX100

Before connecting the manipulator cables to the NX100, confirm the numbers on both the manipulator cables and the NX100 board connectors. Then, connect the cables in order of X23, X12, X22, X21, X11. Insert the connectors adjusting the cable connector positions to the main key positions of the NX100, and set the lever until it clicks.
4.2 Manipulator Cable Connection

Fig. 7 Manipulator Cables
4.2 Manipulator Cable Connection

Fig. 8 (a) Details of the Manipulator Cable Connectors (Manipulator Side)

Fig. 8 (b) Manipulator Cable Connections to the NX100
5.1 Basic Specifications

Table 3 Basic Specifications*1

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Articulated</td>
</tr>
<tr>
<td>Degree of Freedom</td>
<td>6 axes for the left arm (R1); 6 axes for the right arm (R2); 1 turning axis</td>
</tr>
<tr>
<td>Payload</td>
<td>20 kg/arm</td>
</tr>
<tr>
<td>Repetitive Positioning Accuracy*2</td>
<td>±0.1 mm</td>
</tr>
<tr>
<td>Range of Motion</td>
<td></td>
</tr>
<tr>
<td>Rotation-axis</td>
<td>±180°</td>
</tr>
<tr>
<td>S-axis (lifting)</td>
<td>+80 to -190 (R1); +190 to -80 (R2)</td>
</tr>
<tr>
<td>L-axis (lower arm)</td>
<td>+220°, -40°</td>
</tr>
<tr>
<td>U-axis (upper arm)</td>
<td>+215°, -35°</td>
</tr>
<tr>
<td>R-axis (upper arm twist)</td>
<td>±180°</td>
</tr>
<tr>
<td>B-axis (wrist pitch/yaw)</td>
<td>±120°</td>
</tr>
<tr>
<td>T-axis (wrist twist)</td>
<td>±180°</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td></td>
</tr>
<tr>
<td>Rotation-axis</td>
<td>2.97 rad/s (170 °/s)</td>
</tr>
<tr>
<td>S-axis</td>
<td>2.97 rad/s (170 °/s)</td>
</tr>
<tr>
<td>L-axis</td>
<td>2.97 rad/s (170 °/s)</td>
</tr>
<tr>
<td>U-axis</td>
<td>2.97 rad/s (170 °/s)</td>
</tr>
<tr>
<td>R-axis</td>
<td>5.24 rad/s (300 °/s)</td>
</tr>
<tr>
<td>B-axis</td>
<td>5.24 rad/s (300 °/s)</td>
</tr>
<tr>
<td>T-axis</td>
<td>10.1 rad/s (580 °/s)</td>
</tr>
<tr>
<td>Allowable Moment</td>
<td></td>
</tr>
<tr>
<td>R-axis</td>
<td>58.8 N·m (6 kgf·m)</td>
</tr>
<tr>
<td>B-axis</td>
<td>58.8 N·m (6 kgf·m)</td>
</tr>
<tr>
<td>T-axis</td>
<td>29.4 N·m (3 kgf·m)</td>
</tr>
<tr>
<td>Allowable Inertia (GD²/4)*3</td>
<td></td>
</tr>
<tr>
<td>R-axis</td>
<td>4 kgf·m²</td>
</tr>
<tr>
<td>B-axis</td>
<td>4 kgf·m²</td>
</tr>
<tr>
<td>T-axis</td>
<td>2 kgf·m²</td>
</tr>
<tr>
<td>Mass</td>
<td>240 kg</td>
</tr>
<tr>
<td>Ambient Conditions</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>0 to 40°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 80% RH at constant temperature</td>
</tr>
<tr>
<td>Vibration acceleration</td>
<td>4.9 m/s² (0.5 G) or less</td>
</tr>
</tbody>
</table>
| Others | • Free from corrosive gas or liquid, or explosive gas
 | • Free from exposure to water, oil, or dust
 | • Free from excessive electrical noise (plasma) |
| Power Capacity | 4.2 kVA |

*1 SI units are used in this table. However, gravitational unit is used in ().
*2 Conformed to ISO9283
*3 Refer to "6.1 Allowable Wrist Load" for details on the permissible moment of inertia.
5.2 Part Names and Working Axes

View C (when the S-axis angle is 90°.)

Reference coordinates of base/robot axes

Rotation-axis (S1: axis station 1)

Fig. 9 Part Names and Working Axes
5.3 Manipulator Base Dimensions

Fig. 10 Manipulator Base Dimensions

Units: mm

View A
When posturing the manipulator in the waiting position \(^*1\), keep the P-point within the shaded area of the p-point maximum envelope. If the waiting position is made outside the shaded area, the arm is overloaded and the servo power is turned OFF.

The programming pendant screen displays a warning when the P-point is outside the shaded area. Stopping the arm outside the shaded area causes an alarm and turns OFF the servo power. To restart the manipulator, select the "RESET" button on the screen of the programming pendant, set the arm at "HIGH SPEED", then move the arm to the shaded area.

\(^*1\) Waiting position: posture of the manipulator with its arm stopped holding a maximum payload of 20-kg workpiece when the servo power is ON.
5.5 Alterable Operating Range

Optimum Range of Motion
Motoman-DA20 operates most smoothly and efficiently in the shaded area shown in the following figure.

![Fig. 12 Optimum Range of Motion](image)

5.5 Alterable Operating Range

The operating range of the rotation-axis can be altered according to the operating conditions as shown in "Table 4 Rotation-Axis Operating Range". If alteration is necessary, contact your Yaskawa representative in advance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation-Axis</td>
<td>±180° (standard)</td>
</tr>
<tr>
<td>Operating Range</td>
<td>±157.5°</td>
</tr>
<tr>
<td></td>
<td>±135°</td>
</tr>
<tr>
<td></td>
<td>±112.5°</td>
</tr>
<tr>
<td></td>
<td>±90°</td>
</tr>
<tr>
<td></td>
<td>±67.5°</td>
</tr>
<tr>
<td></td>
<td>±45°</td>
</tr>
<tr>
<td></td>
<td>±22.5°</td>
</tr>
</tbody>
</table>
6 Allowable Load for Wrist Axis and Wrist Flange

6.1 Allowable Wrist Load

The allowable wrist load is 20 kg; however, consider the limitations shown in "Table 5 Allowable Moment and Total Inertia of the Wrist Axis" to fulfill this condition. If force is applied to the wrist instead of the load, the forces on R-, B-, and T-Axes should be within the values shown in Table 5.

Table 5 Allowable Moment and Total Inertia of the Wrist Axis

<table>
<thead>
<tr>
<th>Axis</th>
<th>Moment Nm (kgf·m)*1</th>
<th>GD²/4 Inertia kg·m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-axis</td>
<td>58.8 (6)</td>
<td>4</td>
</tr>
<tr>
<td>B-axis</td>
<td>58.8 (6)</td>
<td>4</td>
</tr>
<tr>
<td>T-axis</td>
<td>29.4 (3)</td>
<td>2</td>
</tr>
</tbody>
</table>

*1 (): Gravitational unit

When the volume load is small, refer to the moment arm rating shown in "Fig. 13 Moment Arm Rating".

The allowable total inertia is calculated when the moment is at the maximum. Contact your Yaskawa representative when only inertia moment, or load moment is small while inertia moment is large. Also contact your Yaskawa representative in advance in a case where the load mass is combined with an external force.

Fig. 13 Moment Arm Rating
6.2 Wrist Flange

The wrist flange dimensions are shown in "Fig. 14 Wrist Flange". In order to see the alignment mark, it is recommended that the attachment be mounted inside the fitting. The depths of inside and outside fittings must be respectively 5 mm or less and 6 mm or less.

- Wash off anti-corrosive paint (Yellow) on the wrist flange surface with thinner or light oil before mounting the tools.
- An attachment should be mounted with screws of 10 mm or less in length. Using longer screws may affect the manipulator performance.
7 System Application

7.1 Peripheral Equipment Mounts

The manipulator is equipped with peripheral equipment mounts and tapped holes on the top and front of the S-head for easier installation of the user’s system application as shown in "Fig. 15 Location of Peripheral Equipment Mounts/Tapped Holes". Note that the maximum allowable mass on the peripheral equipment is 20 kg.

Fig. 15 Location of Peripheral Equipment Mounts/Tapped Holes
7.2 Internal User I/O Wiring Harness and Air Line

An internal user I/O wiring harness (0.1 mm² x 12 wires) and six air lines are incorporated in the manipulator for drives of the peripheral devices mounted on the arms as shown in "Fig. 16 Internal User I/O Wiring Harness and Air Lines". The connector pins and the terminals are assigned as shown in "Fig. 17 Connectors for Internal User I/O Wiring Harness and Air Lines (Pin Details)". Wiring must be performed by user.

- The allowable current for wires: 2.0 A or less for each wire
- The maximum pressure for the air line is 0.8 MPa (8.15 kgf/cm²) or less
 (The air line inside diameters: 2.5 mm and 4 mm.)
7.2 Internal User I/O Wiring Harness and Air Line

System Connection Diagram: Internal User I/O Wiring Harness

<table>
<thead>
<tr>
<th>Base</th>
<th>S-head</th>
<th>Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>S1</td>
<td>R1</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>S2-1</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>S2-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S3-2</td>
</tr>
</tbody>
</table>

System Connection Diagram: Air Lines

<table>
<thead>
<tr>
<th>Base</th>
<th>S-head</th>
<th>Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIR-1</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>AIR-2</td>
<td>AIR-2</td>
</tr>
<tr>
<td></td>
<td>AIR-3</td>
<td>AIR-3</td>
</tr>
<tr>
<td></td>
<td>AIR-4</td>
<td>AIR-4</td>
</tr>
<tr>
<td></td>
<td>AIR-5</td>
<td>AIR-5</td>
</tr>
<tr>
<td></td>
<td>AIR-6</td>
<td>AIR-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>R1</th>
<th>R2</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector for internal user I/O wiring harness</td>
<td>S2-1</td>
<td>S3-1</td>
<td>Prepare: molex 51227-0800</td>
</tr>
<tr>
<td>Air Tube (2 tubes)</td>
<td>S2-2</td>
<td>S3-2</td>
<td>Prepare: molex 51227-0700</td>
</tr>
<tr>
<td>(outside dia.: 4 mm)</td>
<td></td>
<td></td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIR-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIR-5</td>
</tr>
<tr>
<td>Air inlet (6 inlets)</td>
<td></td>
<td></td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIR-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AIR-6</td>
</tr>
</tbody>
</table>

Connector for internal user I/O wiring harness:
- **HR10A-10R-12S** (socket connector)
- Prepare pin connector: **HR10A-10P-12P** "HIROSE"

Exhaust port (for air supply; 2 ports):
- Tapped hole PT3/8 with a pipe plug

Air inlet (6 inlets):
- Tapped hole PT3/8 with a pipe plug

Fig. 16 Internal User I/O Wiring Harness and Air Lines
Fig. 17 Connectors for Internal User I/O Wiring Harness and Air Lines (Pin Details)

For wirings, refer to the Internal Connection Diagram in the following chapter.
8 Electrical Equipment Specification

8.1 Internal Connections

Fig. 18 (a) Internal Connection Diagram
Fig. 18 (b) Internal Connection Diagram
Fig. 18 (c) Internal Connection Diagram
Fig. 18 (d) Internal Connection Diagram
9 Maintenance and Inspection

9.1 Inspection Schedule

Proper inspections are essential not only to assure that the mechanism will be able to function for a long period, but also to prevent malfunctions and assure safe operation. Inspection intervals are classified into six levels as shown in "Table 6 Inspection Items". Conduct periodical inspections according to the inspection schedule in Table 6.

In Table 6, the inspection items are categorized by three types of operations: operations which can be performed by personnel authorized by the user, operations which can be performed by personnel being trained, and operations which can be performed by service company personnel. Only the specified personnel are to do the inspection work.
• The inspection interval depends on the total servo operation time.
• The following inspection schedule is based on the case that each axis is used under normal conditions. For axes which are used very frequently (in handling applications, etc.), it is recommended that inspections be conducted at shorter intervals. For the details, contact your Yaskawa representative.

<table>
<thead>
<tr>
<th>Table 6 Inspection Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 Alignment mark</td>
</tr>
<tr>
<td>2 Working area and whole exterior of manipulator</td>
</tr>
<tr>
<td>3 Rotation-axis speed reducer</td>
</tr>
<tr>
<td>4 Actuator</td>
</tr>
<tr>
<td>5 Baseplate mounting bolts</td>
</tr>
<tr>
<td>6 Cover mounting screws</td>
</tr>
<tr>
<td>7 Connector base</td>
</tr>
<tr>
<td>8 Wire harness in manipulator</td>
</tr>
</tbody>
</table>
9.1 Inspection Schedule

<table>
<thead>
<tr>
<th>Items</th>
<th>Schedule</th>
<th>Method</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire harness in manipulator (Lead wires for rotation-axis)</td>
<td>24000 H Cycle</td>
<td>Visual</td>
<td>Check for damages.</td>
</tr>
<tr>
<td>Wire harness in manipulator (Lead wires for BT-axes)</td>
<td>24000 H Cycle</td>
<td>Visual</td>
<td>Check for damages.</td>
</tr>
<tr>
<td>Battery pack in manipulator</td>
<td>36000 H Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries in NX100 (Alkaline batteries)</td>
<td>To be replaced every 2 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhaul</td>
<td>36000 H Cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Wire harness in manipulator is to be replaced at 24000 H inspection.
*2 For the grease, refer to "Table 7 Inspection Parts and Grease Used".
*3 When a grease leakage is found, promptly contact your Yaskawa representative.

Table 7 Inspection Parts and Grease Used

<table>
<thead>
<tr>
<th>No.</th>
<th>Grease Used</th>
<th>Inspected Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Molywhite RE No. 00</td>
<td>Speed reducer for the rotation-axis</td>
</tr>
<tr>
<td>4</td>
<td>Harmonic Grease SK-1A</td>
<td>Actuator</td>
</tr>
</tbody>
</table>

Inspection numbers correspond to the numbers in "Table 6 Inspection Items".
Note: The manipulator is in the home position.

Fig. 19 Inspection Parts and Inspection Numbers
9.2 Notes on Maintenance Procedures

9.2.1 Battery Pack Replacement

The battery packs are attached in the two positions indicated in "Fig. 20 Battery Location".

If a battery alarm occurs in the NX100, replace the battery in accordance with the following procedure:

Fig. 20 Battery Location

Fig. 21 Battery Connection
9.2 Notes on Maintenance Procedures

1. Turn OFF the NX100 main power supply.
2. Unscrew four plate mounting screws to remove the plate, and pull out the battery pack for replacement attached to the battery pack holder.
3. Remove the battery pack from the battery pack holder.
4. Connect the new battery pack to the unoccupied connectors on the board.
5. Remove the old battery pack from the board.

NOTE: Remove the old battery pack after connecting the new one so that the encoder absolute data does not disappear.

6. Mount the new battery pack on the battery pack holder.
7. Push the battery pack holder into place, and fix the plate with four plate mounting screws.

NOTE: Make sure not to pinch the cable when putting the plate back into place.

9.2.2 Batteries in NX100

The NX100 is equipped with a battery unit (18 alkaline batteries; size D) for encoder backup to secure the home position data.
It is recommended to replace the batteries every two years, however, note that the battery life depends on the operation condition. When the batteries are about to be worn out, the programming pendant shows a notification message to replace the batteries.
To replace the batteries, remove the battery unit cover fixing screws (4 screws) to open the unit cover. For the location of the battery unit, refer to the figure below.

![Battery unit with a cover](image)

Fig. 22 Battery Unit in NX100
9.2.3 Grease Replenishment/Exchange for Rotation-Axis Speed Reducer

Grease Replenishment (Refer to "Fig. 23 Grease Inlet and Grease Exhaust Port for the Rotation-Axis Speed Reducer ").

1. Remove the hexagon socket head plug PT1/8 from the grease exhaust port.

 NOTE If grease is added with the plug on, the grease will go inside the motor and may cause a damage. Never fail to remove the plug before the grease injection.

2. Remove the hexagon socket head plug PT1/8 from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

 | Grease type: Molywhite RE No. 00 |
 | Amount of grease: 30 cc |

3. Move the rotation-axis for a few minutes to discharge excess grease.
4. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
5. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)
9.2 Notes on Maintenance Procedures

1. Grease Exchange (Refer to "Fig. 23 Grease Inlet and Grease Exhaust Port for the Rotation-Axis Speed Reducer ").

 1. Remove the hexagon socket head plug PT1/8 from the grease exhaust port.

 2. Remove the hexagon socket head plug PT1/8 from the grease inlet and install the grease zerk A-PT1/8. Inject the grease into the grease inlet using a grease gun. (The grease zerk is delivered with the manipulator.)

 3. The grease exchange is complete when new grease appears in the grease exhaust port. The new grease can be distinguished from the old grease by color.

 4. Move the rotation-axis for a few minutes to discharge excess grease.

 5. Wipe the discharged grease with a cloth and reinstall the plug on the grease exhaust port. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

 6. Remove the grease zerk from the grease inlet and reinstall the plug. Tighten the plug to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the plug.)

 If grease is added with the plug on, the grease will go inside the motor and may cause a damage. Never fail to remove the plug before the grease injection.

 [Box]
 Grease type: Molywhite RE No. 00
 Amount of grease: Approx. 300 cc
9.2.4 Grease Replenishment for S-, L-, U-, R-, B-, T-axis Actuators

The manipulator is in the home position.

![Diagram of manipulator showing grease inlets and exhaust ports for S-, L-, U-, R-, B-, T-axis actuators.]

Table 8 Grease Type and Amount of Grease

<table>
<thead>
<tr>
<th>Axis</th>
<th>Amount of Grease</th>
<th>Grease Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-, L-, U-axes</td>
<td>6 cc (7 cc for the 1st supply)</td>
<td>Harmonic Grease SK-1A</td>
</tr>
<tr>
<td>R-, B-, T-axes</td>
<td>2 cc (3 cc for the 1st supply)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 24 Grease Inlets and Grease Exhaust Ports for the S-, L-, U-, R-, B-, T-Axis Actuators
Grease Replenishment of Each Actuator (Refer to " Fig. 24 Grease Inlets and Grease Exhaust Ports for the S-, L-, U-, R-, B-, T-Axis Actuators ")

1. Remove the hexagon socket head cap screw from the exhaust port. (Refer to " Fig. 24 Grease Inlets and Grease Exhaust Ports for the S-, L-, U-, R-, B-, T-Axis Actuators ")

NOTE

If grease is added with the screw on, the grease will go inside the motor and may cause a damage. Never fail to remove the plug before the grease injection.

2. Remove the hexagon socket head cap screw from the grease inlet and install the grease zerk A-MT6X1. (The grease zerk is delivered with the manipulator.)
 Inject grease into the grease inlet using a grease gun, referring to " Table 8 Grease Type and Amount of Grease ".
3. Move the grease-replenished axis for a few minutes to discharge excess grease.
4. Wipe the discharged grease with a cloth and reinstall the screw on the exhaust port.
 Tighten the screw to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the screw.)
5. Remove the grease zerk from the grease inlet and reinstall the screw. Tighten the screw to a tightening torque of 5 N·m (0.51 kgf·m). (Apply Three Bond 1206C to the thread part of the screw.)
9.2.5 Actuator Replacement

As shown in the following table, when an actuator needs to be replaced due to a failure, etc., there are three methods (which are different by replacement parts) according to the time that may be consumed to recover the manipulator. Contact your Yaskawa representative when actuator replacement is necessary.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Required for Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Replacing only the actuator</td>
<td>Long</td>
</tr>
<tr>
<td>(b) Replacing the whole arm</td>
<td>Short</td>
</tr>
<tr>
<td>(c) Replacing a part of the arm</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

As an example, the following figure indicates the methods (a) to (c) to replace the B-axis actuator.

![Fig. 25 Methods for Actuator Replacement (Example of the B-axis Actuator)](image)
Actuator Replacement (Example of the B-Axis Replacement Procedure)

Refer to the "Table 9 Parts Checklist" and "Fig. 26 Disassembly/Reassembly for the B-Axis Actuator Replacement".

Disassembly to Remove the B-Axis Actuator

1. Move the manipulator to the home position.
2. Turn OFF the NX100 power supply.
3. Unscrew the hexagon socket head cap screws (nineteen screws), and remove the covers and .
4. Cut off the cable ties (three places), and pull out the BT-axis internal wiring harness from the arm and the B-axis actuator .
5. Unscrew the hexagon socket head cap screws (sixteen screws).

Disassembly to Remove the B-Axis Actuator

6. Remove the arm using the tapped through holes (size M5, two places; refer to the view A in Fig. 26).
7. Unscrew the hexagon socket head cap screws and (twelve screws in total).
8. Remove the B-axis actuator from the arm ; insert a flat tip screwdriver into the removal notches (two places), and slowly remove the actuator.

Reassembly to Install the B-Axis Actuator

1. Remove the old sealing bond remaining on the joint faces and of the arms and .
2. Lightly apply the sealing bond Locktite 515 to the joint surface of the B-axis actuator .
3. Check the connector directions of the B-axis actuator (refer to the view B in Fig. 26), and insert the actuator into the arm .

Disassembly to Remove the B-Axis Actuator

4. Set the hexagon socket head cap screw (one screw) to the collar , and place it to the position indicated in the view C in Fig. 26.

Disassembly to Remove the B-Axis Actuator

5. Fix the B-axis actuator to the arm with the hexagon socket head cap screws and (eleven screws and one screw, respectively). Tighten the screws to a tightening torque of 4.0 N·m (0.41 kgf·m).
6. Lightly apply the sealing bond Locktite 515 to the joint face of the B-axis actuator .
7. Fix the arm to the B-axis actuator with the hexagon socket head cap screws (sixteen screws). Tighten the screws to a tightening torque of 4.0 N·m (0.41 kgf·m).
8. Run the BT-axis internal wiring harness through the B-axis actuator and the arm .

Make sure to support or lift the arm for fall prevention.

Do not hit or cause a shock to the actuator when setting the B-axis actuator in the arm .

The screw is a stopper to stop the arm rotation. (It is 5 mm longer than the screw .)
9. Fix the harness with the cable ties 📄.
10. If necessary, apply the sealing bond Three Bond 1206C to the cover joint faces 📄.
11. Install the covers 🗒️ and 🗒️ with the hexagon socket head cap screws 🧘 (nineteen screws). Tighten the screws to a tightening torque of 6.0 N·m (0.61 kgf·m).

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
<th>Qty</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>B-axis actuator SGAGS-451E-A7AC-YR11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>Arm (wrist) HW0101257-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>Arm (wrist base) HW0101256-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>BT-axis internal wiring harness HW0271849-A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>-Hexagon socket head cap screw M4 (length: 40 mm)</td>
<td>11 each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Conical spring washer 2H-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td>-Hexagon socket head cap screw M4 (length: 45 mm)</td>
<td>1 each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Conical spring washer 2H-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑦</td>
<td>Collar HW0405817-5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>⑧</td>
<td>-Hexagon socket head cap screw M4 (length: 35 mm)</td>
<td>16 each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Conical spring washer 2H-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑨</td>
<td>Cover HW0308210-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>⑩</td>
<td>Cover HW0308211-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>-Hexagon socket head cap screw M5 (length: 14 mm)</td>
<td>19 each</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Conical spring washer 2H-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑪</td>
<td>Tapped through hole M5</td>
<td>2 places</td>
<td>For arm removal</td>
</tr>
<tr>
<td>⑫</td>
<td>Cable tie</td>
<td>3 places</td>
<td></td>
</tr>
<tr>
<td>⑬</td>
<td>Old sealing bond remaining part</td>
<td>1 place</td>
<td>Remove the old sealing bond remaining on these parts.</td>
</tr>
<tr>
<td>⑭</td>
<td>Old sealing bond remaining part</td>
<td>1 place</td>
<td></td>
</tr>
<tr>
<td>⑮</td>
<td>Sealing bond application part (Locktite 515)</td>
<td>1 place</td>
<td></td>
</tr>
<tr>
<td>⑯</td>
<td>Sealing bond application part (Locktite 515)</td>
<td>1 place</td>
<td></td>
</tr>
<tr>
<td>⑰</td>
<td>Sealing bond application part (Three Bond 1206C)</td>
<td>2 places</td>
<td></td>
</tr>
<tr>
<td>⑱</td>
<td>Notch</td>
<td>2 places</td>
<td>For actuator removal</td>
</tr>
</tbody>
</table>
Fig. 26 Disassembly/Reassembly for the B-Axis Actuator Replacement
9.2.6 Interface Board

The interface boards are connected to their respective actuators, and the specific data of each actuator is stored in the respective interface boards. Therefore, when replacing an actuator, it is also required to replace its corresponding interface board; connecting the interface board to the other actuator may cause a malfunction.

Contact your Yaskawa representative when the interface board replacement is necessary.

![Fig. 27 Locations of Interface Boards](image-url)
9.2 Notes on Maintenance Procedures

9.2.7 Brake Driver Board

The brake driver boards JARCH-DKB01-2 are used for the MOTOMAN-DA20.

![Fig. 28 Brake Driver Board](image)

Alarm Causes and Corrective Actions

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that the wiring has been performed properly. Failure to observe this caution may cause damage or malfunction.</td>
</tr>
<tr>
<td>When an alarm is indicated, check its content. Failure to observe this caution may cause fire, damage, or malfunction.</td>
</tr>
</tbody>
</table>

An alarm can be identified if it is a major or minor error, with the indications of the green and orange LEDs on the brake driver board as shown in the following table. The brake driver board enables alarm identification by indicating the green and orange LEDs. The alarm has two modes as shown in the following table:

<table>
<thead>
<tr>
<th>Alarm Mode</th>
<th>Green LED</th>
<th>Orange LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Error</td>
<td>OFF</td>
<td>Blinks</td>
<td>Alarm mode involving a system failure. To reset the alarm, restore power to the NX100.</td>
</tr>
<tr>
<td>Minor Error</td>
<td>ON</td>
<td>Blinks</td>
<td>Alarm mode slightly involving a system failure. To reset the alarm, repeat the release instruction.</td>
</tr>
</tbody>
</table>
Major Errors
The green LED turns OFF while the orange LED blinks. The blink patterns of the orange LED indicate error diagnostics as follows:

<table>
<thead>
<tr>
<th>Green LED: OFF</th>
<th>Orange LED: single blink</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>0.25 sec</td>
<td></td>
</tr>
</tbody>
</table>

Status
Reference voltage failure: detected when the reference voltage in the brake driver board is approx. 2.15 V or less, or 2.9 V or more.

Cause
(a) Improper power supply: the 24 V power supply unit fails to supply the proper voltage (24 V) to the brake driver board.
(b) Brake driver board failure.

Corrective Action
(a) Replace the 24 V power supply unit for the brake driver board.
(b) Replace the brake driver board.

<table>
<thead>
<tr>
<th>Green LED: OFF</th>
<th>Orange LED: double blink</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>0.25 sec</td>
<td></td>
</tr>
</tbody>
</table>

Status
Base block failure.

Cause
(a) When the NX100 is restarted immediately after turning OFF its power, the control power for the brake driver board is at the rising edge before the control power for the board completely drops to 0 V.
(b) Brake driver board failure.

Corrective Action
(a) Turn OFF the NX100, and restart it after a brief interval.
(b) Replace the brake driver board.
Green LED: OFF
Orange LED: continuous blink

<table>
<thead>
<tr>
<th>Status</th>
<th>CPU failure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>• Brake driver board failure.</td>
</tr>
<tr>
<td>Corrective Action</td>
<td>• Replace the brake driver board.</td>
</tr>
</tbody>
</table>

Minor Errors

The green LED lights up while the orange LED blinks. The blink patterns of the orange LED indicate error diagnostics as follows:

Green LED: ON
Orange LED: double blink

| Status | • Deviant current: detected when a difference occurs between the current for instruction and the current for detection.
|---------| • Overcurrent: detected when a current exceeding the deviant current flows. |
| Cause | (a) Improper combination of the brake driver board and the actuator.
| | (b) Brake driver board failure. |
| Corrective Action | (a) Correct the combination.
| | (b) Replace the brake driver board. |
Green LED: ON
Orange LED: triple blink

Status
Electrical load failure.

Cause
(a) Disconnection between the brake driver board and the brake.
(b) Short circuit between the brake driver board and the brake.

Corrective Action
(a) Reconnect the connectors.
(b) Measure the resistance of the brake; if disconnection or short circuit is found, repair the actuator.
(c) If recovery is unachievable with the actions (a) and (b), replace the brake driver board.

Green LED: ON
Orange LED: continuous blink

Status
Power supply voltage failure.

Cause
- Improper power supply: the 24 V power supply unit fails to supply the proper voltage (24 V) to the brake driver board.

Corrective Action
- Replace the 24 V power supply unit for the brake driver board.
When the Orange LED Does Not Light Up

<table>
<thead>
<tr>
<th>Status</th>
<th>Unable to power ON the brake driver board.</th>
</tr>
</thead>
</table>
| **Cause** | (a) Insufficient power supply voltage.
 | (b) Improper connection of the wires for power supply (CN2).
 | (c) Improper connection of the wires for power supply (CN2) to the 24 V power supply unit.
 | (d) Blown fuse. |
| **Corrective Action** | (a) Replace the 24 V power supply unit for the brake driver board.
 | (b) Reconnect the connectors of the wires for power supply (CN2).
 | (c) Correct the connection of the wires (CN2) to the 24 V power supply unit.
 | (d) Replace the brake driver board. |

<table>
<thead>
<tr>
<th>Status</th>
<th>Unable to release the brake even when the power of the brake driver board is ON.</th>
</tr>
</thead>
</table>
| **Cause** | (a) Improper connection of the wires for release instruction (CN3).
 | (b) Low input voltage to the wires for release instruction (CN3).
 | (c) Improper connection of the wires for release instruction (CN3) to the 24 V power supply unit. |
| **Corrective Action** | (a) Reconnect the connectors of the cables (CN3).
 | (b) Replace the 24 V power supply unit for the brake driver board.
 | (c) Correct the connection of the wires (CN3) to the 24 V power supply unit. |
10 Recommended Spare Parts

It is recommended to keep the parts and components in the following table in stock as spare parts for the MOTOMAN-DA20 (see " Table 10 Spare Parts for the Motoman-DA20 "). Product performance may not be guaranteed when using spare parts recommended by companies other than Yaskawa. The spare parts are ranked as follows:

- Rank A: Expendable and frequently replaced parts
- Rank B: Parts for which replacement may be necessary as a result of frequent operation
- Rank C: Drive Unit

To replace parts in Rank B or Rank C, make sure to contact your Yaskawa representative.

Table 10 Spare Parts for the Motoman-DA20

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>Grease</td>
<td>Molywhite RE No. 00</td>
<td>Yaskawa Electric Corporation</td>
<td>16 kg</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 2</td>
<td>Grease</td>
<td>Harmonic Grease SK-1A</td>
<td>Showa Shell Sekiyu K.K.</td>
<td>2.5 kg</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 3</td>
<td>Liquid Gasket</td>
<td>Three Bond 1206C</td>
<td>ThreeBond Co., Ltd.</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 4</td>
<td>Battery Pack</td>
<td>HW0470360-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 5</td>
<td>Rotation-Axis Speed Reducer</td>
<td>HW9280880-A</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 6</td>
<td>Wire Harness in Manipulator for Rotation-Axis</td>
<td>HW0172296-A HW0172296-B</td>
<td>Yaskawa Electric Corporation</td>
<td>1 each</td>
<td>1 each</td>
<td>A: for R1 B: for R2</td>
<td></td>
</tr>
<tr>
<td>B 7</td>
<td>Wire Harness in Manipulator</td>
<td>HW0172297-A HW0172297-B</td>
<td>Yaskawa Electric Corporation</td>
<td>1 each</td>
<td>1 each</td>
<td>A: for R1 B: for R2</td>
<td></td>
</tr>
<tr>
<td>B 8</td>
<td>Wire Harness in Manipulator for BT-Axes</td>
<td>HW0271849-A HW0271849-B</td>
<td>Yaskawa Electric Corporation</td>
<td>1 each</td>
<td>1 each</td>
<td>A: for R1 B: for R2</td>
<td></td>
</tr>
<tr>
<td>C 9</td>
<td>AC Servomotor for Rotation-Axis</td>
<td>HW0382153-A SGMRS-06A2B-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 10</td>
<td>S-Axis Actuator</td>
<td>SGAGS-112F-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10
Spare Parts for the Motoman-DA20

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parts No.</th>
<th>Name</th>
<th>Type</th>
<th>Manufacturer</th>
<th>Qty</th>
<th>Qty per Unit</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>11</td>
<td>L-Axis Actuator</td>
<td>SGAGS-112F-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>U-Axis Actuator</td>
<td>SGAGS-112F-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>R-Axis Actuator</td>
<td>SGAGS-451E-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>B-Axis Actuator</td>
<td>SGAGS-451E-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>T-Axis Actuator</td>
<td>SGAGS-451E-A7AC-YR11</td>
<td>Yaskawa Electric Corporation</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>