YRC1000micro OPTIONS
PROFIBUS COMMUNICATION FUNCTION
INSTRUCTIONS
FOR INpact AND AB3602 MADE BY HMS, Inc.

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

MOTOMAN INSTRUCTIONS
MOTOMAN-□□□ INSTRUCTIONS
YRC1000micro INSTRUCTIONS
YRC1000micro OPERATOR’S MANUAL
YRC1000micro MAINTENANCE MANUAL
YRC1000micro ALARM CODES (MAJOR ALARMS) (MINOR ALARMS)

Please have the following information available when contacting Yaskawa Customer Support:
• System
• Primary Application
• Software Version (Located on Programming Pendant by selecting: {Main Menu} - {System Info} - {Version})
• Robot Serial Number (Located on robot data plate)
• Robot Sales Order Number (Located on controller data plate)

Part Number: 188183-1CD
Revision: 0
This manual explains the INpact Profibus slave board and AB3602 board (manufactured by HMS, Inc.) of the YRC1000micro system. Read this manual carefully and be sure to understand its contents before handling the YRC1000micro. Any matter not described in this manual must be regarded as “prohibited” or “improper”.

General information related to safety are described in “Chapter 1. Safety” of the YRC1000micro INSTRUCTIONS. To ensure correct and safe operation, carefully read “Chapter 1. Safety” of the YRC1000micro INSTRUCTIONS.

In some drawings in this manual, protective covers or shields are removed to show details. Make sure that all the covers or shields are installed in place before operating this product.

YASKAWA is not responsible for incidents arising from unauthorized modification of its products. Unauthorized modification voids the product warranty.

The drawings and photos in this manual are representative examples and differences may exist between them and the delivered product.

YASKAWA may modify this model without notice when necessary due to product improvements, modifications, or changes in specifications. If such modification is made, the manual number will also be revised.

If your copy of the manual is damaged or lost, contact a YASKAWA representative to order a new copy. The representatives are listed on the back cover. Be sure to tell the representative the manual number listed on the front cover.
Notes for Safe Operation

Read this manual carefully before installation, operation, maintenance, or inspection of the YRC1000micro.

In this manual, the Notes for Safe Operation are classified as “DANGER”, “WARNING”, “CAUTION”, or “NOTICE”.

DANGER
Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. Safety Signs identified by the signal word DANGER should be used sparingly and only for those situations presenting the most serious hazards.

WARNING
Indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury. Hazards identified by the signal word WARNING present a lesser degree of risk of injury or death than those identified by the signal word DANGER.

CAUTION
Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury. It may also be used without the safety alert symbol as an alternative to “NOTICE”.

NOTICE
NOTICE is the preferred signal word to address practices not related to personal injury. The safety alert symbol should not be used with this signal word. As an alternative to “NOTICE”, the word “CAUTION” without the safety alert symbol may be used to indicate a message not related to personal injury.

Even items described as “CAUTION” may result in a serious accident in some situations. At any rate, be sure to follow these important items.

NOTE
To ensure safe and efficient operation at all times, be sure to follow all instructions, even if not designated as “DANGER”, “WARNING” and “CAUTION”.

NOTICE

- Do not use or keep the board in the following environmental conditions.
 - Where exposed to direct sunshine
 - Where vibration or impact occurs
 - Where high humidity exists
 - Where a strong magnetic field exists
 - Where much dust exists
 - Where a sudden change in the temperature occurs
 - Where corrosive gases occur
 - Where condensation occurs
- Improper usage of the board may damage the board.
• Before operating the manipulator, make sure the servo power is turned OFF by performing the following operations. When the servo power is turned OFF, the SERVO ON LED on the programming pendant is turned OFF.
 – Press the emergency stop button on the programming pendant or on the external control device, etc.
 – Disconnect the safety plug of the safety fence. (when in the play mode or in the remote mode)
If operation of the manipulator cannot be stopped in an emergency, personal injury and/or equipment damage may result.

Fig. : Emergency Stop Button

• Before releasing the emergency stop, make sure to remove the obstacle or error caused the emergency stop, if any, and then turn the servo power ON.
Failure to observe this instruction may cause unintended movement of the manipulator, which may result in personal injury.

Fig. : Release of Emergency Stop

• Observe the following precautions when performing a teaching operation within the manipulator's operating range:
 – Be sure to perform lockout by putting a lockout device on the safety fence when going into the area enclosed by the safety fence. In addition, the operator of the teaching operation must display the sign that the operation is being performed so that no other person closes the safety fence.
 – View the manipulator from the front whenever possible.
 – Always follow the predetermined operating procedure.
 – Always keep in mind emergency response measures against the manipulator’s unexpected movement toward a person.
 – Ensure a safe place to retreat in case of emergency.
Failure to observe this instruction may cause improper or unintended movement of the manipulator, which may result in personal injury.

• Confirm that no person is present in the manipulator's operating range and that the operator is in a safe location before:
 – Turning ON the YRC1000micro power
 – Moving the manipulator by using the programming pendant
 – Running the system in the check mode
 – Performing automatic operations
Personal injury may result if a person enters the manipulator's operating range during operation. Immediately press an emergency stop button whenever there is a problem. The emergency stop button is located on the right of the programming pendant.

• Read and understand the Explanation of the Warning Labels before operating the manipulator.
DANGER

• In the case of not using the programming pendant, be sure to supply the emergency stop button on the equipment. Then before operating the manipulator, check to be sure that the servo power is turned OFF by pressing the emergency stop button. Connect the external emergency stop button to the 2-12 pin and 3-13 pin of the Safety connector (Safety).

• Upon shipment of the YRC1000micro, this signal is connected by a jumper cable in the dummy connector. To use the signal, make sure to supply a new connector, and then input it.

If the signal is input with the jumper cable connected, it does not function, which may result in personal injury or equipment damage.

WARNING

• Do not touch the inside of the controller cabinet for at least 5 minutes after turning the power off.

Failure to observe this warning may result in electric shock or personal injury because of the residual voltage of the condenser.

• During power ON, do not touch the board.

Failure to observe this warning may result in fire or electric shock.

• Perform the following inspection procedures prior to conducting manipulator teaching. If there is any problem, immediately take necessary steps to solve it, such as maintenance and repair.
 – Check for a problem in manipulator movement.
 – Check for damage to insulation and sheathing of external wires.

• Return the programming pendant to a safe place after use.

If the programming pendant is left unattended on the manipulator, on a fixture, or on the floor, etc., the Enable Switch may be activated due to surface irregularities of where it is left, and the servo power may be turned ON. In addition, in case the operation of the manipulator starts, the manipulator or the tool may hit the programming pendant left unattended, which may result in personal injury and/or equipment damage.

• Wiring and installation must be performed by authorized or certified personnel.

Failure to observe this caution may result in fire or electric shock.
CAUTION

• Check to be sure that there is no foreign matter (metal piece, etc.) on the board.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
• Check to be sure that there is no problem (damage, bend, etc.) with the components of the board.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
• Connect the cables and connectors properly.
 Failure to observe this caution may result in fire or equipment failure.
• Make sure to properly perform the setting of the switches, etc.
 Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
• Do not touch the solder surface of the board directly with a finger.
 Failure to observe this caution may result in personal injury because of solder projection, etc.

NOTICE

• Do not touch the component-mounting surface of the board directly with a finger.
 Failure to observe this caution may result in the failure of IC, etc. because of static electricity.
• Avoid shock on the board.
 Failure to observe this caution may result in the failure of the board.
Definition of Terms Used Often in This Manual

The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, the YRC1000micro controller, manipulator cables, the YRC1000micro programming pendant (optional), and the YRC1000micro programming pendant dummy connector (optional).

In this manual, the equipment is designated as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRC1000micro controller</td>
<td>YRC1000micro</td>
</tr>
<tr>
<td>YRC1000micro programming pendant</td>
<td>Programming pendant (optional)</td>
</tr>
<tr>
<td>Cable between the manipulator and the controller</td>
<td>Manipulator cable</td>
</tr>
<tr>
<td>YRC1000micro programming pendant dummy connector</td>
<td>Programming pendant dummy connector (optional)</td>
</tr>
</tbody>
</table>
Descriptions of the programming pendant keys, buttons, and displays are shown as follows:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manual Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Pendant</td>
<td></td>
</tr>
<tr>
<td>Character Keys /Symbol</td>
<td>The keys which have characters or symbols printed on them are denoted with [].</td>
</tr>
<tr>
<td>Keys</td>
<td>e.g. [ENTER]</td>
</tr>
<tr>
<td>Axis Keys /Numeric Keys</td>
<td>[Axis Key] and [Numeric Key] are generic names for the keys for axis operation and number input.</td>
</tr>
<tr>
<td>Keys pressed simultaneously</td>
<td>When two keys are to be pressed simultaneously, the keys are shown with a "+" sign between them, e.g. [SHIFT]+[COORD].</td>
</tr>
<tr>
<td>Mode Switch</td>
<td>Mode Switch can select three kinds of modes that are denoted as follows: REMOTE, PLAY or TEACH. (The switch names are denoted as symbols)</td>
</tr>
<tr>
<td>Button</td>
<td>The three buttons on the upper side of the programming pendant are denoted as follows: START, HOLD, or EMERGENCY STOP. (The button names are denoted as symbols)</td>
</tr>
<tr>
<td>Displays</td>
<td>The menu displayed in the programming pendant is denoted with { }. e.g. {JOB}</td>
</tr>
</tbody>
</table>

The button/switch names are denoted as symbols.
Description of the Operation Procedure

In the explanation of the operation procedure, the expression “Select • • •” means that the cursor is moved to the object item and [SELECT] is pressed, or that the item is directly selected by touching the screen.

Registered Trademark

In this manual, names of companies, corporations, or products are trademarks, registered trademarks, or brand names for each company or corporation. The indications of (R) and TM are omitted.
Contents

1 Outline 1-1
 1.1 System Configuration ... 1-1

2 Hardware Specifications .. 2-1
 2.1 Board External View ... 2-1
 2.1.1 INpact Profibus Slave Board .. 2-1
 2.1.2 AB3602 Board ... 2-2
 2.2 Board Specifications .. 2-3
 2.3 Communication Specifications ... 2-3
 2.4 Connector Specification ... 2-4

3 Mounting the Board .. 3-1

4 I/O Signal Allocation ... 4-1
 4.1 Setting of Option Board and I/O Module ... 4-1
 4.1.1 Setting of the INpact Board to Slave .. 4-2
 4.1.2 Setting of the AB3602 Board to Master .. 4-12
 4.2 Transmission Data ... 4-23
 4.2.1 YRC1000micro INpact Allocation Example .. 4-24
 4.2.2 YRC1000micro AB3602 Allocation Example ... 4-26
 4.2.3 The Alarm when Communication Error Occurs Using the Board Status 4-28
 4.3 Setting of AB3602 Board Communication Condition ... 4-32

5 Error Indication .. 5-1
 5.1 INpact .. 5-2
 5.2 AB3602 ... 5-3
This manual describes the PROFIBUS board INpact and AB3602 (manufactured by HMS Inc.) to be used in the YRC1000micro. The application of these boards allows the general-purpose I/O data exchange between a PROFIBUS device and the YRC1000micro.

1.1 System Configuration

The following diagram shows an example of the configuration of a system with an INpact PROFIBUS slave board.

NOTE

INpact is used as a slave (INPACT PPROFIBUS Slave). All the network settings for this board are available in the maintenance mode.

NOTE

AB3602 is used as a master (Profibus DPV1 Master).

Settings of the communication between the YRC1000micro and this board are executed in the maintenance mode.

The network as Profibus is set with HMS AnyBus NetTool for PROFIBUS (Network setup software).
The following diagram shows an example of the configuration of a system with the AB3602 board.
2 Hardware Specifications

2.1 Board External View

2.1.1 INpact Profibus Slave Board
2.1.2 AB3602 Board
2.2 Board Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface to the external device</td>
<td>PROFIBUS</td>
</tr>
<tr>
<td>Board mounting position</td>
<td>Option PCI Express slot on the YRC1000micro</td>
</tr>
<tr>
<td>Error indicator</td>
<td>LED display</td>
</tr>
<tr>
<td>Number of transmission I/O points</td>
<td>Maximum number of I/O points</td>
</tr>
<tr>
<td></td>
<td>INpact PROFIBUS slave</td>
</tr>
<tr>
<td></td>
<td>Input: 1008 points Output: 1008 points</td>
</tr>
<tr>
<td></td>
<td>AB3602</td>
</tr>
<tr>
<td></td>
<td>Input: 1008 points Output: 1008 points</td>
</tr>
<tr>
<td></td>
<td>(However, the input and output bytes cannot be</td>
</tr>
<tr>
<td></td>
<td>set respectively.)</td>
</tr>
</tbody>
</table>

2.3 Communication Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical layer</td>
<td>RS485</td>
</tr>
<tr>
<td>Baud rate</td>
<td>9.6 Kbps to 12 Mbps</td>
</tr>
</tbody>
</table>
Connector Specification

Profibus Connector
D-sub 9 pin (socket)

<table>
<thead>
<tr>
<th>Frame</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC ¹)</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>B-Line</td>
</tr>
<tr>
<td>4</td>
<td>RTS ²)</td>
</tr>
<tr>
<td>5</td>
<td>GND BUS ³)</td>
</tr>
<tr>
<td>6</td>
<td>+5V BUS ³)</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>A-Line</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
</tr>
</tbody>
</table>

1. NC : Not Connected
2. RTS: RTS is a signal which dictates data communication direction.
The ordinal application does not use RTS signal because it uses only A-Line, B-Line or the shield cable.
3. GND BUS / +5V BUS
These two signal cables are used for bus transmission.
The power is supplied by this cable when a device like RS485 for optical fiber is used.

Configuration Connector (available for AB3602 only)
D-sub 9 pin (pin)

<table>
<thead>
<tr>
<th>Frame</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC ¹)</td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
</tr>
</tbody>
</table>

1. NC: Not Connected
3 Mounting the Board

WARNING

- Before wiring or installation, make sure to turn the primary power supply off, and put up a warning sign. (e.g. DO NOT TURN THE POWER ON.)

Failure to observe this warning may result in electric shock or personal injury.
- Do not touch the inside of the controller cabinet for at least 5 minutes after turning the power off.

Failure to observe this warning may result in electric shock or personal injury because of the residual voltage of the capacitors.
- During power ON, do not touch the board.

Failure to observe this warning may result in fire or electric shock.
- Wiring and installation must be performed by authorized or certified personnel.

Failure to observe this caution may result in fire or electric shock.

CAUTION

- Check to be sure that there is no foreign matter (metal piece, etc.) on the board.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Check to be sure that there is no problem (damage, bend, etc.) with the components of the board.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Connect the cables and connectors properly.

Failure to observe this caution may result in fire or equipment failure.
- Make sure to properly perform the setting of the switches, etc.

Failure to observe this caution may result in personal injury or equipment damage because of malfunction.
- Do not touch the solder surface of the board directly with a finger.

Failure to observe this caution may result in personal injury because of solder projection, etc.

NOTICE

- Do not touch the component-mounting surface of the board directly with a finger.

Failure to observe this caution may result in the failure of IC, etc. because of static electricity.
- Avoid shock on the board.

Failure to observe this caution may result in the failure of the board.
3 Mounting the Board

1. Remove the fixing screw (22 screws) of the top board, and remove the top board.

Fig. 3-1: Removing the Top Board of the YRC1000micro
2. Mount the INpact / AB3602 board, and securely tighten the INpact / AB3602 board with screws.

Fig. 3-2: Mounting the INpact / AB3602 board

3. Connect the PROFIBUS cable with the connector on the INpact / AB3602 board.

4. Reassemble the top board.

WARNING

Do not remove the top board of the YRC1000 micro whenever it is used, except for maintenance. And securely tighten the all fixing screws. Failure to observe this instruction may cause the ingress of dust, dirt, or water, which may result in electric shock and/or mechanical failure.
4 I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

In order to use the INpact / AB3602 board in the YRC1000micro, perform the setting of the option board and I/O module in the following manner.

Set the option board and I/O module in the management mode.

In the operation mode and the editing mode, the settings are for reference only.
4.1 Setting of Option Board and I/O Module

4.1.1 Setting of the INpact Board to Slave

1. Turn ON the power supply while pressing (MAIN MENU).
 - The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.

3. Select (SYSTEM) under the main menu.
 - The sub menu appears.
4. Select {SETUP}.
 – The SETUP display appears.

5. Select “OPTION BOARD”.
 – The OPTION BOARD display appears.
6. Select “INpact”.

 – The INpact setup display appears.

 – Set the following items:

 • “INPACT”: whether to use the INpact board or not
 • “IO SIZE”: the I/O size (dword)
 • “NODE ADDRESS”

 ![INpact Setup Display]

 – Explanation of Setup Items

 (1) INPACT
 Sets whether to use the INpact board or not. Set “USED”.

 (2) IO SIZE (dword)
 Sets the I/O size (in dwords) reserved for I/O.
 The maximum setting value of the I/O size is 31 dwords (992 points).

 (3) NODE ADDRESS
 Set the node address within the range from 1 to 125.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

7. Press [ENTER].
 – The confirmation dialog box appears.

8. Select {YES}.
 – The IO MODULE display appears.
 The message, “Select 'Safety Board FLASH Reset'. “ appears,
 however, do not perform 'Safety Board FLASH Reset' this time, but
 perform the settings continuously.
9. Press [ENTER].
 - The rest of the IO MODULE display appears, and “INpact” is displayed.
 - The I/O points is displayed under “DI/DO” according to the I/O size in bytes that is set on the “OPTION BOARD” display.

 The DI/DO points can be found using the following equation;
 \[\text{DI/DO points} = (\text{IO size} \times 8) + 8 \]
 “+ 8”: the I/O points for status

10. Press [ENTER].
 - The confirmation dialog box appears.
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

11. Select {YES}.
 – Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

12. The EXTERNAL IO SETUP window appears.

13. Select “AUTO” or “MANUAL” in the ALLOCATION MODE.
 – The selection menu appears after selecting “AUTO” or “MANUAL”.

 If the allocation mode is changed from “MANUAL” to “AUTO”, the set allocation data is discarded. The data will be allocated by AUTO MODE again. Save the set allocation data to the external devices in advance, if needed.
14. Select the allocation mode to set up.
 - Select “AUTO” to allocate I/O signal allocation automatically. Select “MANUAL” to allocate I/O signal allocation manually.
 - The selected allocation mode is set up.

15. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 - When select “AUTO”, the following procedures No.16 to 18 are not necessary. Operate the procedure from No.19.
 - When select “MANUAL”, operate the following procedures No.16 to 18 accordant with the setting manually.
16. Select the external I/O signal number (at the change source) to be changed. (In the setting example, select “#20030”.)

- The select menu appears.

17. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, enter “#20190”.)

- The external input signal number is changed.

18. Likewise, select/modify the number of the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.
19. Press [ENTER].
- The allocation window of the external output signal appears.

20. Select/modify the number of the external output signal same as the external input signal.
- Repeat select/modify until it becomes the desired allocation to set up.

21. Press [ENTER].
- Confirmation dialog appears.

22. Select {YES}.
- The settings are confirmed, and returns to the SETUP window.
23. Set the security mode to the “SAFETY MODE”.
24. Select {FILE} → {INITIALIZE}.
 – The INITIALIZE window appears.

25. Select “Safety Board FLASH Reset”.
 – The confirmation dialog box appears.

26. Select {YES}.
 – The setting is completed after beep sound.
4. I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

4.1.2 Setting of the AB3602 Board to Master

1. Turn ON the power supply while pressing {MAIN MENU}.
 – The Maintenance mode starts.

2. Set the security mode to the “Management Mode”.
3. Select {SYSTEM} under the main menu.
 – The sub menu appears.
4. I/O Signal Allocation

4.1 Setting of Option Board and I/O Module

4. Select {SETUP}.
 – The SETUP display appears.

5. Select “OPTION BOARD”.
 – The OPTION BOARD display appears.
6. Select “AB3602”.
 - The AB3602 setup display appears.
 - Set the following items without fail:
 • “AB3602”: whether to use the AB3602 board or not
 • “IO SIZE”: the I/O size (byte)
 • “NODE ADDRESS”
 • “BAUD RATE”
 • As for SCAN LIST, refer to the following step 7 to step 11.
 For the settings other than mentioned above, execute settings as the need arises.

 – Explanation of Setup Items

 (1) AB3602
 Sets whether to use the AB3602 board or not.
 Set “USED”.

 (2) IO SIZE (byte)
 Sets the I/O size (in bytes) reserved for I/O.
 The maximum setting value of the I/O size is 255 bytes.

 (3) NODE ADDRESS
 It cannot be set with this window but set by Anybus NetTool for PROFIBUS.

 (4) BAUD RATE
 It cannot be set with this window but set by Anybus NetTool for PROFIBUS.
7. Press [ENTER].
 - The confirmation dialog box appears.

8. Select {YES}
 - The IO MODULE display appears.
 The message, “Select 'Safety Board FLASH Reset'.” appears, however, do not perform 'Safety Board FLASH Reset' this time, but perform the settings continuously.
9. Press [ENTER].

- The rest of the IO MODULE display appears, and “AB3602” is displayed.
- The I/O points is displayed under “DI/DO” according to the I/O size in bytes that is set on the “OPTION BOARD” display.

The DI/DO points can be found using the following equation;

DI/DO points = (I/O size × 8) + 8

“+ 8” : the I/O points for status
4 I/O Signal Allocation
4.1 Setting of Option Board and I/O Module

10. Press [ENTER].
 – The confirmation dialog box appears.

11. Select {YES}.
 – Select {YES} if the display corresponds to the current mounted status of the I/O modules. The I/O module setting is updated, and the IO MODULE window changes to the EXTERNAL IO SETUP window.

12. The EXTERNAL IO SETUP window appears.
13. Select “AUTO” or “MANUAL” in the ALLOCATION MODE.
 - The selection menu appears after selecting “AUTO” or “MANUAL”.

 ![Allocation Mode Selection Screen]

 If the allocation mode is changed from “MANUAL” to “AUTO”, the set allocation data is discarded. The data will be allocated by AUTO MODE again. Save the set allocation data to the external devices in advance, if needed.

14. Select the allocation mode to set up.
 - Select “AUTO” to allocate I/O signal allocation automatically.
 Select “MANUAL” to allocate I/O signal allocation manually.
 - The selected allocation mode is set up.
15. Select “DETAIL” of “EXTERNAL IO ALLOCATION”.
 – When select “AUTO”, the following procedures No.16 to 18 are not necessary. Operate the procedure from No.19.
 – When select “MANUAL”, operate the following procedures No.16 to 18 accordant with the setting manually.

16. Select the external I/O signal number (at the change source) to be changed. (In the setting example, select “#20170”.)
 – The select menu appears.
17. Select “MODIFY”, and input the external input signal number (at the change destination) to be changed. (In the setting example, enter “#20290”.)

- The external input signal number is changed.

18. Likewise, select/modify the number of the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.

19. Press [ENTER].

- The allocation window of the external output signal appears.

20. Select/modify the number of the external output signal same as the external input signal.

- Repeat select/modify until it becomes the desired allocation to set up.
21. Press [ENTER].

 – Confirmation dialog appears.

22. Select {YES}.

 – The settings are confirmed, and returns to the SETUP window.
23. Set the security mode to the “SAFETY MODE”.

24. Select {FILE} - {INITIALIZE}.
 – The INITIALIZE window appears.

25. Select “Safety Board FLASH Reset”.
 – The confirmation dialog box appears.

26. Select {YES}.
 – The setting is completed after beep sound.
4.2 Transmission Data

The data to be transferred from the INpact/AB3602 board to the inside of the YRC1000micro is not only the I/O data from the external device connected to the Profibus, but also the status of the INpact/AB3602 board. Therefore, inside the YRC1000micro, 8 points (1 byte) each for input and output are reserved for the INpact/AB3602 board status, beside the area for the digital data. The output area, however, cannot be used.

The transmission data from the INpact/AB3602 board are allocated to the external I/O signals of concurrent I/O.

When only INpact or AB3602 board is mounted as an optional I/O board, the concurrent I/O allocation of the board is shown in the following table.

The I/O area: 20010 to 20017 and 30010 to 30017 is reserved for the standard I/O board of the YRC1000micro.
4.2 Transmission Data

4.2.1 YRC1000micro INpact Allocation Example

Note1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note2) As for the input data/output data of ASF30 (standard I/O), refer to “YRC1000micro INSTRUCTIONS (RE-CTO-A222)” for more details.

<table>
<thead>
<tr>
<th>ASF30 (standard I/O)</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30010 to 30017</td>
<td>None (allocated on the system)</td>
<td>Output data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INpact (Profibus)</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>20020 to 20027</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Board status 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20030 to 20037</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Input data (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20040 to 20047</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>Input data (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20050 to 20057</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>Input data (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20060 to 20067</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>Input data (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20070 to 20077</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>Input data (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20080 to 20087</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>Input data (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20090 to 20097</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>Input data (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20100 to 20107</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>Input data (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20110 to 20117</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>Input data (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20120 to 20127</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>Input data (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20130 to 20137</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>Input data (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20140 to 20147</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>Input data (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20150 to 20157</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>Input data (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20160 to 20167</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>Input data (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20170 to 20177</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>Input data (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20180 to 20187</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>Input data (16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>30020 to 30027</td>
<td>10020 to 10027 (OT0009 to OT0016)</td>
<td>Board status 1)</td>
<td></td>
</tr>
<tr>
<td>30030 to 30037</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>Output data (1)</td>
<td></td>
</tr>
<tr>
<td>30040 to 30047</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>Output data (2)</td>
<td></td>
</tr>
<tr>
<td>30050 to 30057</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>Output data (3)</td>
<td></td>
</tr>
<tr>
<td>30060 to 30067</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>Output data (4)</td>
<td></td>
</tr>
<tr>
<td>30070 to 30077</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>Output data (5)</td>
<td></td>
</tr>
</tbody>
</table>
I/O Signal Allocation

4.2 Transmission Data

<table>
<thead>
<tr>
<th>INpact (Profibus)</th>
<th>I/O Output</th>
<th>Data Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30080 to 30087</td>
<td>10080 to 10087 (OT0057 to OT0064)</td>
<td>Output data (6)</td>
</tr>
<tr>
<td></td>
<td>30090 to 30097</td>
<td>10090 to 10097 (OT0065 to OT0072)</td>
<td>Output data (7)</td>
</tr>
<tr>
<td></td>
<td>30100 to 30107</td>
<td>10100 to 10107 (OT0073 to OT0080)</td>
<td>Output data (8)</td>
</tr>
<tr>
<td></td>
<td>30110 to 30117</td>
<td>10110 to 10117 (OT0081 to OT0088)</td>
<td>Output data (9)</td>
</tr>
<tr>
<td></td>
<td>30120 to 30127</td>
<td>10120 to 10127 (OT0096 to OT0096)</td>
<td>Output data (10)</td>
</tr>
<tr>
<td></td>
<td>30130 to 30137</td>
<td>10130 to 10137 (OT0097 to OT0104)</td>
<td>Output data (11)</td>
</tr>
<tr>
<td></td>
<td>30140 to 30147</td>
<td>10140 to 10147 (OT0105 to OT0112)</td>
<td>Output data (12)</td>
</tr>
<tr>
<td></td>
<td>30150 to 30157</td>
<td>10150 to 10157 (OT0113 to OT0120)</td>
<td>Output data (13)</td>
</tr>
<tr>
<td></td>
<td>30160 to 30167</td>
<td>10160 to 10167 (OT0121 to OT0128)</td>
<td>Output data (14)</td>
</tr>
<tr>
<td></td>
<td>30170 to 30177</td>
<td>10170 to 10177 (OT0129 to OT0136)</td>
<td>Output data (15)</td>
</tr>
<tr>
<td></td>
<td>30180 to 30187</td>
<td>10180 to 10187 (OT0137 to OT0144)</td>
<td>Output data (16)</td>
</tr>
</tbody>
</table>

1 Board status and system reservation cannot be allocated as IO signal. Also, this data is not able to transmit by Profibus. (Unable to communicate with the main PLC.)
4.2 Transmission Data

4.2.2 YRC1000micro AB3602 Allocation Example

Note 1) The following example is for the standard setting. When change the allocation of the external output signal or the concurrent ladder program, the allocation changes in accordance with the changes.

Note 2) As for the input data/output data of ASF30 (standard I/O), refer to "YRC1000micro INSTRUCTIONS (RE-CTO-A222)" for more details.

<table>
<thead>
<tr>
<th>ASF30 (standard I/O)</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20010 to 20017</td>
<td>None (allocated on the system)</td>
<td>Input data</td>
<td></td>
</tr>
<tr>
<td>I/O Output</td>
<td>External output signal</td>
<td>User output signal</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30010 to 30017</td>
<td>None (allocated on the system)</td>
<td>Output data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AB3602 (Profibus)</th>
<th>I/O Input</th>
<th>External input signal</th>
<th>User input signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20020 to 20027</td>
<td>00020 to 00027 (IN0009 to IN0016)</td>
<td>Board status 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20030 to 20037</td>
<td>00030 to 00037 (IN0017 to IN0024)</td>
<td>Input data (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20040 to 20047</td>
<td>00040 to 00047 (IN0025 to IN0032)</td>
<td>Input data (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20050 to 20057</td>
<td>00050 to 00057 (IN0033 to IN0040)</td>
<td>Input data (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20060 to 20067</td>
<td>00060 to 00067 (IN0041 to IN0048)</td>
<td>Input data (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20070 to 20077</td>
<td>00070 to 00077 (IN0049 to IN0056)</td>
<td>Input data (5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20080 to 20087</td>
<td>00080 to 00087 (IN0057 to IN0064)</td>
<td>Input data (6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20090 to 20097</td>
<td>00090 to 00097 (IN0065 to IN0072)</td>
<td>Input data (7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20100 to 20107</td>
<td>00100 to 00107 (IN0073 to IN0080)</td>
<td>Input data (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20110 to 20117</td>
<td>00110 to 00117 (IN0081 to IN0088)</td>
<td>Input data (9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20120 to 20127</td>
<td>00120 to 00127 (IN0089 to IN0096)</td>
<td>Input data (10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20130 to 20137</td>
<td>00130 to 00137 (IN0097 to IN0104)</td>
<td>Input data (11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20140 to 20147</td>
<td>00140 to 00147 (IN0105 to IN0112)</td>
<td>Input data (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20150 to 20157</td>
<td>00150 to 00157 (IN0113 to IN0120)</td>
<td>Input data (13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20160 to 20167</td>
<td>00160 to 00167 (IN0121 to IN0128)</td>
<td>Input data (14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20170 to 20177</td>
<td>00170 to 00177 (IN0129 to IN0136)</td>
<td>Input data (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20180 to 20187</td>
<td>00180 to 00187 (IN0137 to IN0144)</td>
<td>Input data (16)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I/O Output</th>
<th>External output signal</th>
<th>User output signal</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30020 to 30027</td>
<td>10020 to 10027 (OT0009 to OT0016)</td>
<td>Board status 1)</td>
</tr>
<tr>
<td></td>
<td>30030 to 30037</td>
<td>10030 to 10037 (OT0017 to OT0024)</td>
<td>Output data (1)</td>
</tr>
<tr>
<td></td>
<td>30040 to 30047</td>
<td>10040 to 10047 (OT0025 to OT0032)</td>
<td>Output data (2)</td>
</tr>
<tr>
<td></td>
<td>30050 to 30057</td>
<td>10050 to 10057 (OT0033 to OT0040)</td>
<td>Output data (3)</td>
</tr>
<tr>
<td></td>
<td>30060 to 30067</td>
<td>10060 to 10067 (OT0041 to OT0048)</td>
<td>Output data (4)</td>
</tr>
<tr>
<td></td>
<td>30070 to 30077</td>
<td>10070 to 10077 (OT0049 to OT0056)</td>
<td>Output data (5)</td>
</tr>
</tbody>
</table>
I/O Signal Allocation
4.2 Transmission Data

The status of the INpact/AB3602 board (the first 8 points of the allocation area) is indicated as follows.

The value “xxx” of the allocated input signals in the table indicates the first number of the INpact/AB3602 board allocated number. In the table above, where the allocation numbers are 20020 to 20027, “xxx” would be “002”.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xxx0 to 2xxx4</td>
<td>Reserved for the manufacture. The user cannot use these signals.</td>
</tr>
<tr>
<td>2xxx5</td>
<td>INpact Not used Always set to 0. AB3602 Indicates if communicating with all the slaves or not through Profibus. Communicating with all slaves: 0 Communicating with some slaves: 1</td>
</tr>
<tr>
<td>2xxx6</td>
<td>Indicates the Profibus communication status. Normal: 0 Error: 1</td>
</tr>
<tr>
<td>2xxx7</td>
<td>Indicates the operation status of the INpact/AB3602 board. Normal: 0 Error: 1</td>
</tr>
</tbody>
</table>

1. Board status and system reservation cannot be allocated as IO signal. Also, this data is not able to transmit by Profibus. (Unable to communicate with the main PLC.)

[INpact/AB3602 Board Status]

The status of the INpact/AB3602 board (the first 8 points of the allocation area) is indicated as follows.

The value “xxx” of the allocated input signals in the table indicates the first number of the INpact/AB3602 board allocated number. In the table above, where the allocation numbers are 20020 to 20027, “xxx” would be “002”.

<table>
<thead>
<tr>
<th>AB3602 (Profibus)</th>
<th>I/O Output</th>
<th>Signal Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30080 to 30087</td>
<td>10080 to 10087 (OT0057 to OT0064) Output data (6)</td>
</tr>
<tr>
<td></td>
<td>30090 to 30097</td>
<td>10090 to 10097 (OT0065 to OT0072) Output data (7)</td>
</tr>
<tr>
<td></td>
<td>30100 to 30107</td>
<td>10100 to 10107 (OT0073 to OT0080) Output data (8)</td>
</tr>
<tr>
<td></td>
<td>30110 to 30117</td>
<td>10110 to 10117 (OT0081 to OT0088) Output data (9)</td>
</tr>
<tr>
<td></td>
<td>30120 to 30127</td>
<td>10120 to 10127 (OT0089 to OT0096) Output data (10)</td>
</tr>
<tr>
<td></td>
<td>30130 to 30137</td>
<td>10130 to 10137 (OT0097 to OT0104) Output data (11)</td>
</tr>
<tr>
<td></td>
<td>30140 to 30147</td>
<td>10140 to 10147 (OT0105 to OT0112) Output data (12)</td>
</tr>
<tr>
<td></td>
<td>30150 to 30157</td>
<td>10150 to 10157 (OT0113 to OT0120) Output data (13)</td>
</tr>
<tr>
<td></td>
<td>30160 to 30167</td>
<td>10160 to 10167 (OT0121 to OT0128) Output data (14)</td>
</tr>
<tr>
<td></td>
<td>30170 to 30177</td>
<td>10170 to 10177 (OT0129 to OT0136) Output data (15)</td>
</tr>
<tr>
<td></td>
<td>30180 to 30187</td>
<td>10180 to 10187 (OT0137 to OT0144) Output data (16)</td>
</tr>
</tbody>
</table>
4.2.3 The Alarm when Communication Error Occurs Using the Board Status

When the INpact/AB3602 board detects an error of the Profibus communication, by using the CIO ladder program allows to occur the alarm.

The examples of the method are described below.

There are three alarms of the occurrence alarms.

- INpact BOARD ERROR
- PROFIBUS COMMUNICATION ERROR
- UNSENT SLAVES in Profibus

As for the user alarm registration, refer to “Chap. 13.7 I/O Messages and I/O Alarms” in "YRC1000micro OPTIONS INSTRUCTIONS FOR Concurrent I/O (RE-CKI-A469)" for more details.

Register the User Alarm

1. Change the security mode to the Management Mode.
2. Select the {I/O ALARM} from the {IN/OUT} in the main menu.
3. The I/O alarm (user) window appears.

4. Move the cursor over the desired No. to register, and press [SELECT].

- The window changes to the character string entry window.
4. I/O Signal Allocation

4.2 Transmission Data

5. Enter the I/O alarm name.

6. Press [ENTER].
 - The entered alarm is registered.

7. Register the other alarms.
 - Repeat the same procedures to register the alarm to use.
4. IO Signal Allocation
4.2 Transmission Data

- IO Allocation and the Ladder Program

External input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20025</td>
<td>The unsent slave (slave unit) exists on the Profibus network.</td>
</tr>
<tr>
<td>20026</td>
<td>Profibus communication error</td>
</tr>
<tr>
<td>20027</td>
<td>INpact board operation error</td>
</tr>
</tbody>
</table>

System input signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40012</td>
<td>User alarm request</td>
</tr>
<tr>
<td>40220</td>
<td>User alarm code d0</td>
</tr>
<tr>
<td>40221</td>
<td>User alarm code d1</td>
</tr>
<tr>
<td>40222</td>
<td>User alarm code d2</td>
</tr>
<tr>
<td>40223</td>
<td>User alarm code d3</td>
</tr>
<tr>
<td>40224</td>
<td>User alarm code d4</td>
</tr>
<tr>
<td>40225</td>
<td>User alarm code d5</td>
</tr>
</tbody>
</table>

Assistant relay

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70017</td>
<td>Control power ON completed (Normality ON)</td>
</tr>
</tbody>
</table>
I/O Signal Allocation

4.2 Transmission Data

The figure of the ladder
4.3 Setting of AB3602 Board Communication Condition

When using AB3602 board, the network is necessary to be configured with AnyBus NetTool for PROFIBUS (HMS made) (hereinafter referred to as NetTool).

Followings are the outline of the network configuration when A3601 (IN: 16 Byte, OUT: 6 Byte) is regarded as a slave. For the details of the settings, please refer to the documentations attached to NetTool.

1. Install NetTool on the PC.
2. With the serial cable, connect the PC and the AB3602 which is mounted to the YRC1000micro.
3. Turn ON the power supply while pressing [MAIN MENU] simultaneously.
4. Start-up NetTool.
 - The following window appears.

 ![NetTool Window](image)

 - All the subsequent procedures are operated on the NetTool window.

5. Select (Project) – (New).
 - A new configuration window appears.

 ![Configuration Window](image)
6. In the GSD window, select (Profibus Master) and drag (Anybus-M DPV1) to the configuration window, then drop it.
 - Anybus-M icon appears in the configuration window.

7. Double click Anybus-M icon.
 - Master Properties window appears.
 - Select PROFIBUS tag. Set Address (Profibus node address) and Baudrate (baud rate), then click (OK).
4. I/O Signal Allocation
4.3 Setting of AB3602 Board Communication Condition

8. In the GSD window, select {PROFIBUS DP} - {General} - {HMS Industrial Networks} and drag {Anybus -S DPV1} to the configuration window, then drop it.
 - The Anybus-S icon appears in the The Anybus-M network.

9. Double click the Anybus-S icon.
 - Slave Properties window appears.
 - Select Common tag. Set PROFIBUS Address (Profibus node address), then click {OK}.
4 I/O Signal Allocation
4.3 Setting of AB3602 Board Communication Condition

10. In the GSD window, select {PROFIBUS DP} - {General} - {HMS Industrial Networks} - {Anybus -S DPV1} and drag {IN/OUT: 8 word} to the slot 1 in the configuration window, then drop it.

11. Select {Online} - {Download Configuration}.
 – Transport Paths window appears.

12. Select Serial tag and click {Create}.
 – Transport provider selecting window appears.

13. Click {OK}.
 – Path name inputting window appears.
14. Click {OK}.
 – COM-PORT selecting window appears.

15. Select {OK}.
 – Downloading of the configuration result starts.
 – When downloading is completed, the following dialog box appears, then click {OK}.
5 Error Indication

INpact/AB3602 board is provided with LEDs for circuit board status indication. These LEDs indicate the following conditions.
5.1 INpact

<table>
<thead>
<tr>
<th>No.</th>
<th>LED State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Green</td>
<td>Data exchange</td>
</tr>
<tr>
<td></td>
<td>Green flashing</td>
<td>Clear mode</td>
</tr>
<tr>
<td></td>
<td>Red single flash</td>
<td>Parameterization error</td>
</tr>
<tr>
<td></td>
<td>Red double flash</td>
<td>PROFIBUS Configuration error</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No power</td>
</tr>
<tr>
<td>MS</td>
<td>Green</td>
<td>Interface in OPERATIONAL state</td>
</tr>
<tr>
<td></td>
<td>Green flash</td>
<td>Extended diagnostic bit is set</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Interface in EXCEPTION state</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Interface in SETUP or NW_INIT state</td>
</tr>
<tr>
<td>U1/U2</td>
<td>Green / Green flash</td>
<td>Application firmware active</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Boot manager start (before start)</td>
</tr>
<tr>
<td></td>
<td>Other than above</td>
<td>Boot manager initialized or Error in boot up sequence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Turn OFF and ON the YRC1000micro main power to start the system again</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the connection of the INpact board and the YRC1000micro PCI Express slot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace the INpact board</td>
</tr>
</tbody>
</table>
5.2 AB3602

<table>
<thead>
<tr>
<th>No.</th>
<th>Meaning</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Application Connecting Status</td>
<td>Green</td>
<td>Controlled by application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Standalone</td>
</tr>
<tr>
<td>2</td>
<td>IO Access</td>
<td>Green flashing</td>
<td>IO accesses going on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red flashing</td>
<td>IO access failure (recoverable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No activity</td>
</tr>
<tr>
<td>3</td>
<td>Master Status</td>
<td>Green</td>
<td>Operation mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green flashing</td>
<td>Clear mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Idle mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>OFF line status</td>
</tr>
<tr>
<td>4</td>
<td>Token Hold</td>
<td>Green</td>
<td>Master has the token.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>Master does not have the token.</td>
</tr>
<tr>
<td>5</td>
<td>Database Status</td>
<td>Green</td>
<td>Database OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green flashing</td>
<td>Database download in progress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Database invalid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No database download</td>
</tr>
<tr>
<td>6</td>
<td>Communication Status</td>
<td>Green</td>
<td>Data exchange with all configured Slave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green flashing</td>
<td>Data exchange with one or more configured Slaves.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red</td>
<td>Network line control error Short circuit error or configuration error are the possible causes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No data exchange with any of the configured Slaves.</td>
</tr>
</tbody>
</table>
YRC1000micro OPTIONS
PROFIBUS COMMUNICATION FUNCTION
INSTRUCTIONS
FOR INpact AND AB3602 MADE BY HMS, Inc.

YASKAWA ELECTRIC CORPORATION
2-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu, 806-0004, Japan
Phone: +81-93-645-7703 Fax: +81-93-645-7802
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC. (MOTOMAN ROBOTICS DIVISION)
100 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone: +1-937-847-6200 Fax: +1-937-847-6277
http://www.motoman.com

YASKAWA EUROPE GmbH (ROBOTICS DIVISION)
Yaskawastrasse 1, 85391, Aulershhausen, Germany
Phone: +49-8166-90-100 Fax: +49-8166-90-103
http://www.yaskawa.eu.com

YASKAWA NORDIC AB
Verkstadsgatan 2, Box 504, SE-385 25 Torsas, Sweden
Phone: +46-480-417-800 Fax: +46-486-414-10
http://www.yaskawa.se

YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, One Corporate Avenue, No.222 Hubin Road, Huangpu District, Shanghai 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA SHOUGANG ROBOT CO., LTD.
No.7 Yongchang North Road, Beijing E&T Development Area, Beijing 100076, China
Phone: +86-10-6788-2888 Fax: +86-10-6788-2878
http://www.yar-motoman.cn

YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Guljeoemunu-aro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-8913-1333 Fax: +82-2-8913-1513
http://www.yaskawa.co.kr

YASKAWA ELECTRIC TAIWAN CORPORATION
12F, No.207, Sec. 3, Beishih Rd., Shindian District, New Taipei City 23143, Taiwan
Phone: +886-2-2913-1333 Fax: +886-2-8913-1513
http://www.yaskawa.com.tw

YASKAWA ASIA PACIFIC PTE. LTD.
30A Kallang Place, #06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0199
http://www.yaskawa.co.th

PT. YASKAWA ELECTRIC INDONESIA
Secure Building-Gedung B Lantai Dasar & Lantai 1 Jl. Raya Protokol Halim Perdanakusuma, Jakarta 13610, Indonesia
Phone: +62-21-2982-6470 Fax: +62-21-2982-6471
http://www.yaskawa.co.id

YASKAWA INDIA PRIVATE LIMITED (ROBOTICS DIVISION)
#426, Udyog Vihar Phase-IV, Gurgaon, Haryana 122016, India
Phone: +91-124-475-8500 Fax: +91-124-475-8542
http://www.yaskawa.in

©2018 YASKAWA ELECTRIC CORPORATION
Published by YASKAWA

YASKAWA ELECTRIC CORPORATION

MANUAL NO.
HW1484564

April 2019 18-02