Table of Contents

Chapter 1
Introduction ... 1
 1.1 About This Document 1
 1.2 System Overview .. 2
 1.2.1 System Layout 3
 1.2.2 Major Components 3
 1.2.3 Optional Welding Equipment 3
 1.3 Reference Documentation 4
 1.4 Customer Support Information 4

Chapter 2
Safety ... 5
 2.1 Introduction .. 5
 2.2 Standard Conventions 6
 2.3 General Safeguarding Tips 6
 2.4 Mechanical Safety Devices 7
 2.5 Installation Safety .. 7
 2.6 Programming, Operation, and Maintenance Safety 8

Chapter 3
Equipment Description 9
 3.1 Robot Description .. 9
 3.2 NX100-DRC Controller 9
 3.3 Programming Pendant 10
 3.4 Operator Station .. 12
 3.4.1 Operator Station Function – Cycle Start/Cycle Latched 12
 3.4.2 Operator Station Function – Emergency Stop (E-Stop) 13
 3.4.3 Operator Station Function – Robot Hold 13
 3.4.4 Operator Station Function – Alarm 13
 3.4.5 Operator Station Function – Positioner Auto / Manual 13
 3.4.6 Operator Station Function – Start 13
 3.4.7 Operator Station Function – Reset 13
 3.4.8 Operator Station Function – Servo ON 13
 3.5 MRM2-250 STX Positioner 14
 3.6 Welding Equipment .. 15
 3.6.1 Welding Power Sources 15
 3.6.2 Wire Feeder .. 15
 3.6.3 GMAW Torch .. 15
Table of Contents

3.7 Safety Features .. 15
 3.7.1 Welding Arc Protection 16
 3.7.2 Safety Fencing .. 16
 3.7.3 Light Curtain System 16
 3.7.4 Emergency Stop (E-Stop) 17
 3.7.5 Programming Pendant ENABLE Switch 17
 3.7.6 Emergency Braking System 18
 3.7.7 Interlocked Work Cell Door 18

Chapter 4
Installation .. 19
 4.1 Required Materials ... 19
 4.1.1 Customer-Supplied Items 19
 4.1.2 Recommended List of Hand Tools and Equipment 20
 4.2 Site Preparation ... 20
 4.3 Removal of Factory-Installed Shipping Bolts 22
 4.4 Positioner Placement and Installation 23
 4.5 Installation of Mounting Adapter to the Positioner Base . 23
 4.6 Robot Base Placement and Installation 23
 4.7 Safety Fence Placement and Installation 25
 4.8 Arc Curtain Installation 27
 4.9 Robot Shipping Bracket Removal 28
 4.10 Cable Connections .. 28
 4.10.1 Connection to Earth Ground 29
 4.10.2 Connection to Local Electrical Service 30
 4.10.2.1 NX100-DRC Controller 30
 4.10.2.2 Welding Power Sources 30
 4.11 Safety / Operation Check 30
 4.12 Installation of Tooling and Fixtures 31

Chapter 5
Operation .. 33
 5.1 Programming .. 33
 5.2 Sweeping the Positioner 34
 5.3 Daily Operation ... 34
 5.3.1 Start-Up ... 35
 5.3.2 Robot Home Position 35
 5.3.3 Master Job ... 36
 5.3.4 Operation Cycle 36
 5.3.5 Shutdown .. 37
5.4 System Recovery ... 37
 5.4.1 Alarms and Errors .. 37
 5.4.1.1 Error Messages ... 37
 5.4.1.2 Minor Alarms .. 38
 5.4.1.3 Major Alarms .. 38
 5.4.2 E-Stop Recovery .. 38
 5.4.3 Shock Sensor Recovery ... 38
 5.4.4 Brake Release ... 39

Chapter 6
Maintenance ... 41

Appendix A
Anchoring ... 43

Index ... 45
Chapter 1

Introduction

1.1 About This Document

This System Manual provides an overview of the complete Motoman ArcWorld® 6200 DRC system. For detailed information on any specific system component listed in this document, please refer to the documentation package that is included with your ArcWorld® 6200 DRC system (refer to Section 1.3).

Note: This manual documents a standard Motoman system. If your system is custom or modified, please use this manual in conjunction with the drawings, schematics, and parts listing (Bill of Material) for your specific system. The drawings, schematics, and parts listing are included in the documentation package supplied with your Motoman system.

This System Manual contains the following chapters –

CHAPTER 1 – INTRODUCTION
This chapter provides general information about the ArcWorld® 6200 DRC system and its components, a list of reference documents, and customer support contact information.

CHAPTER 2 – SAFETY
This chapter provides general information regarding the safe installation, maintenance, and operation of the ArcWorld® 6200 DRC system.

CHAPTER 3 – DESCRIPTION OF EQUIPMENT
This chapter provides a description of the major components of the ArcWorld® 6200 DRC system.

CHAPTER 4 – INSTALLATION
This chapter provides installation procedures for the ArcWorld® 6200 DRC system.

CHAPTER 5 – OPERATION
This chapter provides an overview of ArcWorld® 6200 DRC system operation, including start-up, loading, normal operations, fault recovery, and system shutdown.

CHAPTER 6 – MAINTENANCE
This chapter provides preventive maintenance requirements for certain components of the ArcWorld® 6200 DRC system.

APPENDIX A – ANCHORING
Appendix A gives foundation and anchoring suggestions for ArcWorld® 6200 DRC system components that require anchoring.
1.2 System Overview

The ArcWorld® 6200 DRC system provides a complete arc welding solution in a standardized configuration (see Figure 1). The system is designed around two Motoman EA-series robots (EA1400N or EA1900N), an NX100-DRC controller package, two welding power sources, and an RM2-250 STX positioner.

Refer to Section 3.2 for a description of features and advantages of the NX100-DRC controller configuration.

Refer to Section 3.5 for a description of the MRM2-250 STX positioner.

The ArcWorld® 6200 DRC system features a total safety environment that meets or exceeds the requirements of the ANSI/RIA R15.06 standard, and is designed to safeguard both personnel and equipment. Heavy-gauge wire mesh safety fencing prevents unintended entry of personnel into the work cell while it is in operation. Arc curtains cover the wire mesh fencing to block ultraviolet light that would otherwise radiate from the work cell during welding operations. An interlocked access door, at the rear of the work cell, provides convenient access to equipment while providing a safety interlock to disable all equipment should the access door be opened while the robots are active. A safety light curtain system provides a “sensing field” in front of the positioner to protect the operator from positioner movement. In addition, maximum robot travel is physically limited by an S-axis “hard stop” at the base of each robot.

Figure 1 Overview and Component Location — ArcWorld® 6200 DRC System
1.2.1 System Layout

Two EA-series robots are mounted to a common equipment base. The positioner is also mounted to an equipment base. These two equipment bases are joined with threaded fasteners during installation (refer to Section 4.4 and Section 4.6). Wire mesh safety fencing completely surrounds the ArcWorld® 6200 DRC work cell. The safety fencing is anchored to the floor during system installation (refer to Section 4.7). The NX100-DRC robot controller and two welding power sources share a common equipment base that is located outside of the work cell (see Figure 1 and Figure 6). This arrangement allows most of the component interconnects to be pre-wired at the factory, thus reducing the amount of point-to-point wiring required of the customer. All operator controls, including those on the Programming Pendant, NX100-DRC controller, welding power supplies, and Operator Station are accessible from outside the ArcWorld® 6200 DRC work cell.

1.2.2 Major Components

The ArcWorld® 6200 DRC system includes the following major components –

- Two Motoman EA1400N or EA1900N manipulators (robots)
- One NX100-DRC controller
- One RM2-250 STX positioner
- One Programming Pendant (located on NX100-DRC R1 controller)
- Operator Station
- Welding equipment (for each robot) –
 - Welding power supply
 - Welding torch (air-cooled)
 - Wire feeder
 - Applicable welding interface
 - Torch mount
- Safety equipment –
 - Heavy gauge, wire-mesh safety fencing
 - Arc curtains (cover the safety fencing)
 - Interlocked light curtain system
 - Interlocked work cell entry door
 - Steel arc screen on the positioner

1.2.3 Optional Welding Equipment

The following optional welding equipment is available for use with the ArcWorld® 6200 DRC system –

- Torch cleaner
- Wire cutter
- Water-cooled torch (w / coolant circulator)
- Bulk wire dereeler, 454 kg (1000 lbs)
- ComArc™ (seam tracking)
- TouchSense™ (starting point detection)
- ToolSight® (auto verification of correct torch alignment)
1.3 Reference Documentation

For additional information on individual components of the ArcWorld® 6200 DRC system, refer to the following documentation that is included with your system –

- Motoman EA1400N Manipulator Manual (P/N 149208-1)
- Motoman EA1900N Manipulator Manual (P/N 149894-1)
- Motoman NX100 Controller Manual (P/N 149201-1)
- Motoman NX100 Maintenance Manual (P/N 150133-1)
- Motoman NX100 Operator’s Manual for Arc Welding (P/N 149235-1)
- Motoman NX100 Concurrent I/O Manual (P/N 149230-1)
- Motoman RM2-250 STX Positioner Manual (P/N 148911-1)
- Motoman NX100 Independent/Coordinated Control Function Manual (P/N 149648-1)
- Motoman INFORM User’s Manual (P/N 150078-1)
- Vendor manuals for system components and assemblies not manufactured by Motoman

1.4 Customer Support Information

If you need assistance with any aspect of your ArcWorld® 6200 DRC system, please contact Motoman Customer Support at the following 24-hour telephone number –

937. 847. 3200

For routine technical inquiries, you can also contact Motoman Customer Support at the following e-mail address –

techsupport@motoman.com

When using e-mail to contact Motoman Customer Support, please provide a detailed description of your issue, along with complete contact information. Please allow approximately 24 to 36 hours for a response to your inquiry.

Note: Please use e-mail for routine inquiries, only. If you have an urgent or emergency need for service, replacement parts, or information, you must contact Motoman Customer Support at the telephone number shown above.

Please have the following information ready before you call –

- System: ArcWorld® 6200 DRC
- Robots: Two EA-Series (EA1400N or EA1900N)
- Positioner: One RM2-250 STX
- Primary Application: Arc Welding
- Controller: NX100-DRC
- Software Version: Access this information on the Programming Pendant LCD display screen by accessing MAIN MENU ➔ SYSTEM INFO ➔ VERSION
- Robot Serial Number: Located on robot data plate
- Robot Sales Order Number: Located on NX100-DRC controller (R1) data plate
Chapter 2

Safety

2.1 Introduction

It is the purchaser’s responsibility to ensure that all local, county, state, and national codes, regulations, rules, or laws relating to safety and safe operating conditions for each installation are met and followed.

We suggest that you obtain and review a copy of the ANSI/RIA National Safety Standard for Industrial Robots and Robot Systems. This information can be obtained from the Robotic Industries Association by requesting ANSI/RIA R15.06-1999.

Here is RIA contact information –

Robotic Industries Association
900 Victors Way
P.O. Box 3724
Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338
www.roboticsonline.com

Ultimately, the best safeguard is trained personnel. The user is responsible for providing personnel who are adequately trained to operate, program, and maintain the robot cell. THE ROBOT MUST NOT BE OPERATED BY PERSONNEL WHO HAVE NOT BEEN TRAINED!

We recommend that all personnel who intend to operate, program, repair, or use the robot system be trained in an approved Motoman training course and become familiar with the proper operation of the system.
This safety chapter addresses the following –

- Standard Conventions (Section 2.2)
- General Safeguarding Tips (Section 2.3)
- Mechanical Safety Devices (Section 2.4)
- Installation Safety (Section 2.5)
- Programming, Operation, and Maintenance Safety (Section 2.6)

2.2 Standard Conventions

This manual includes the following alerts – in descending order of severity – that are essential to the safety of personnel and equipment. As you read this manual, pay close attention to these alerts to insure safety when installing, operating, programming, and maintaining this equipment.

DANGER! Information appearing in a DANGER concerns the protection of personnel from the immediate and imminent hazards that, if not avoided, will result in immediate, serious personal injury or loss of life in addition to equipment damage.

WARNING! Information appearing in a WARNING concerns the protection of personnel and equipment from potential hazards that can result in personal injury or loss of life in addition to equipment damage.

CAUTION! Information appearing in a CAUTION concerns the protection of personnel and equipment, software, and data from hazards that can result in minor personal injury or equipment damage.

Note: Information appearing in a Note provides additional information which is helpful in understanding the item being explained.

2.3 General Safeguarding Tips

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. All personnel involved with the operation of the equipment must understand potential dangers of operation. General safeguarding tips are as follows –

- Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation of this robot, the operator’s manuals, the system equipment, and options and accessories should be permitted to operate this robot system.
- Do not enter the robot cell while it is in automatic operation. Programmers must have the teach pendant when they enter the robot cell.
Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).

The robot must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.

In accordance with ANSI/RIA R15.06-1999, section 4.2.5, Sources of Energy, use lockout/tagout procedures during equipment maintenance. Refer also to Section 1910.147 (29CFR, Part 1910), Occupational Safety and Health Standards for General Industry (OSHA).

2.4 Mechanical Safety Devices

The safe operation of the robot, positioner, auxiliary equipment, and system is ultimately the user’s responsibility. The conditions under which the equipment will be operated safely should be reviewed by the user. The user must be aware of the various national codes, ANSI/RIA R15.06-1999 safety standards, and other local codes that may pertain to the installation and use of industrial equipment. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location.

The following safety equipment is provided as standard –

- Safety fences and barriers
- Light curtains and/or safety mats
- Door interlocks
- Emergency stop palm buttons located on operator station, robot controller, and programming pendant

Check all safety equipment frequently for proper operation. Repair or replace any non-functioning safety equipment immediately.

2.5 Installation Safety

Safe installation is essential for protection of people and equipment. The following suggestions are intended to supplement, but not replace, existing federal, local, and state laws and regulations. Additional safety measures for personnel and equipment may be required depending on system installation, operation, and/or location. Installation tips are as follows –

- Be sure that only qualified personnel familiar with national codes, local codes, and ANSI/RIA R15.06-1999 safety standards are permitted to install the equipment.
- Identify the work envelope of each robot with floor markings, signs, and barriers.
- Position all controllers outside the robot work envelope.
- Whenever possible, install safety fences to protect against unauthorized entry into the work envelope.
- Eliminate areas where personnel might get trapped between a moving robot and other equipment (pinch points).
- Provide sufficient room inside the workcell to permit safe teaching and maintenance procedures.
2.6 Programming, Operation, and Maintenance Safety

All operators, programmers, plant and tooling engineers, maintenance personnel, supervisors, and anyone working near the robot must become familiar with the operation of this equipment. Improper operation can result in personal injury and/or damage to the equipment. Only trained personnel familiar with the operation, manuals, electrical design, and equipment interconnections of this robot should be permitted to program, operate, and maintain the system. All personnel involved with the operation of the equipment must understand potential dangers of operation.

- Inspect the robot and work envelope to be sure no potentially hazardous conditions exist. Be sure the area is clean and free of water, oil, debris, etc.
- Be sure that all safeguards are in place. Check all safety equipment for proper operation. Repair or replace any non-functioning safety equipment immediately.
- Do not enter the robot cell while it is in automatic operation. Be sure that only the person holding the programming pendant enters the workcell.
- Check the E-Stop button on the programming pendant for proper operation before programming. The robot must be placed in Emergency Stop (E-Stop) mode whenever it is not in use.
- Back up all programs and jobs onto suitable media before program changes are made. To avoid loss of information, programs, or jobs, a backup must always be made before any service procedures are done and before any changes are made to options, accessories, or equipment.
- Any modifications to PART 1, System Section, of the robot controller concurrent I/O program can cause severe personal injury or death, as well as damage to the robot! Do not make any modifications to PART 1, System Section. Making any changes without the written permission of Motoman will VOID YOUR WARRANTY!
- Some operations require standard passwords and some require special passwords. Special passwords are for Motoman use only. YOUR WARRANTY WILL BE VOID if you use these special passwords.
- The robot controller allows modifications of PART 2, User Section, of the concurrent I/O program and modifications to controller parameters for maximum robot performance. Great care must be taken when making these modifications. All modifications made to the controller will change the way the robot operates and can cause severe personal injury or death, as well as damage the robot and other parts of the system. Double-check all modifications under every mode of robot operation to ensure that you have not created hazards or dangerous situations.
- Check and test any new or modified program at low speed for at least one full cycle.
- This equipment has multiple sources of electrical supply. Electrical interconnections are made between the controller and other equipment. Disconnect and lockout/tagout all electrical circuits before making any modifications or connections.
- Do not perform any maintenance procedures before reading and understanding the proper procedures in the appropriate manual.
- Use proper replacement parts.
- Improper connections can damage the robot. All connections must be made within the standard voltage and current ratings of the robot I/O (Inputs and Outputs).
Chapter 3

Equipment Description

3.1 Robot Description

The ArcWorld® 6200 DRC system uses two Motoman EA1400N or EA1900N six-axis robots. Each robot is specifically designed for arc welding applications. The EA1400N robot has a payload capability of 3 kg (6.6 lbs.), and features a horizontal reach of 1388 mm (54.6 inches). The EA1900N robot has a payload capability of 3 kg (6.6 lbs.), and features a horizontal reach of 1904 mm (75.0 inches). Each robot features a relative positioning accuracy of ±0.08 mm (±0.003 inch). Both robot types feature an internal cabling design that provides high flexibility and streamlines the robot profile, thus allowing access into confined spaces. The robot’s B-axis (Pitch/Yaw) features an expanded range of motion that improves circumferential welding on cylindrical work pieces. The T-axis (Twist) can rotate the welding torch ±360° without cable interference.

For additional information on the Motoman EA-Series robots, please refer to the EA1400N Manipulator Manual or the EA1900N Manipulator Manual that are included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

3.2 NX100-DRC Controller

The ArcWorld® 6200 DRC system features one NX100-DRC controller assembly that consists of one NX100 controller mated to an expansion cabinet (see Figure 2). This combination provides the same functionality of two full-size controllers, while reducing the overall width by 250 mm (9.8 in) when compared to two, full-size NX100 controllers. This configuration also reduces the cost to the operator by eliminating certain redundant components and circuit assemblies.

Through specific cable interconnections (internal to the NX100-DRC), the NX100-DRC is configured as controller R1 and controller R2 (see Figure 2). This configuration allows the two robots to operate as a dual system that takes advantage of all the unique functions available only in a dual system configuration. With the ArcWorld® 6200 DRC system, the full-size NX100 controller cabinet is designated R1, while the smaller, expansion cabinet is designated R2.
In addition to controlling the movement of the two robots, the NX100-DRC also controls the two welding power sources, the positioner, and provides the signals necessary to operate the two welding systems.

The NX100-DRC controller features an embedded real-time operating system (RTOS) and is programmed with the Motoman INFORM programming language.

![NX100-DRC Controller Diagram](image)

Figure 2 NX100-DRC Controller

3.3 Programming Pendant

The Programming Pendant (see Figure 3) provides the primary means of programmer/operator interaction with the ArcWorld® 6200 DRC system. The pendant features the Windows® CE operating system and displays information on a 6½ -inch, color LCD, touch-screen display. The pendant also incorporates a CompactFlash® card slot for program backups. The Programming Pendant provides icon-driven system programming. It also features a menu-driven interface to simplify operator interaction with the robots. Most operator controls are located on the Programming Pendant. This allows remote installation of the NX100-DRC controller. By using the Programming Pendant, the operator can teach robot motion; perform programming, editing, maintenance, and diagnostic functions; and enable / disable Operator Station control of the ArcWorld® 6200 DRC system. For detailed information on the pendant programming keys, programming functions, and display functions, please refer to the *NX100 Operator’s Manual for Arc Welding* that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).
Figure 3 NX100-DRC Programming Pendant

Note: The Programming Pendant LCD display goes dark after a few minutes of inactivity. Press any key to restore the screen.

Note: Operator Station ENABLE / DISABLE is accomplished with the Programming Pendant MODE SELECT SWITCH. To transfer control of the ArcWorld® 6200 DRC system to the Operator Station, set the Programming Pendant MODE SELECT SWITCH to REMOTE.
3.4 Operator Station

The Operator Station (see Figure 4) includes a NEMA enclosure on a stand-alone pedestal. See Figure 1 for location of the Operator Station Pedestal in relation to other components of the ArcWorld® 6200 DRC system.

3.4.1 Operator Station Function – Cycle Start/Cycle Latched

WARNING!

The operation of the CYCLE START button is dependent on the structure of the Master Job. Any alteration of the Master Job could result in injury to personnel or damage to equipment.

Pushing the green CYCLE START/CYCLE LATCHED push button, located on the Operator Station, initiates a positioner sweep cycle if the robot is in the HOME (Safe) position. If the CYCLE START/CYCLE LATCHED push button is pressed while the robot is still welding, or otherwise not in the HOME (Safe) position, the CYCLE START command is “latched” into (stored in) the NX100-DRC controller circuitry. When the robot returns to the HOME (Safe) position, the “latched” CYCLE START command is executed and the positioner sweeps. Circuitry in the NX100-DRC controller prevents the positioner from continuously cycling, should the operator depress and hold the CYCLE START/CYCLE LATCHED push button.
3.4.2 Operator Station Function – Emergency Stop (E-Stop)

Pressing the Operator Station E-Stop push button initiates an emergency stop (E-Stop). Refer to Section 3.7.4 for a discussion of the E-Stop function, and procedures for recovering the ArcWorld® 6200 DRC system from the emergency stop (E-Stop) condition.

3.4.3 Operator Station Function – Robot Hold

Pressing the red ROBOT HOLD button stops robot operation and interrupts the job until the operator presses the green START button to resume operation. Operation resumes at the point in the program where the ROBOT HOLD state was initiated.

3.4.4 Operator Station Function – Alarm

A red ALARM lamp illuminates to indicate that the NX100-DRC controller has encountered an alarm condition.

3.4.5 Operator Station Function – Positioner Auto / Manual

The POSITIONER AUTO/MANUAL switch is used to select AUTO or MANUAL mode for the positioner. With the switch set to the AUTO position, the robot welds the parts immediately after the positioner sweeps. With the switch set to the MANUAL position, the robot does not immediately start to weld after the positioner sweeps. The robots remains in the HOME position.

Note: The POSITIONER AUTO / MANUAL signal depends upon the structure of the Master job.

3.4.6 Operator Station Function – Start

Pressing the green START button starts the current, active job. The Programming Pendant MODE SELECT SWITCH must be set to REMOTE, and servo power must be ON for the START button to function.

3.4.7 Operator Station Function – Reset

The black RESET button is used to clear a minor alarm or error condition.

3.4.8 Operator Station Function – Servo ON

The green SERVO ON push button turns servo power ON if the Programming Pendant MODE SELECT SWITCH is set to REMOTE.
3.5 MRM2-250 STX Positioner

The Motoman MRM2-250 STX is an AC servo-driven headstock/tailstock (HS/TS) positioner. This type of positioner is often referred to as a “Ferris wheel” positioner because of the operational dynamics of the positioner.

All of the MRM2-series positioners are 3-axes. However, since the MRM2-250 STX uses a single servo motor, only one of the three axes can be driven at a time.

A fixture frame is typically mounted between the headstock and tailstock face plates (see Figure 1). Fixtures are either mounted on, or integrated into, these frames for positioning and clamping of production parts. Pneumatic and electrical signals can be routed to the fixtures, if required.

The MRM2-250 STX positioner has a load capacity of 250 kg (551 lbs) per side, a 1170 mm (46.1 in) maximum part diameter, and a Side A-to-Side B sweep time of 4 seconds. The standard distance between the headstock/tailstock face plates is 2600 mm (102.4 in). Positioning accuracy for the MRM2-250 STX is ± 0.1 mm (± 0.004 in).

The MRM2-250 STX positioner is capable of synchronized motion between various components depending on the job configuration. Synchronized components move at the same time during welding operations. The robots can be synchronized with the MRM2-250 STX positioner. The MRM2-250 STX positioner is also capable of true coordinated motion, where linear, circular, or spline motion can be coordinated between the robots and the positioner. Coordinated motion allows the robots to weld while the positioner rotates the parts.

The MRM2-250 STX positioner is equipped with fixture locking pins that prevent the headstock and tailstock face plates from turning when the servo motor disengages. The fixture locking pins are spring-loaded, to ensure pin engagement when the servo motor retracts. Each headstock face plate incorporates two locking pins.

For additional information on coordinated motion, refer to the NX100 Independent / Coordinated Control Function Manual included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

For detailed positioner information, including an illustrated parts list, load capabilities, and dimensions, refer to the MRM2-250 STX Positioner Manual that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

Note: The customer shall supply all tooling fixtures for the MRM2-250 STX positioner.

Note: Motoman recommends application of a corrosion/rust preventive compound to tooling fixtures located in a high-humidity environment.
3.6 **Welding Equipment**

In its standard configuration, the ArcWorld® 6200 DRC system includes a welding power source, wire feeder, torch, and torch mount for each of the two EA-series robots. Optional welding equipment is available for the ArcWorld® 6200 DRC system (refer to Section 1.2.3). Optional welding equipment may be included with your ArcWorld® 6200 DRC system shipment.

3.6.1 **Welding Power Sources**

Motoman offers various brands and types of welding power sources. The actual brand and type of welding power source supplied with the ArcWorld® 6200 DRC system depends on the customer’s specific application and preference. For specific information on the welding power sources supplied with your ArcWorld® 6200 DRC system, refer to the welding power source manual that is included with your system (refer to Section 1.3).

3.6.2 **Wire Feeder**

A welding wire feeder is mounted on the upper arm (U-Axis) of each EA-series robot. The wire feeder is the “4-roll” type and provides reliable wire feeding at rates up to 750 inches per minute (ipm). An integral gas valve provides fast shielding gas response time. Interchangeable feed rolls are used to accommodate different wire gauges and wire types. For additional information on how the wire feeder is mounted to the robot upper arm, including allowable load and installation position, refer to the wire feeder documentation that is included with your ArcWorld® 6200 DRC system (refer to Section 1.3).

3.6.3 **GMAW Torch**

The ArcWorld® 6200 DRC system uses either an air-cooled or a water-cooled robotic / automatic GMAW torch for each robot. These are heavy-duty torches designed for quick replacement and minimum robot reprogramming. The GMAW torch is installed at the end of the robot wrist flange. For applications that use the optional water-cooled torch, the ArcWorld® 6200 DRC system includes a water circulator kit for each robot. For additional information on the torches that are supplied with your system, refer to the vendor documentation that is included with your ArcWorld® 6200 DRC system (refer to Section 1.3).

3.7 **Safety Features**

The ArcWorld® 6200 DRC system features Motoman’s *Total Safety Environment*. The system incorporates a practical level of safeguarding to satisfy most plant conditions. If the customer complies with all standard safety precautions, the safety equipment helps to ensure safe operation of the robot work cell.
Note: ArcWorld® 6200 DRC safety features are independent of program logic. All safeguards are “hard wired” and provide protection that is independent of any software program. System safeguards do not depend upon a programmer correctly inputting an instruction in the operating program.

Note: ArcWorld® 6200 DRC system safeguards are interfaced with normally closed (NC) “fail-to-safe” switch contacts. These components will stop work cell operation if they are disconnected or damaged.

Note: Users are responsible for determining that the safeguards provided with the ArcWorld® 6200 DRC system are adequate for their plant conditions. Users must also ensure that all safeguards are maintained in working order.

3.7.1 Welding Arc Protection

One by-product of the welding arc is an intense level of ultraviolet light. The ultraviolet light radiates outwardly (equal strength in all directions) from the weld point whenever an arc is established. If not blocked, the radiated ultraviolet light can present a health risk to personnel near the welding arc.

Two forms of welding arc protection are part of the ArcWorld® 6200 DRC system –

- steel arc screen on the positioner
- arc curtains (attached to the steel mesh safety fencing)

The steel arc screen on the positioner is always positioned between the welding arc and the operator. This protects the operator from ultraviolet light radiation and sparks that result from the welding operation (see Figure 1).

WARNING!

Although safety fence arc curtains block the radiation of ultraviolet light, never look directly at the welding arc without protective eye wear.

The arc curtains block most of the ultraviolet light radiation that would otherwise escape the work cell. Just as the arc screen on the positioner protects the operator from intense ultraviolet light, the arc curtains protect other personnel who are near the work cell.

3.7.2 Safety Fencing

The heavy-gauge steel mesh safety fencing that is provided with the ArcWorld® 6200 DRC system encloses the entire work cell. It forms a physical barrier that prevents personnel from entering the work cell during automatic operation.

3.7.3 Light Curtain System

The main function of the Light Curtain System is to protect an operator from positioner movement. The Light Curtain System consists of a SEND unit, RECEIVE unit, and associated wiring (see Figure 1). The Light Curtain System establishes an infrared light path between the SEND and RECEIVE units to define a protected zone in front of the positioner. The positioner will not initiate a sweep if an operator (or an object) is in a location that interrupts (breaks) the
established light path. Interruption of the established light path during a positioner sweep immediately triggers an E-Stop condition (refer to Section 3.7.4).

For additional information on the safety light curtain system, refer to the vendor documentation that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

3.7.4 Emergency Stop (E-Stop)

E-Stop is a primary safety feature of the ArcWorld® 6200 DRC system. A work cell access door interlock, a safety light curtain system, robot welding torch impact (collision) detection circuitry (refer to Section 3.6.3), and E-Stop push buttons can all trigger an E-Stop condition. An E-Stop condition immediately de-energizes the control system and activates the robot braking system (refer to Section 3.7.6). The E-Stop push buttons are used for an intentional shutdown of the ArcWorld® 6200 DRC system, and are installed at the following locations –

- Programming Pendant
- NX100 controller (R1)
- Operator Station

To resume operation after an E-Stop system shutdown, the operator must clear and reset the action that caused the E-Stop condition (refer to Section 5.4.2).

3.7.5 Programming Pendant ENABLE Switch

The ENABLE switch is part of the Programming Pendant, and provides a safety feature that controls servo power while the system is in TEACH mode (see Figure 5). When pressed in, this switch allows the operator to turn servo power ON. However, should the operator release the switch or grasp it too tightly, servo power is immediately removed, thus preventing further robot movement. For detailed information about the operation of the ENABLE switch, refer to the NX100 Operator’s Manual for Arc Welding that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

![Figure 5 Programming Pendant ENABLE Switch – Location and Operation](image-url)
3.7.6 Emergency Braking System

The robot incorporates a braking system that protects personnel from injury and prevents equipment damage if servo power is removed. Upon loss of servo power, the brake system activates to hold all robot axes in place. The brake system incorporates a feature that allows the operator to release the brake of a specific robot axis when drive power has been removed from the system. Brake release is accomplished with the Programming Pendant (refer to Section 5.4.4).

3.7.7 Interlocked Work Cell Door

A redundant circuit safety interlock is installed on the sliding work cell access door (see Figure 1). Opening the work cell access door while the robots are in PLAY mode triggers an E-Stop condition (refer to Section 3.7.4).
Chapter 4

Installation

CAUTION!
The ArcWorld® 6200 DRC system should be installed by qualified personnel who are familiar with the installation and set-up of a robotic system.

CAUTION!
The ArcWorld® 6200 DRC system is not extremely fragile. It is, however, a sophisticated robotic system that can be damaged by rough handling. Be sure to handle all system components with care.

Note: The customer must supply all anchoring hardware for the ArcWorld® 6200 DRC system. Please refer to Appendix A of this document for suggested anchoring hardware and foundation specifications.

Two to three qualified technicians can install the ArcWorld® 6200 DRC system in a reasonable amount of time. Always comply with established safety procedures throughout the installation process (refer to Chapter 2).

4.1 Required Materials

All system components and most of the materials and fasteners needed for installation of the ArcWorld® 6200 DRC system are included with shipment from the factory. However, the customer must supply some required items and installation tools (refer to Section 4.1.1 and Section 4.1.2).

4.1.1 Customer-Supplied Items

- Shielding gas for the welding torches
- Local electrical service
- Earth ground wires for the robots and the NX100-DRC controller
- Earth ground rods and/or buried copper sheeting (quantity and placement depth as required to achieve specified resistance-to-ground reading of 100 ohms or less)
• Chemical (optional) to increase conductivity of soil in the vicinity of the earth ground system
• Welding wire
• Clean, dry air supply (for torch tender or wire cutter options) –
 • Flow Rate 0.425 m³/min (15 cfm)
 • Pressure 620 kPa (gage) [90 psi (gage)]
• Forklift(s) and/or overhead crane
• Special anchor bolts and drill bits (refer to Appendix A for suggested anchoring hardware)

4.1.2 Recommended List of Hand Tools and Equipment

• Safety glasses
• Face shield
• Gloves (heavy-duty leather recommended)
• Levels (short and long)
• Adjustable wrench (large and small)
• Air impact wrench / hammer drill with concrete drill bits (refer to Appendix A)
• Phillips and flat-blade screwdrivers
• Hammers (“dead-blow”, standard, and non-marring)
• Ratchet handle and breaker bar (3/8-inch and 1/2-inch drive)
• Socket set, 3/8-inch and 1/2-inch drive (SAE and Metric)
• Open-end wrench set (SAE and Metric)
• Wrench set, Allen® (SAE and metric)

4.2 Site Preparation

WARNING!
Be sure to provide sufficient room for access to the work cell door, operator station, and system components that are exterior to the work cell. Failure to observe this precaution could result in injury to personnel during system operation and maintenance.

To prepare your site, proceed as follows –

1. Clear floor and overhead space needed for the ArcWorld® 6200 DRC system (see Figure 6 and Figure 7). Allow an additional 1.2 – 1.5 m (4 – 5 ft) on all sides of the work cell to provide the clearances needed for installation.

2. Gather all customer-supplied items and required tools (refer to Section 4.1)
Figure 6 Plan View — ArcWorld® 6200 DRC System

Figure 7 Elevation View — ArcWorld® 6200 DRC System
4.3 Removal of Factory-Installed Shipping Bolts

Prior to shipment, ArcWorld® 6200 DRC system components are securely attached to wooden shipping skids with special shipping bolts. On most system components, the shipping bolts were installed down through the hollow core of special levelling / stabilizing screws (see Figure 8). Upon system delivery, the customer must remove the shipping bolts prior to installation of system components.

Removal of a typical shipping bolt is illustrated in Figure 8.

NOTE – An air-powered tool is not required for removal of the shipping bolts, as these fasteners can be removed with ordinary hand tools. However, the air-powered tool does make quick work of the task.

Figure 8 Shipping Bolt Removal
4.4 Positioner Placement and Installation

WARNING!
Make sure that your lifting device is capable of safely handling the MRM2-250 STX positioner. The positioner weighs approximately 2000 kg (4409 lbs).

1. Remove all shipping bolts that secure the positioner to its shipping skid (refer to Section 4.3).
2. Carefully inspect the positioner for shipping damage.

Note: If you discover any equipment damage, notify your shipping contractor as soon as possible.

3. Using two fork lifts (one at each end of the positioner) lift the positioner and place it in the desired location to define the front of the ArcWorld® 6200 DRC work cell (see Figure 6).
4. Remove the four shipping brackets from the MRM2-250 STX positioner by loosening and removing the levelling / stabilizing screws that secure each of the four shipping brackets (see Figure 1).
5. Replace the levelling / stabilizing screws removed in the preceding step.

Note: Do not discard the four shipping brackets. The shipping brackets form the forklift pockets. You will need them for any future movement or repositioning of the MRM2-250 STX positioner.

Note: Do not level or anchor the MRM2-250 STX positioner at this time. You will perform these steps in Section 4.6 of this chapter.

4.5 Installation of Mounting Adapter to the Positioner Base

The MRM2-250 STX positioner requires installation of a Mounting Adapter before it can be mated to the Robot Base. Refer to Figure 4.6 for Mounting Adapter installation details.

4.6 Robot Base Placement and Installation

WARNING!
Make sure that your lifting device is capable of safely handling the Robot Base. The Robot Base (with robots) weighs approximately 1380 kg (3042 lbs).

1. Remove all shipping bolts that secure the Robot Base to its shipping skid (refer to Section 4.3).
2. Carefully remove protective plastic, paper, and cardboard packaging materials from both EA-series robots and the Robot Base.
3. Discard or recycle the protective packaging materials.
4. Carefully inspect both robots and the Robot Base for shipping damage.

Note: If you discover any equipment damage, notify your shipping contractor as soon as possible.

5. Use a forklift to lift the Robot Base away from the wooden shipping skid.
6. Use a forklift to carefully place the Robot Base in a position that will allow it to be joined to the positioner Mounting Adapter with supplied hardware (see Figure 4.6 and Figure 10).

7. After aligning the Robot Base with the positioner Mounting Adapter, fasten the Robot Base and Programming Platforms to the positioner Mounting Adapter with the supplied hardware (see Figure 10).

CAUTION!
Be absolutely certain of the correct location and orientation of the joined Robot Base and Positioner before levelling and anchoring the unit.

WARNING!
Be sure to wear protective eye wear during the anchoring process. Failure to observe this precaution could result in eye injury for the installation technician.

8. Adjust levelling screws (see Figure 10) as required to level the joined Robot Base / Positioner assembly.

9. Insert a drill bit through the center of a levelling bolt on the joined robot equipment base / positioner base assembly, and drill a hole into the foundation to accept an anchor bolt (refer to Appendix A for foundation and anchoring suggestions).

10. Repeat the drilling process for each levelling bolt associated with the joined robot equipment base / positioner base assembly (see Figure 4.6 and Figure 10).

11. Use compressed air to remove all concrete dust from each drilled hole.

12. At each drilled location, install and secure a suitable anchor bolt (refer to Appendix A for foundation and anchoring suggestions).

Figure 9 Installation — Positioner Mounting Adapter

NOTES

1. Positioner base shown removed from positioner for clarity of illustration. The positioner base is mated to the positioner at the factory.

2. Torque each screw to 190 N·m (140 ft·lbf)
4.7 Safety Fence Placement and Installation

1. Interconnect the safety fence panels and place them in position so that they enclose the work cell (see Figure 6, Figure 11, and refer to fence installation documentation that is supplied with your ArcWorld® 6200 DRC system).

Note: Do not install the arc curtains to the fence panels at this time. The arc curtains will be attached to work cell fence panels after the fencing system has been anchored to the foundation.

2. Ensure that the final placement of the assembled safety fence conforms to the placement dimensions shown in Figure 6 and Figure 11.
3. Install the work cell sliding door to the safety fencing (refer to the safety fence documentation that is supplied with the ArcWorld® 6200 DRC system).

4. Remove both safety light curtain fence panels from their shipping position and attach each to the safety fence with the supplied hardware. The light curtains are oriented properly when the status lights are located near the base of the positioner (see Figure 1).

5. After the light curtain fence panels are correctly attached to the safety fencing, ensure that the safety fence is correctly spaced around equipment bases and other system components (see Figure 6 and Figure 11)

CAUTION!
Be absolutely certain of the correct location and orientation of the safety fence panels and light curtain fence panels before anchoring these system components to the foundation.

6. Anchor the fence posts to the foundation (refer to Appendix A for foundation and anchoring suggestions).
4.8 Arc Curtain Installation

The arc curtains are packaged in an accessories box that is shipped with your ArcWorld® 6200 DRC system.

WARNING!
Ensure that the work cell safety fence is anchored in place before installing the arc curtains. Unanchored fence panels can fall and cause injury to personnel or damage to equipment.

Install the arc curtains as follows –

1. Unfold each arc curtain and install one arc curtain on the inside of each work cell safety fence panel, using supplied plastic cable ties and the eyelets in each arc curtain (see Figure 11 and Figure 12).

 Note: The arc curtains are pre-cut to match the work cell fence panels. Each arc curtain bag contains documentation that includes the arc curtain dimensions. If necessary, these dimensions can be used to match the arc curtain to the correct work cell fence panel.

2. Make sure there are no gaps between the arc curtains.

3. Install the door panel arc curtain on the inside of the door panel, using the supplied plastic cable ties and the eyelets in the arc curtain (see Figure 11 and Figure 12).

Figure 12 Arc Curtain Installation on Typical Safety Fence Panel
4.9 **Robot Shipping Bracket Removal**

CAUTION!
Be sure to remove the shipping bracket from each robot prior to power-up or operation. Operation of a robot, without first removing the shipping bracket, can damage the robot drive components.

A bracket is installed on each robot at the factory to prevent undesired movement during shipping (see Figure 13). The bracket is painted bright yellow for easy location and identification. The bracket secures the lower arm of the robot to the S-axis housing. In addition, the bracket provides the correct attachment points for a hoisting sling, should the robots need to be lifted or moved. Upon bracket removal, be sure to keep both brackets and attaching hardware in a safe location, should they be needed in the future.

![Figure 13 Robot Shipping Bracket](image)

4.10 **Cable Connections**

After the ArcWorld® 6200 DRC system components and peripherals are anchored in their correct locations, locate the interconnect cables for the system components and route them according to the system drawings and schematics included in the ArcWorld® 6200 DRC system documentation package. All cables and connectors are labelled to ensure correct connection to the mating connectors on the applicable system component.

Note: A small gap exists between the bottom of the work cell safety fence and the floor. This gap provides a passage for cables that must run between components that are outside the work cell and those that are inside the work cell.
4.10.1 Connection to Earth Ground

WARNING!
Do not use the ArcWorld® 6200 DRC system unless specified components are connected to a low-resistance earth ground. Do not connect the earth ground wire with the wires for the electric power source, welder, etc. The low-resistance earth ground must be a “dedicated” ground that is a direct connection between a component and the earth ground point. Operator injury or death, as well as equipment damage, can result from an inadequate or defective earth ground system.

The EA-Series robots and NX100-DRC controller must be connected to a low-resistance earth ground. If a ground stake is used, it should be driven at least 2.43 m (8 ft) into the soil. The soil surrounding the driven ground stake should be treated with a chemical that increases the soil conductivity in the vicinity of the driven ground stake. This is often referred to as a “low-resistance earth ground” and may require more than a single driven ground rod, depending on soil conditions. Often, multiple ground rods (bonded together) or even a bonded network of buried copper sheeting (plus conduction-enhancing chemicals) may be required, depending on local soil condition. In any event, the “low-resistance earth ground” must indicate a resistance of 100 ohms or less (when measured directly between grounded equipment and the earth ground system). Be advised that specialized measuring equipment is usually required to get an accurate “resistance-to-ground” reading. Consult a specialist in this field, if required.

Note: The customer shall supply all wires associated with the earth ground. The customer is responsible for establishing the correct gauge of all wires associated with the earth ground and maintaining an adequate earth ground (measured resistance of 100 ohms or less).

Connect both robots and NX100-DRC controller to the earth ground as follows –

1. Connect one end of an earth ground wire to the lug marked EARTH GROUND on the connector panel of robot (R1). Connect the other end of the earth ground wire to the low-resistance earth ground. See Figure 1 for location of robot (R1).
2. Connect one end of an earth ground wire to the lug marked EARTH GROUND on the connector panel of robot (R2). Connect the other end of the earth ground wire to the low-resistance earth ground. See Figure 1 for location of robot (R2).
3. Connect one end of an earth ground wire to the COMMON GROUND BUS BAR located inside NX100-DRC R1 controller (see Figure 2). Connect the other end of the earth ground wire to the low-resistance earth ground.
4. Connect one end of an earth ground wire to the COMMON GROUND BUS BAR located inside NX100-DRC R2 expansion cabinet (see Figure 2). Connect the other end of the earth ground wire to the low-resistance earth ground.
4.10.2 Connection to Local Electrical Service

DANGER!

Local electrical service connection to the ArcWorld® 6200 DRC system must be performed by a qualified, licensed electrician. Electrical and grounding connections must comply with the National Electrical Code (NEC), as well as all local electrical codes.

Note: The ArcWorld® 6200 DRC system is configured for 3-phase 460/480V AC primary power. For additional information, refer to the electrical drawings and schematics that are included with your system documentation package (refer to Section 1.3).

After all of the system components have been properly installed and interconnected, connect local electrical service to the NX100-DRC controller and welding power sources (refer to Section 4.10.2.1 and Section 4.10.2.2).

4.10.2.1 NX100-DRC Controller

For detailed electrical service interconnect procedures for the NX100-DRC controller, refer to the *NX100 Controller Manual* and ArcWorld® 6200 DRC system drawings / schematics that are included with your system documentation package (refer to Section 1.3).

4.10.2.2 Welding Power Sources

Refer to the welding power source documentation and ArcWorld® 6200 DRC system drawings / schematics for electrical service connection procedures and diagrams for the welding power sources.

4.11 Safety / Operation Check

Before installing the tooling and fixtures for your application, take a few minutes to perform the following safety/operation check –

1. Ensure that the shipping bracket is removed from each robot (refer to Section 4.9).
2. Ensure correct alignment and operation of the safety light curtain system (refer to safety light curtain documentation that is included with the ArcWorld® 6200 DRC system).
3. Check the security and integrity of all cable connections.
4. Ensure that the work cell sliding access door is closed and that the door interlock is engaged.
5. Verify the correct settings for the welding power sources (refer to the welding power source documentation that is included with your ArcWorld® 6200 DRC system).
6. Verify that local electrical service complies with the power requirements for your ArcWorld® 6200 DRC system.
7. Verify that local electrical service is correctly wired into the NX100-DRC controller and the welding power sources (refer to Section 4.10.2).
CAUTION!
The ArcWorld® 6200 DRC system is now ready for power-up. Qualified, trained personnel, who are familiar with this system, should perform the power-up sequence.

8. Switch ON the NX100-DRC R1 controller (see Figure 2).

Note: An electrical service disconnect box for the NX100-DRC controller shall be supplied (if desired) by the customer. It is not part of the ArcWorld® 6200 DRC system shipment.

9. Switch ON the service disconnect boxes for the welding power sources (see Figure 2).
10. Set POWER ON-OFF switch on welding power source (R2) to ON.
11. Set POWER ON-OFF switch on welding power source (R1) to ON.

WARNING!
Before operating the robots, verify that each E-Stop push button disables servo power when activated (pushed in). Each E-Stop push button must immediately stop robot and positioner movement when activated (pushed in).

12. Check for correct operation of all E-Stop push buttons (refer to Section 3.7.4).
13. Check for correct operation of the system HOLD button on the Programming Pendant and Operator Station.
14. Check for correct action of the work cell access door safety interlock.
15. Remove power from the ArcWorld® 6200 DRC system after completion of the safety / operation check.

4.12 Installation of Tooling and Fixtures

Your ArcWorld® 6200 DRC system is now ready for installation of tooling and fixtures for your particular application. Personnel who are familiar with the operation of the ArcWorld® 6200 DRC system should do the installation. After tooling installation, test the positioner for correct operation.

Note: All tooling and fixtures for the positioner shall be supplied by the customer.

Note: Motoman recommends application of a corrosion/rust preventive compound to tooling and fixtures located in a high-humidity environment.
NOTES
Chapter 5
Operation

CAUTION!
The customer is responsible for providing trained operators to run the equipment. The customer is also responsible for making sure that the equipment is operated in accordance with the ANSI/RIA R15.06-1999 Robot Safety standard, as well as any other local or state standards.

This chapter provides a brief overview of the operating procedures and precautions for your ArcWorld® 6200 DRC system. For more in depth operating information, refer to specific component manuals that are part of the ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

The ArcWorld® 6200 DRC system is a fully integrated robotic GMAW welding cell.

Two EA1400N or EA1900N robots weld parts on one side of the MRM2-250 STX positioner, while the operator loads the opposite side of the positioner with parts to be welded. When the robots complete the welding process, they return to a Home (Safe) position. The operator can then initiate another positioner sweep cycle from the Operator Station. This moves the previously loaded parts into the robot work area, where the robots then move from the Home (Safe) position to complete another welding cycle.

Note: The customer shall supply all tooling fixtures for the positioner.

5.1 Programming

The operation of the ArcWorld® 6200 DRC system is programming dependent. The following operating instructions are based on one possible configuration for this system. Your system configuration and job structure may differ slightly from that presented here; however, basic operation will be the same. For additional programming procedures and information, refer to the NX100-DRC controller documentation that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

Any changes made to your system configuration or job structure will alter the operation of the system. Motoman recommends that you DO NOT modify the original jobs and system configuration of your ArcWorld® 6200 DRC system. If you determine a need to modify the
original jobs and system configuration, make any modifications to a copy of the original. Keep the original as a backup. Do not modify the original. Modifications must be performed by trained and experienced personnel who are familiar with the operation of the ArcWorld® 6200 DRC system. If you have questions concerning the configuration of your system, please contact Motoman 24 hour Customer Support (refer to Section 1.4).

5.2 Sweeping the Positioner

Note: The robots must be in the Home position before the operator can sweep the positioner.

Selecting MANUAL mode on the Operator Station POSITIONER AUTO/MANUAL switch allows the operator to sweep the positioner without activating the robots (see Figure 4). Parts can be loaded onto the fixture to achieve the most efficient configuration, and then swept into the welding zone before teaching the robots a series of moves. To sweep Side A or Side B of the positioner into the welding zone, proceed as follows –

1. Place both robots in Home position (refer to Section 5.3.2).
2. Make sure that the Operator Station is enabled (Programming Pendant MODE SELECT SWITCH set to REMOTE).
3. Set the Operator Station POSITIONER AUTO/MANUAL switch to MANUAL and start Master job (refer to Section 5.3.3). Normally, the robots will not move out of Home position when the POSITIONER AUTO/MANUAL switch is set to MANUAL (this depends on job structure).

Note: Cycle Start latching is not operative in MANUAL mode.

4. Press the green CYCLE START / CYCLE LATCHED button on Operator Station (the positioner sweeps each time the CYCLE START button is pressed).

5.3 Daily Operation

The procedures below represent the typical operating sequence from power up to shutdown. Your basic operating procedures may vary depending on your situation.

- Perform start-up procedures (refer to Section 5.3.1).
- Move robots to Home position (refer to Section 5.3.2).
- Select Master job (refer to Section 5.3.3).
- Perform operation cycle (refer to Section 5.3.4)
- Perform shutdown procedures (refer to Section 5.3.5)
5.3.1 Start-Up

To start up the ArcWorld® 6200 DRC work cell from a power-off condition, proceed as follows –

1. Set POWER ON-OFF switch on NX100-DRC controller (R1) to ON (see Figure 2).
2. Set the power disconnect box for each of the welding power sources to ON (see Figure 1).
3. Set POWER ON-OFF switch on the welding power sources to ON (ON-OFF indicator lamp on the welding power sources will illuminate).
4. Open regulator valve on welding gas supply.
5. Make sure that the work cell access door is closed and that the door safety interlock is engaged.
6. Make sure all E-Stop buttons are released. E-Stop buttons are installed at the following locations –
 • Programming Pendant
 • NX100-DRC controller (R1) door panel
 • Operator Station
7. Select TEACH mode on the Programming Pendant.
8. Place the robots in Home position (refer to Section 5.3.2).

5.3.2 Robot Home Position

To move each robot to the Home position –

1. Turn the Programming Pendant MODE SELECT SWITCH to TEACH.
2. Select MAIN MENU on Programming Pendant touch screen.
4. Select SELECT JOB on Programming Pendant touch screen (a job list appears on the screen).
5. Use the Programming Pendant CURSOR KEY to move the cursor to R1 SAFE job and press SELECT (the job appears on the display screen).
6. Turn servo power ON by grasping and holding the Programming Pendant ENABLE switch in the middle position (see Figure 5), then pressing the SERVO ON button on the Programming Pendant.
7. Use the FWD button on Programming Pendant to jog robot (R1) to HOME position.
8. Repeat steps 5 through 7 for Robot (R2).
5.3.3 **Master Job**

To call up the Master Job –

1. Ensure that the ArcWorld® 6200 DRC system is powered (refer to Section 5.3.1).
2. Set the Programming Pendant MODE SELECT SWITCH to TEACH.
5. Set the Programming Pendant MODE SELECT SWITCH to PLAY, then press the PLAY MODE ENABLE SWITCH that is located on door of NX100-DRC controller R1 (see Figure 2).
6. Press SERVO ON button on the Programming Pendant.
7. Press the START push button on Programming Pendant (the Master job cycles, waiting for a CYCLE START input from Operator Station).
8. Transfer control to the Operator Station by rotating the Programming Pendant MODE SELECT SWITCH to REMOTE.

The ArcWorld® 6200 DRC work cell is now ready for operation.

5.3.4 **Operation Cycle**

The following is the typical sequence of operation for the ArcWorld® 6200 DRC work cell after start-up –

1. Operator loads the fixture (on operator side of positioner) with parts to be welded.
2. Operator steps out of safety zone created by the light curtain system, and moves to the Operator Station.
3. Operator presses the green CYCLE START button on Operator Station. The positioner sweeps, thus placing parts to be welded into the robot work area. The robots then begins to weld the parts (if the Operator Station POSITIONER AUTO/MANUAL switch is set to AUTO).
4. While the robots are welding, the operator loads the operator side of the positioner with the next group of parts to be welded.
5. The operator again moves to the Operator Station and presses the green CYCLE START button (CYCLE LATCHED light illuminates if the robots are still welding and have not returned to the Home position). When the robots complete the welding process, each returns to Home position. The positioner then sweeps again to return completed, welded parts to the operator position, while moving the next group of parts into the robot work area.
6. Operator moves back to the protected area in front of the positioner and unloads completed, welded parts.
5.3.5 **Shutdown**

Use the following procedure to perform a normal shut down of the ArcWorld® 6200 DRC system –

1. Make sure that both robots are in Home position (refer to Section 5.3.2).
2. Turn off system servo power by pressing the E-Stop button on the Operator Station or Programming Pendant.
3. Select TEACH mode on the Programming Pendant.
4. Set NX100-DRC controller (R1) POWER ON-OFF switch to OFF (see Figure 2).
5. Set both welding power source POWER ON-OFF switches to OFF.
7. Set both welding power source power disconnect boxes to OFF (see Figure 1).

The ArcWorld® 6200 DRC system is now shut down.

5.4 **System Recovery**

When a system error or alarm occurs, you must clear the error or alarm to return the system to normal operation. The paragraphs below describe some typical alarms and errors and how to clear them.

5.4.1 **Alarms and Errors**

Alarms and errors will stop the program. There are three levels –

- **Error Messages**
- **Minor Alarms**
- **Major Alarms**

For more detailed information on alarm and error recovery, refer to the NX100-DRC controller and EA-series robot documentation that is included with your ArcWorld® 6200 DRC system documentation package (refer to Section 1.3).

5.4.1.1 **Error Messages**

Error messages are usually the result of simple, easily-cleared operation errors. An example could include –

- Pressing the START button when the robots are not in PLAY mode

Clear errors of this type by pressing the CANCEL button on the Programming Pendant.
5.4.1.2 Minor Alarms

Minor alarms usually involve programming errors. Clear alarms of this type by pressing the CANCEL button on the Programming Pendant.

5.4.1.3 Major Alarms

Major alarms usually involve hardware failures. Examples could include –

- An overload condition
- An abnormal speed

Clear alarms of this type by cycling the NX100-DRC controller in accordance with the following steps –

1. Rotate the NX100-DRC POWER ON-OFF switch to OFF (see Figure 2).
2. Allow the NX100-DRC POWER ON-OFF switch to remain in the OFF position for approximately 10 seconds.
3. Rotate the NX100-DRC POWER ON-OFF switch back to the ON position.

5.4.2 E-Stop Recovery

An E-Stop (emergency stop) condition is triggered by any of the following conditions –

- An E-Stop push button switch is activated
- The work cell access door is opened while the robot is not in TEACH mode
- The light curtain system is tripped while the positioner is sweeping
- A welding torch collision triggers a shock sensor output (refer to Section 5.4.3)

If an E-Stop condition is triggered, restart the ArcWorld® 6200 DRC system as follows –

CAUTION!
If an E-Stop condition occurs while the positioner is sweeping, the positioner will complete the sweep when the ArcWorld® 6200 DRC system is restarted.

1. Press the SERVO ON button on the Programming Pendant.
2. Select REMOTE mode on the Programming Pendant MODE SELECT SWITCH to transfer control of the system to the Operator Station.
3. Press the green START button on the Operator Station.

The ArcWorld® 6200 DRC system is now ready to continue operation.

5.4.3 Shock Sensor Recovery

The ArcWorld® 6200 DRC welding package includes a Motoman gun mount for each EA-series robot. This mount is designed to protect the torch from damage in case of an impact (collision).
A slight deflection of the torch activates a SHOCK SENSOR signal that triggers a system E-Stop condition. To clear the E-Stop condition, you must override the shock sensor and move the robot(s) clear of the impact.

Refer to the following procedures to override the shock sensor –

CAUTION!
Always remember to reactivate the Shock Sensor before continuing system operation. The robots can be damaged if the Shock Sensor Override Switch remains in the “Override” position.

1. Press MAIN MENU on the Programming Pendant.
2. Use the Programming Pendant CURSOR KEY to select the ROBOT icon, then press SELECT.
3. Use the Programming Pendant CURSOR KEY to select OVERRUN-S.SENSOR, then press the SELECT key.
4. Select RELEASE to release the shock sensor.
5. Turn servo power ON (depress and hold the Programming Pendant ENABLE switch in the middle position while pressing the SERVO ON / READY push button).
6. Move the affected robot clear of impact position.

The ArcWorld® 6200 DRC system is now ready to continue operation.

5.4.4 Brake Release

The robot braking system is designed to protect the robots and other system components from damage in the event of a system / robot failure or loss of drive power. If a system or robot failure occurs, you must release the brakes on the affected robot in order to move it.

To release the brakes, proceed as follows –

WARNING!
Always support the robot axis to be released BEFORE you release it. Without adequate robot axis support, brake release could cause personal injury or machine damage.

1. On the Programming Pendant, select TEACH mode and turn servo power OFF.
2. Select ROBOT on the pendant display (touch) screen.
3. Select the BRAKE RELEASE option.
4. Use the CURSOR key to select desired robot axis for release.
5. Press and hold the pendant ENABLE switch in its middle position (see Figure 5), while pressing the INTERLOCK key and the SELECT key.
6. The brake for the selected axis will release.
Chapter 6
Maintenance

Maintenance / inspection must be performed by authorized personnel who are familiar with the ArcWorld® 6200 DRC system. Be sure to read and understand the documentation for a particular component before performing maintenance or inspection. Be sure that you understand the maintenance / inspection procedures, have the proper tools at hand, and comply with safety precautions given in Chapter 2.

Maintenance / inspection intervals given in this chapter are recommendations, only. Adjust the frequency and level of maintenance / inspection to suit your specific equipment schedules and shop environment.

For maintenance / inspection procedures and schedules that involve individual system components, refer to the documentation package that is included with your ArcWorld® 6200 DRC system (refer to Section 1.3).

CAUTION!
If your system uses water-cooled torches, use only Motorman-specified antifreeze. Typical automotive antifreeze contains additives that can clog the small cooling ports in the torches, and can damage sealing gaskets in the water circulator pumps.

<table>
<thead>
<tr>
<th>Table 1 Periodic Maintenance and Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Daily (or on condition)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 Month (or on condition)</td>
</tr>
<tr>
<td>6 Months (or on condition)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
NOTES
Appendix A

Anchoring

The customer must determine all anchoring and foundation requirements, and supply the appropriate anchoring hardware and foundation for a particular system installation. Table A.1 gives anchoring and foundation suggestions.

Table A.1 Suggested Anchor, Floor Plate, and Foundation Specifications

<table>
<thead>
<tr>
<th>SYSTEM EQUIPMENT</th>
<th>MINIMUM HILTI® ANCHOR ROD DIA / TYPE</th>
<th>MINIMUM FLOOR PLATE</th>
<th>MINIMUM FOUNDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBOTS</td>
<td>1/2” HVA Chemical Anchor (Note 3) (Note 5)</td>
<td>380 mm (15 in) Length 380 mm (15 in) Width 19 mm (0.7 in) Thick</td>
<td>381 mm (15.0 in) Length 381 mm (15.0 in) Width 76 mm (3.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>UP6, UP20 UP20-6, EA1400, EA1900</td>
<td>5/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>600 mm (24 in) Length 600 mm (24 in) Width 38.1 mm (1.5 in) Thick</td>
<td>762 mm (30.0 in) Length 762 mm (30.0 in) Width 178 mm (7.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>HP6, HP6S, HP6R, HP20, HP20-6, EA1400N, EA1900N, DX1350N</td>
<td>5/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>600 mm (24 in) Length 600 mm (24 in) Width 38.1 mm (1.5 in) Thick</td>
<td>762 mm (30.0 in) Length 762 mm (30.0 in) Width 178 mm (7.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>UP20M, UP50 SP80 (Note 2)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>900 mm (35.4 in) Length 900 mm (35.4 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1524 mm (60.0 in) Length 1524 mm (60.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>HP50, HP50-20, HP50-35, EPL80 (Note 2)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>900 mm (35.4 in) Length 900 mm (35.4 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1524 mm (60.0 in) Length 1524 mm (60.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
<td></td>
</tr>
<tr>
<td>HP165N-100, HP165RN, ES165N, ES165N-100, EPL100, EPL160 (Note 2)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
</tbody>
</table>
Table A.1 Suggested Anchor, Floor Plate, and Foundation Specifications

<table>
<thead>
<tr>
<th>SYSTEM EQUIPMENT</th>
<th>MINIMUM HILTI® ANCHOR ROD DIA / TYPE</th>
<th>MINIMUM FLOOR PLATE</th>
<th>MINIMUM FOUNDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROBOTS UP200</td>
<td>7/8” HVA Chemical Anchor (Note 3)</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS HP200, HP200N, HP200T, HP200RN, ES200RN, EPL300 (Note 2)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1200 mm(47.2 in) Length 1200 mm(47.2 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS UP350, UP500, SK300X</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1500 mm(59.1 in) Length 1500 mm(59.1 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>ROBOTS HP350, HP350-200, HP500, HP600, EPL450, EPL500 (Note 2)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 5) (Note 6)</td>
<td>1500 mm(59.1 in) Length 1500 mm(59.1 in) Width 50.8 mm (2.0 in) Thick</td>
<td>1828 mm(72.0 in) Length 1828 mm(72.0 in) Width 229 mm (9.0 in) Thick 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>POSITIONER Rotary Turntable Type</td>
<td>5/8” HVA Chemical Anchor (Note 3) (Note 6)</td>
<td>Not Applicable</td>
<td>Refer to Applicable Positioner Manual</td>
</tr>
<tr>
<td>POSITIONER “Ferris wheel” type with headstock and tailstock (HS/TS)</td>
<td>7/8” HVA Chemical Anchor (Note 3) (Note 6)</td>
<td>Not Applicable</td>
<td>Refer to Applicable Positioner Manual</td>
</tr>
<tr>
<td>PERIPHERAL EQUIPMENT</td>
<td>1/2” Kwik Bolt II Expansion Anchor (Note 4) (Note 6)</td>
<td>Not Applicable</td>
<td>3” min thickness or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
<tr>
<td>WORK CELL FENCE POSTS</td>
<td>3/8” Kwik Bolt II Expansion Anchor (Note 4) (Note 6)</td>
<td>Not Applicable</td>
<td>3” min thickness or 1.3 Embedment Depth (whichever is larger), 4000 psi Reinforced Concrete</td>
</tr>
</tbody>
</table>

Notes –

(1) Minimum robot lagging requirements are based on Maximum Repulsion Forces and Hilti® Anchor Design Program (v3.3b).
(2) SP and EPL series robots require base plates and/or risers to be level to ± 2°. Grout if necessary.
(3) Reference source: Hilti® Product Technical Guide (section 4.2.1) for hardware specifications or equivalent.
(4) Reference source: Hilti® Product Technical Guide (section 4.3.3) for hardware specifications or equivalent.
(5) Cast-in anchors are specified in some robot manuals. The Hilti® HVA Chemical Anchors listed in this table can be substituted for the cast-in anchors.
(6) Refer to Hilti® Product Technical Guide for suggestions on the correct size and type of drill bit to use with each anchor type.

Contact Information –
1-800-879-8000 (USA) http://us.hilti.com
1-800-363-4458 (CAN) http://ca.hilti.com
Index

A
about this document, 1
alarms, 38
anchoring, 43
antifreeze / coolant. See water circulator

B
back-ups and copies of jobs and programs, 33
braking system (robot)
 brake release, 37
description, 18

C
cable connections
 routing and connection to sys components, 28
to earth ground, 29
to local electrical service, 30
components, system, 3
description, 18
controller. See NX100-DRC

customer service
 contact phone number, 4
 information needed before you call, 4
customer-supplied items, 19

daily operation, 34
documentation, reference, 4
door, work cell access
 location, 2
 safety interlock, 18

earth ground
 connection to, 29
 importance, 29
 maximum allowable resistance, 29
emergency stop (E-Stop)
description, 17
push button locations, 17
recovery from, 38
and safety/operation check, 30

E continued
emergency stop (E-Stop), continued
 and system shutdown, 37
 and system start-up, 35
 equipment description, 9

F
fencing
 arc curtain installation, 27
description, 16
 installation, 25

general safeguarding tips, 6

I
installation
 and qualified personnel, 19
 required materials, 19
 safety, 7
tooling and fixtures, 31
introduction, 1

L
layout (system), 3
low-resistance earth ground. See earth ground

M
maintenance
 intervals, 41
 periodic (preventive), 41
 procedures, 41
master job. See programming
mechanical safety devices, 7

N
NX100-DRC controller
description, 9
DRC configuration, 9
function, 9
INFORM programming language, 10
O
operation (system), 33
operator station
 controls, 12
 functions, 12-13
 location, 12
optional equipment, 3

P
positioner
 description, 14
 tooling fixtures, 14
power sources. See welding equipment
preventive maintenance. See maintenance
programming
 and the INFORM language, 10
 and the programming pendant, 10-11
 back-ups and copies, 33
 master job, 36
 personnel requirements, 33
programming pendant
 and NX100-DRC controller, 10
 description, 10-11
 ENABLE switch, 17

R
robot
 braking system, 18
 description, 9
 home position 35
 shipping bracket removal, 28
required installation materials, 19
RM2-250 STX positioner. See positioner

S
safety
 equipment, 3
 features, 15
 fencing. See fencing

S (cont)
safety (cont)
 general safeguarding tips, 6
 and installation, 7
 introduction, 5
 light curtains, 16
 mechanical safety devices, 7
 programming, operation, and maintenance, 8
 safety /operation check, 30
 standard conventions, 6
 and welding equipment, 16
 shipping bolts (removal), 22
 shock sensor, 38
 site preparation, 20
system
 components, 3
 layout, 3
 overview and component location, 2
 recovery, 37
 shutdown, 37
 start-up, 35

T
tools and equipment
 customer-supplied, 19
 recommended, 20

W
water circulator
 and antifreeze/coolant, 41
welding equipment
 power source, 15
 safety features. See safety
 shutdown, 37
 start-up, 35
 torch, 15
 wire feeder, 15